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EXACT CONTROLLABILITY OF VIBRATIONS OF THIN BODIES

J. Saint Jean Paulin and M. Vanninathan*

Abstract: In this paper, we address the problem of exact controllability of the wave

equation in three dimensional domains which are thin in one direction. We prove the

existence of exact controls and analyze their asymptotic behaviour as thickness parameter

goes to zero. We characterize their limit as the solution of an exact controllability problem

in two dimension.

1 – Introduction

In this paper, we consider the vibrations of three-dimensional elastic bodies
which are thin in one direction say that of the x3-axis. Let e > 0 be the thickness
parameter of the body in that direction. We are interested in small values of e.
The boundary of the body is divided into three disjoint pieces: the lateral part and
the top-bottom surfaces. The system which models the vibrations of this body
is described in the next section along with other notations. For now, it suffices
to mention that this is an initial boundary value problem with mixed boundary
condition. As usual, we impose Dirichlet condition on the lateral part while
Neumann condition is taken on top-bottom surfaces. We address the question
of exact controllability of these vibrations by acting on the boundary of the
body. More precisely, we look for suitable controls acting through the boundary
conditions mentioned above and a finite time T such that these vibrations are
killed at time T . In this paper, we study the following two aspects:

i) Existence of exact controls and time of controllability for each e > 0;

ii) Behaviour of controls as e→ 0.

The problem of exact controllability for distributed systems has been studied
extensively by Lions [4] in a very general set-up. The method introduced in this
work to attack the problem is the so-called Hilbert Uniqueness Method (HUM)
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combined with the method of multipliers. Our plan in this paper is to follow
HUM but of course with certain modifications as indicated below.

First, let us say few words about the earlier study of thin three-dimensional
bodies. There is a vast literature on the movement of thin elastic bodies under
a given force field (cf. Ciarlet and Destuynder [1]). The typical result one gets
is the following: when e→ 0 the solution converges to that of a two-dimensional
problem called plate problem. This is a singular limit in the sense that the limit
equation is of order four while the original system of equations of elasticity in
three dimensions is of order two. The corresponding result for the vibrating
bodies have been obtained by Raoult [6], [7] and Ciarlet and Kesavan [2]. The
limit is again singular because we pass from a system of hyperbolic equations in
three dimensions to a scalar dispersive equation in two dimensions.

We now discuss the model studied in this paper. We do not consider the
system of linear elasticity. We treat, following Lions [5], p. 193, a simpler model
namely the classical wave equation in thin domains in three-dimensions. The
limit is of course two dimensional wave equation when e→ 0. Thus the passage
is from hyperbolic to hyperbolic equation and hence regular.

It is now time to comment on the nature of the results obtained and the
techniques followed. As mentioned above, we follow the general lines of HUM.
However there are modifications. First of all, our domain is not smooth neither
convex. Secondly, we have mixed boundary conditions. Thus there is a lack of
regularity of solution in such domains. This poses in general serious difficulties in
the method of multipliers because the argument involves a regularity result plus
a density argument. See Lions [4], p. 179–180. However, in the present case, the
geometry of the body and the boundary condition are such that we can apply
the regularity results of Grisvard [3] and proceed with HUM. In the sequel, we do
this in such a way that the behaviour of the solution as e→ 0 is clearly brought
out. In particular, we need to choose the multipliers which are more suitable
to thin bodies which are of interest to us in this paper. The usual multipliers
(Lions [4], p. 29–31), do not seem to serve the purpose. We need to introduce
suitable normalizing factor involving e in the nonhomogeneous backward problem.
With a view to obtain a two-dimensional problem at the limit, we restrict the
usual multiplier used to obtain the so-called inverse inequality. With all these
preparations, we are able to prove the existence of exact controls which exist on
a part of the lateral boundary of the body as well as on the entire top-bottom
surfaces.

Our approach gives not only existence but also estimates on the controls.
We use these estimates in analyzing the behaviour as e → 0. First of all, it is
established that the minimal time Te of exact controllability is bounded above
independently of e. We fix one time T (independent of e) at which we have exact
controllability and work with it subsequently.
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Since the problem is linear, weak convergence is enough to pass to the limit.
The task is to identify the limit. This requires the use of suitable test functions
to thin bodies.

Our results show that the controls on the top-bottom surfaces of the body tend
to zero in a suitable sense. The lateral control becomes two-dimensional at the
limit. This limiting control is characterized as a boundary control in a problem
of exact controllability in two dimensions, in which there is also a control in
the entire interior of the domain. This interior control is due to the presence
of boundary controls on top-bottom surfaces. (Let us repeat that there were
only boundary controls and no interior control in the original problem in three
dimensions). Because of the presence of the entire interior control, the limiting
problem is exactly controllable for all times T̃ > 0 even though the equation is
hyperbolic (cf. Lions [4]). This seems to indicate that the minimal times Te → 0
as e → 0; however we do not quite prove this. As mentioned earlier we fix one
time T > 0 of exact controllability and show how to pass to the limit. In the case
of elasticity systems, identification of the limit will be more difficult as it requires
other test functions. We would like to point out one additional phenomenon
which does not exist in the case of wave equation. Since the limiting equation
is dispersive in the case of elasticity systems, we expect that the minimal times
Te → 0 as e→ 0 even without the boundary controls on the top-bottom surfaces
in the three-dimensional model. We plan to analyze all these in our subsequent
publications.

This article is organized as follows: we introduce the notations and pose the
problem in the next section. Following HUM, we consider the associated problem
with homogeneous boundary condition in §3. Several estimates in the form of
energy inequality, direct and inverse inequalities on this problem are derived in
the subsequent sections §4, §5, §6. The exact controllability problem is then
solved by the introduction of backward Cauchy problem and the operator Λ.
This is done in §7 and §8. The behaviour of its solution as e→ 0 is analyzed in
later sections. The main result is stated in Theorem 8.5. Summation convention
with respect to repeated indices is used unless stated otherwise. Following the
standard practice in the analysis of thin bodies, Greek indices α, β, etc. take
values in {1, 2} and Latin indices i, j, k, etc. take values in {1, 2, 3}. The same
problem has been studied by Yan [8] about which we comment in the last section.

2 – Notations and problem to be studied

The thin three-dimensional body whose vibrations interest us is constructed
as follows: let ω be a bounded open set in IR2 whose smooth boundary is denoted
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as γ. It is not assumed that ω is convex. Given the thickness parameter e > 0,
we let

(2.1)

Ωe = ω̃× ]− e
2 ,

e
2 [ ,

Γe0 = γ × [− e
2 ,

e
2 ] ,

Γe+ = ω̃ × { e2} ,

Γe− = ω × {− e
2} ,

so that the boundary Γe of Ωe is partitioned into three sets Γe0 (lateral part), Γ
e
+

(the upper portion) and Γe− (the lower portion):

Γe = Γe+ ∪ Γ
e
− ∪ Γ

e
0 .

As mentioned in the introduction, we take control on a part of the lateral
boundary Γe0 apart from the entire top-bottom boundaries Γe±. The required
part of Γe0 is taken as follows because of the existence of good multipliers:

Let x0 be a point with x03 = 0. We define

(2.2)
m(x) = x− x0 ,

γ(x0) =
{
x ∈ γ : m(x) · ν(x) > 0

}
,

where ν(x) the unit exterior normal to Γe. We next set

(2.3)

γ∗ = γ\γ(x0) ,

Γe(x0) = γ(x0)× [− e
2 ,

e
2 ] ,

Γe∗ = Γ
e
0\Γ

e(x0) .

We take Dirichlet control only on Γe(x0) and Neumann control on Γe±. More
precisely, we fix T > 0 and consider the following initial boundary value problem
for the wave equation in Ωe:

∂2y

∂t2
−

(
∂2y

∂x21
+
∂2y

∂x22
+
∂2y

∂x23

)
= 0 in Qe ,(2.4a)

y = v on Σe(x0) ,(2.4b)

y = 0 on Σe∗ ,(2.4c)

∂y

∂ν
= w± on Σe± ,(2.4d)

y(0) = y0,
∂y

∂t
(0) = y1 in Ωe .(2.4e)
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Here we have used the following notations:

(2.5)

Qe = Ωe× ]0, T [ ,

Σe = Γe× ]0, T [ ,

Σe0 = Γ
e
0× ]0, T [ ,

Σe± = Γ
e
±× ]0, T [ ,

Σe(x0) = Γe(x0)× ]0, T [ ,

Σe∗ = Γ
e
∗× ]0, T [ .

We have initial conditions for the wave equation in (2.4e). v is the control on
a part of the lateral boundary through Dirichlet action. w± on controls on the
top-bottom surfaces through Neumann action. Note that there is no control on
the part Γe∗.
We ask the following question which is an exact controllability problem: given

initial conditions y0, y1 in (2.4e), do there exist a time T > 0 and controls v, w±
in (2.4b), (2.4d) such that the unique solution y of the problem (2.4) satisfies

y(·, T ) = 0,
∂y

∂t
(·, T ) = 0 in Ωe ?

To answer this question, we follow HUM. But first, we transform the problem
(2.4) from the variable domain Ωe to the fixed domain Ω = ω× ]− 1

2 ,
1
2 [. To this

end, we define the following correspondence between points by homothecy:

(2.6) x = (x1, x2, x3)→ z = (z1, z2, z3) ,

where zα = xα, α = 1, 2, z3 = e−1 x3. We also make the following association of
functions f defined on Ωe with those f e defined on Ω:

(2.7) f(x) = f e(z) .

With these notations, the transformed problem on Ω can be written as follows:

∂2ye

∂t2
−

(
∂2ye

∂z21
+
∂2ye

∂z22
+ e−2

∂2ye

∂z23

)
= 0 in Q ,(2.8a)

ye = ve on Σ(z0) ,(2.8b)

ye = 0 on Σ∗ ,(2.8c)

e−1
∂ye

∂ν
= we± on Σ± ,(2.8d)

ye(0) = ye0,
∂ye

∂t
(0) = ye1 in Ω .(2.8e)
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The notations Q, Σ(z0), Σ±, Σ∗ used above correspond to the domain Ω and are
defined as in (2.5). In the sequel, we work with the formulation (2.8) in which
the domain is fixed.
We will specify later the spaces in which initial conditions and boundary

controls are taken and also the spaces in which the solution is sought. Let us just
mention that our aim in this work is to solve the exact controllability problem
for (2.8): Given {ye0, y

e
1}, find {v

e, we±} such that

(2.8f) ye(T ) =
∂ye

∂t
(T ) = 0 in Ω .

3 – Associated homogeneous forward problem

The first step in HUM is to consider the homogeneous problem associated
with (2.8), that is we take the boundary controls to be zero. Thus we introduce
the following problem:

∂2φe

∂t2
−

(
∂2φe

∂z21
+
∂2φe

∂z22
+ e−2

∂2φe

∂z23

)
= 0 in Q ,(3.1a)

φe = 0 on Σ0 ,(3.1b)

∂φe

∂ν
= 0 on Σ± ,(3.1c)

φe(0) = φ0 and
∂φe

∂t
(0) = φ1 in Ω .(3.1d)

In order to solve this problem, we introduce the spaces

V =
{
ψ ∈ H1(Ω), ψ = 0(Γ0)

}
, V ′ = dual space of V .

We then have the following classical result (cf. Lions [4], p. 33–37) which provides
the existence and uniqueness of solution to (3.1):

Theorem 3.1. We take the initial conditions φ0 ∈ V and φ1 ∈ L
2(Ω). Then

there exists a unique solution φe to (3.1) with the following regularity

φe ∈ C0([0, T ];V ) ∩ C1([0, T ];L2(Ω)) ∩ C2([0, T ];V ′) .

Moreover we have the following conservation of energy:

(3.3a) E(t) ≡ E(0) , ∀ t ,
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where the energy at time t is defined by

(3.3b)

E(t) =
1

2

∫

Ω

∣∣∣∣
∂φe

∂t
(z, t)

∣∣∣∣
2

dz

+
1

2

∫

Ω

[∣∣∣∣
∂φe

∂z1
(z, t)

∣∣∣∣
2

+

∣∣∣∣
∂φe

∂z2
(z, t)

∣∣∣∣
2

+ e−2
∣∣∣∣
∂φe

∂z3
(z, t)

∣∣∣∣
2]
dz .

Concerning the regularity of the solution φe, we will need the following result
in the sequel:

Theorem 3.2. Assume now φ0 ∈ H
2(Ω) ∩ V and φ1 ∈ V . Then the unique

solution φe has the following regularity:

φe ∈ C0([0, T ];Hs ∩ V ) ∩ C1([0, T ];V ) ∩ C2([0, T ];L2(Ω))

for some s with 3
2 < s < 2.

Proof: We cannot apply the results of Lions [4], p. 33 directly because Ω is
not of class C2, neither convex. Moreover we have mixed boundary conditions.
However using the geometry of Ω in three-dimensions one can prove following
Grisvard [3], p. 237 that the solution has the regularity stated in the Theorem.

For later purposes, we shall need regularity results on the following problem
in which we have a nonzero source term:

∂2θe

∂t2
−

(
∂2θe

∂z21
+
∂2θe

∂z22
+ e−2

∂2θe

∂z23

)
= f in Q ,(3.4a)

θe = 0 on Σ0 ,(3.4b)

∂θe

∂ν
= 0 on Σ± ,(3.4c)

θe(0) = θ0 and
∂θe

∂t
(0) = θ1 in Ω .(3.4d)

Theorem 3.3.

a) Let us take f ∈ L1(0, T ;L2(Ω)), θ0 ∈ V and θ1 ∈ L
2(Ω). Then there exists

a unique solution θe with the following regularity:

θe ∈ C0([0, T ];V ) ∩ C1([0, T ], L2(Ω)) .

We also have the following energy inequality:

(3.5) E(t) ≤ C0

{
E(0) +

(∫ t

0
‖f(s)‖L2(Ω) ds

)2}
,
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where E(t) is defined in (3.3) and C0 is a constant independent of e.

b) Furthermore, if f ∈ L1(0, T ;V ), θ0 ∈ H
2 ∩ V and θ1 ∈ V then the unique

solution θe enjoys the following regularity properties:

θe ∈ C0([0, T ];Hs ∩ V ) ∩ C1([0, T ];V ) for some s with
3

2
< s < 2 .

Proof: It is analogous to that of Theorem 3.2 cf. Lions [4] p. 39 and Grisvard
[3], p. 237. To get the estimate (3.5), one multiplies (3.4) by ∂θe

∂t
and integrates

by parts.

4 – Direct inequality

As is well-known, HUM is based on certain estimates that one derives on the
problems (3.1) and (3.4). In this paragraph, we derive what are called direct
estimates. These estimates are deduced from an identity valid for solutions with
finite energy whose existence has been established in §3. This identity is obtained
by the so-called multiplier method. (i.e.) we multiply (3.4) by mk(z)

∂θe

∂zk
. Thanks

to the regularity results in §3, it is possible to establish this identity in our case
for arbitrary solutions of finite energy. cf. Theorem 4.1 below.

Once this identity is proved, the classical strategy to derive the direct esti-
mates is to make the following choice of multipliers:

(4.1)




mk ∈W

1,∞(Ω),

mk(z) = νk(z) on Γ ,

where ν(z) = (νk(z)) is the unit outward normal at z ∈ Γ. Unfortunately such a
choice is not possible because mk ∈W

1,∞(Ω) ↪→ C0(Γ) but νk /∈ C
0(Γ).

Hence we turn to other choices. One may think of using Lemma 3.2, p. 31
in Lions [4] but however since we are interested in the limit e → 0, we desire
to obtain uniform estimates as e → 0. This motivates us to define the following
multipliers:

(4.2)





mk ∈W
1,∞(Ω),

m1,m2 are independent of z3,

mα = να on Γ0, α = 1, 2,

m3 = 0 on Γ .



EXACT CONTROLLABILITY OF VIBRATIONS OF THIN BODIES 429

Another choice is the following one:

(4.3)





mk ∈W
1,∞(Ω),

m1,m2 are independent of z3,

mα = 0 on Γ0, α = 1, 2,

m3 = ν3 on Γ± .

Note that such choices are possible; it is enough to work in ω top obtain such func-
tions and then extend them by constancy over “z3-fibbers”. Evidently this choice
of multipliers are more adapted to the body Ω under our consideration. With
this choice, we derive direct inequalities on the problem (3.4). Cf. Theorem 4.2
below.
Let us therefore consider the problem (3.4). Then we have the identity given

by the following result valid for all solutions with finite energy:

Theorem 4.1. Let f ∈ L1(0, T, L2(Ω)), θ0 ∈ V and θ1 ∈ L
2(Ω). Then the

solution θe of (3.4) satisfies

1

2

∫

Σ0
(mανα)

(
∂θe

∂ν

)2

dσ dt+
1

2

∫

Σ±
(m3ν3)

{(
∂θe

∂t

)2

−

(
∂θe

∂z1

)2

−

(
∂θe

∂z2

)2}
dσ dt =

=

[∫

Ω

∂θe

∂t
mk

∂θe

∂zk
dz

]T

0

+

∫

Q

∂mk

∂zk

1

2

{(
∂θe

∂t

)2

−

(
∂θe

∂z1

)2

−

(
∂θe

∂z2

)2

− e−2
(
∂θe

∂z3

)2}
dz dt

+

∫

Q

∂mk

∂zα

∂θe

∂zα

∂θe

∂zk
dz dt+

∫

Q
e−2

∂mk

∂z3

∂θe

∂z3

∂θe

∂zk
dz dt−

∫

Q
f mk

∂θe

∂zk
dz dt .

Proof: We multiply (3.4) by mk
∂θe

∂zk
and integrate by parts following Lions

[4], p. 40–43 and p. 185–186. This will establish the above identity in the case
of smooth solution. We then complete the proof for general solutions with finite
energy by density arguments and by appealing to the regularity result of Theorem
(3.3) (b).

As mentioned earlier, we make the choice of the multipliers as given by (4.2)
and (4.3) respectively in the identity derived above. This leads to the following
result:

Theorem 4.2. Fix T ∗ > 0. We take again f ∈ L1(0, T, L2(Ω)), θ0 ∈ V and
θ1 ∈ L2(Ω). Then the solution θe of (3.4) admits the following estimates with
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constant C1 independent of T ≥ T ∗ and e→ 0 but depending on T ∗.

(4.4)

∫

Σ0

(
∂θe

∂ν

)2

dσ dt ≤ C1 T
{
E(0) +

(∫ T

0
‖f(t)‖L2(Ω)dt

)2}
,

(4.5)

∣∣∣∣
∫

Σ±

[(
∂θe

∂t

)2

−

(
∂θe

∂z1

)2

−

(
∂θe

∂z2

)2]
dσ dt

∣∣∣∣ ≤

≤ C1 T
{
E(0) +

(∫ T

0
‖f(t)‖L2(Ω)dt

)2}
.

Here E(0) is the initial energy as defined in (3.3).

Proof: We apply identity of Theorem 4.1 with the choice (4.2). The nasty
terms

∫
Q e

−2 ∂mα

∂z3
∂θe

∂zα
∂θe

∂z3
dz dt which are not bounded by energy drop out. We

obtain indeed

1

2

∫

Σ0

(
∂θe

∂ν

)
dσ dt =

[∫

Ω

∂θe

∂t
mk

∂θe

∂zk
dz

]T

0

+

∫

Q

1

2

∂mk

∂zk

{(
∂θe

∂t

)2

−

(
∂θe

∂z1

)2

−

(
∂θe

∂z2

)2

−

(
∂θe

∂z3

)2}
dz dt

+

∫

Q

∂mk

∂zα

∂θe

∂zα

∂θe

∂zk
dz dt+

∫

Q
e−2

∂m3

∂z3

(
∂θe

∂z3

)2

dz dt(4.6)

−

∫

Q
f mk

∂θe

∂zk
dz dt .

Let us consider the various terms on the right side of (4.6) except the last one. At
each instant of time, they are bounded by (max1≤k≤3 ‖mk‖1,∞).E(t). We next
appeal to the energy estimate (3.5) and this leads to (4.4).

Thus it remains to estimate the last term on the right side of (4.6). This term
can be handled as follows:

∣∣∣∣
∫

Q
f mk

∂θe

∂zk
dz dt

∣∣∣∣ ≤ ‖mk‖0,∞,Ω

∫ T

0
‖f(t)‖L2(Ω)

∥∥∥∥
∂θe

∂zk

∥∥∥∥
L2(Ω)

dt ≤

≤ ‖mk‖0,∞,Ω

∫ T

0
‖f(t)‖L2(Ω)E(t)

1

2dt

≤ ‖mk‖0,∞,Ω

∫ T

0
‖f(t)‖L2(Ω)C

1

2

0

{
E(0)

1

2 +

∫ t

0
‖f(s)‖L2(Ω)ds

}
dt ≤
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≤ C
1

2

0 ‖mk‖0,∞,ΩE(0)
1

2

(∫ T

0
‖f(t)‖L2(Ω)dt

)

+ C
1

2

0 ‖mk‖0,∞,Ω
(∫ T

0
‖f(t)‖L2(Ω)dt

)2

≤ C
1

2

0 ‖mk‖0,∞,Ω

{
1

2
E(0) +

1

2

(∫ T

0
‖f(t)‖L2(Ω)dt

)2}

+ C
1

2

0 ‖mk‖0,∞,Ω
(∫ T

0
‖f(t)‖L2(Ω)dt

)2

≤ C
1

2

0 ‖mk‖0,∞,Ω

{
1

2
E(0) +

(∫ T

0
‖f(t)‖L2(Ω)dt

)2}

≤ C1T
{
E(0) +

(∫ T

0
‖f(t)‖L2(Ω)dt

)2}

where

C1 =
C
1

2

0

T ∗

(
max
1≤k≤3

‖mk‖0,∞,Ω
)
.

This establishes the estimate (4.4). Proof of (4.5) is similar; it suffices to use the
multipliers given by (4.3).

Remark 4.1. If ∃ no source term f then the last term in (4.6) does not
exist. The above proof then shows that the estimates (4.4), (4.5) are valid with
a constant C which is independent of T ∗. In other words, we have the following
estimates for the solution φe of (3.1) with a constant C2 independent of T > 0
and e→ 0:

∫

Σ0

(
∂φe

∂ν

)2

dσ dt ≤ C2 T E(0) ,(4.7)

∣∣∣∣
∫

Σ±

[(
∂φe

∂t

)2

−

(
∂φe

∂z1

)2

−

(
∂φe

∂z2

)2]
dσ dt

∣∣∣∣ ≤ C2 T E(0) .(4.8)

These are regularity properties of solutions with finite energy which are uniform
as e→ 0.

5 – Inverse inequality

This is again an estimate on the solution φe of the equation (3.1) which goes
in a direction opposite to the direct inequality derived in the previous section.
In other words, we now want to estimate the energy. This is something very
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essential to HUM. Once again we use the identity of Theorem 4.1 with different
choice of multipliers. The classical choice is the following:

(5.1) mk(z) = zk − z
0
k , k = 1, 2, 3 .

However we restrict the choice z0 such that z03 = 0. This is done with the view
to obtain a two dimensional problem of exact controllability at the limit e → 0.
With this choice, the portion Γ(z0) of the lateral part of the boundary has a two
dimensional structure. Indeed

Γ(z0) = γ(z0)×

[
−
1

2
,
1

2

]
,

where γ(z0) is defined as in (2.2).
If we use the multiplier (5.1), we obtain the inverse inequality given by the

following result:

Theorem 5.1. Let us consider the solution φe of the equation (3.1) with
initial conditions φ0 ∈ V and φ1 ∈ L2(Ω). Then there exists a constant C3

and T ∗ > 0, both independent of e such that for T ≥ T ∗ we have the following
estimate on the solution φe:

(5.2) E(0) ≤ C3

{∫

Σ(z0)

(
∂φe

∂ν

)2

dσ dt+

∫

Σ±

[(
∂φe

∂t

)2

+ (φe)2
]
dσ dt

}
.

Proof: We apply the identity of Theorem 4.1 with the choice (5.1). We
obtain the following relation without difficulty:

1

2

∫

Σ0
(mανα)

(
∂φe

∂ν

)2

dσ dt+
1

2

∫

Σ±
(m3 ν3)

{(
∂φe

∂t

)2

−

(
∂φe

∂z1

)2

−

(
∂φe

∂z2

)2

dσ dt

}
−

−

[∫

Ω

∂φe

∂t
mk

∂φe

∂zk
dz

]T

0

−

∫

Q

{
3

2

(
∂φe

∂t

)2

−
1

2

(
∂φe

∂z1

)2

−
1

2

(
∂φe

∂z2

)2

−
1

2
e−2

(
∂φe

∂z3

)2}
dz dt = 0 .

We add the following to both sides:

1

2

∫

Q

{(
∂φe

∂t

)2

+

(
∂φe

∂z1

)2

+

(
∂φe

∂z2

)2

+ e−2
(
∂φe

∂z3

)2}
dz dt .

We then end up in the following relation:

(5.3)
1

2

∫

Q

{(
∂φe

∂t

)2

+

(
∂φe

∂z1

)2

+

(
∂φe

∂z2

)2

+ e−2
(
∂φe

∂z3

)2}
dz dt =



EXACT CONTROLLABILITY OF VIBRATIONS OF THIN BODIES 433

=
1

2

∫

Σ0
(mανα)

(
∂φe

∂ν

)2

dσ dt

+
1

2

∫

Σ±
(m3ν3)

{(
∂φe

∂ν

)2

−

(
∂φe

∂z1

)2

−

(
∂φe

∂z2

)2}
dσ dt

−

[∫

Ω

∂φe

∂t
mk

∂φe

∂zk
dz

]T

0

−

∫

Q

{(
∂φe

∂t

)2

−

(
∂φe

∂z1

)2

−

(
∂φe

∂z2

)2

− e−2
(
∂φe

∂z3

)2}
dz dt .

On the other hand, by multiplying (3.1) by φe and integrating by parts, we get

(5.4)

∫

Q

{(
∂φe

∂t

)2

+

(
∂φe

∂z1

)2

+

(
∂φe

∂z2

)2

+e−2
(
∂φe

∂z3

)2}
dz dt =

[∫

Q

∂φe

∂t
φe dz

]T

0
.

Using (5.4) and the fact that

(5.5) m3 ν3 =
1

2
(Γ±) ,

we get from (5.3) that

(5.6)
1

2

∫

Q

{(
∂φe

∂t

)2

+

(
∂φe

∂z1

)2

+

(
∂φe

∂z2

)2

+ e−2
(
∂φe

∂z3

)2}
dz dt =

=
1

2

∫

Σ0
(mανα)

(
∂φe

∂ν

)2

dσ dt+
1

4

∫

Σ±

{(
∂φe

∂t

)2

−

(
∂φe

∂z1

)2

−

(
∂φe

∂z2

)2}
dσ dt

−

[∫

Ω

∂φe

∂t

(
φe +mk

∂φe

∂zk

)
dz

]T

0
.

We observe the following points: The left side of (5.6) is equal to T E(0) because
energy is conserved (cf. (3.3)). The integral over Σ0 can be split into two parts:
one integral over Σ(z0) and another over Σ∗. Recall we have mανα ≤ 0 over
Γ∗ (cf. (2.2), (2.3)). We can drop the integral over Σ∗ at the cost of replacing
equality by inequality. For the last term we apply the estimate of the Lemma 5.2
below. Finally we obtain

TE(0) ≤
1

2

∫

Σ(z0)
(mανα)

(
∂φe

∂ν

)2

dσ dt

+
1

4

∫

Σ±

{(
∂φe

∂t

)2

−

(
∂φe

∂z1

)2

−

(
∂φe

∂z2

)2}
dσ dt

+ C4

{
E(0) +

∫

Σ±

[(
∂φe

∂t

)2

+ (φe)2
]
dσ dt

}
.
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To complete the proof, it is enough to choose

(5.7)

T ∗ > C4 ,

C3 ≥
2

T − C4
max

{1
4
, C4,

1

2
max
γ(z0)

|mανα|
}
.

Lemma 5.2. There is a constant C4 independent of e such that

∣∣∣∣
[∫

Ω

∂φe

∂t

(
φe +mk

∂φe

∂zk

)
dz

]T

0

∣∣∣∣ ≤ C4

{
E(0) +

∫

Σ±

[(
∂φe

∂t

)2

+ (φe)2
]
dσ dt

}
.

Proof: We have

∣∣∣∣
∫

Ω

∂φe

∂t

(
φe +mk

∂φe

∂zk

)
dz

∣∣∣∣ ≤
1

2

∫

Ω

(
∂φe

∂t

)2

dz +
1

2

∫

Ω

(
mk

∂φe

∂zk
+ φe

)2

dz .

The second term on the right side is expressed as follows:

1

2

∫

Ω

[
m2
k

(
∂φe

∂zk

)2

+ (φe)2 + 2mk φ
e ∂φ

e

∂zk

]
dz =

=
1

2

∫

Ω

[
m2
k

(
∂φe

∂zk

)2

+ (φe)2 +mk
∂

∂zk
(φe)2

]
dz .

By doing integration by parts in the last term, we get

1

2

∫

Ω
m2
k

(
∂φe

∂zk

)2

dz −

∫

Ω
(φe)2dz +

1

2

∫

Γ
(mk νk)(φ

e)2 dσ =

=
1

2

∫

Ω
m2
k

(
∂φe

∂zk

)2

dz −

∫

Ω
(φe)2 dz +

1

4

∫

Γ±
(φe)2 dσ

because mkνk = m3ν3 =
1
2 on Γ± and φ

e = 0 on Γ0. Thus we obtain

(5.8)

∣∣∣∣
∫

Ω

∂φe

∂t

(
φe +mk

∂φe

∂zk

)
dz

∣∣∣∣ ≤
1

2

∫

Ω

(
∂φe

∂t

)2

dz +
1

2

∫

Ω
m2
k

(
∂φe

∂zk

)2

dz

−

∫

Ω
(φe)2 dz +

1

4

∫

Γ±
(φe)2 dσ .

Now we estimate the last term on the right side by using Trace inequality.

(5.9)

∫

Γ±
(φe)2 dσ ≤ C ′4

∫

Σ±

[
(φe)2 +

(
∂φe

∂t

)2]
dσ dt .
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The estimate in the Lemma follows from (5.8) and (5.9) with

(5.10) C4 = max
{
1,
1

4
C ′4, max

z∈Ω
1≤k≤3

m2
k

}
.

6 – The space F and the backward Cauchy problem

The next step in HUM is to introduce the space F and to resolve backward
Cauchy problem with data taken from F . To define the space F , we use the
inverse inequality derived in the previous section. Recall that this inequality (cf.
Theorem 5.1) is valid for T sufficiently large. We fix one such T > 0 indepen-
dent of e, which is possible. We consider the Cauchy problem (3.1) with initial
conditions {φ0, φ1}. We define the following norm:

(6.1) ‖{φ0, φ1}‖
2
F =

∫

Σ(z0)

(
∂φe

∂ν

)2

dσ dt+

∫

Σ±

[(
∂φe

∂t

)2

+ (φe)2
]
dσ dt ,

where φe is the unique solution of (3.1). Inequality (4.7) shows that the first term
in the right side of (6.1) is bounded by the energy uniformly on e→ 0. However
the second term is not so. Hence we take more regular initial conditions, namely
φ0 ∈ H

2(Ω) ∩ V and φ1 ∈ V . By Theorem 3.2, we then have
∂φe

∂t
∈ C0([0, T ];V )

and hence the second term on the right side of (6.1) also makes sense. Hence ‖ ‖F
is well defined by (6.1) for initial conditions {φ0, φ1} ∈ (H

2 ∩ V )× V . We define
F to be the completion of (H2 ∩ V )× V under the norm (6.1). Even though the
norm (6.1) depends on e, the space F is independent of e. It follows from the
inverse inequality that we have the following dense and continuous injection

(6.2) (F, ‖ ‖F ) ↪→ (V × L2(Ω), ‖ ‖E) ,

where the norm ‖ ‖E is defined as in (3.3) i.e.

(6.3) ‖{φ0, φ1}‖
2
E =

1

2

∫

Ω

[(
∂φ0
∂z1

)2

+

(
∂φ0
∂z2

)2

+ e−2
(
∂φ0
∂z3

)2]
dz +

1

2

∫

Ω
φ21 dz .

Moreover the constant of continuity in (6.2) independent of e: there is a constant
C5 independent of e such that

(6.4) ‖{φ0, φ1}‖E ≤ C5 ‖{φ0, φ1}‖F .

Once the space F is defined, we are now ready to introduce the backward
Cauchy problem which can be formally written down as follows:

∂2ψe

∂t2
−

(
∂2ψe

∂z21
+
∂2ψe

∂z22
+ e−2

∂2ψe

∂z23

)
= 0 in Q ,(6.5a)
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ψe =
∂φe

∂ν
on Σ(z0) ,(6.5b)

ψe = 0 on Σ∗ ,(6.5c)

∂ψe

∂ν
= e2

{
∂

∂t

(
∂φe

∂t

)
− φe

}
on Σ± ,(6.5d)

ψe(T ) =
∂ψe

∂t
(T ) = 0 in Ω ,(6.5e)

where φe is the solution of (3.1) with initial condition {φ0, φ1} ∈ F and T > 0
is such that the inverse inequality holds. Here the term ∂

∂t
(∂φ

e

∂t
) is taken in the

following sense

〈
∂

∂t

(
∂φe

∂t

)
, v

〉
= −

∫

Σ±

∂φe

∂t

∂v

∂t
dσ dt for all v ∈ H1(0, T ;L2(Γ±))

(cf. Lions [4], p. 209). A weak formulation of this is obtained if we multiply (6.5)
by θe where θe solves (3.4). By doing integration by parts twice pretending ψe is
smooth, we arrive at the following relation formally:

(6.6)

∫

Ω

∂ψe

∂t
(z, 0) θ0(z) dz −

∫

Ω
ψe(z, 0) θ1(z) dz =

=

∫

Q
ψe f dz dt+

∫

Σ(z0)

∂φe

∂ν

∂θe

∂ν
dσ dt+

∫

Σ±

[
∂φe

∂t

∂θe

∂t
+ φe θe

]
dσ dt .

Thus we are led to propose the following formulation of the problem (6.5):
Find ψe ∈ L∞(0, T ;V ′) which satisfies the following condition: there exists

{ψe1,−ψ
e
0} ∈ F

′ such that we have

(6.7)

〈

F ′
{ψe1,−ψ

e
0}, {θ0, θ1}

〉

F
=

∫

Q
ψe f dz dt+

∫

Σ(z0)

∂φ

∂ν

∂θ

∂ν
dσ dt

+

∫

Σ±

[
∂φe

∂t

∂θe

∂t
+ φe θe

]
dσ dt

for all solutions θe of (3.4) where we take f ∈ L1(0, T ;V ) and {θ0, θ1} ∈ F .
The first term on the right side of (6.7) is interpreted as the duality between

L1(0, T ;V ) and L∞(0, T ;V ′). The second term makes sense because of (4.4).
The third one has a meaning thanks to Theorem 3.3 b). We remark that if there
exists a smooth ψe satisfying (6.7) then necessarily ∂ψe

∂t
(0) = ψe1 and ψ

e(0) = ψe0.
Existence and uniqueness of ψe, ψe0 and ψ

e
1 follow immediately by duality

arguments. In fact choosing θ0 = θ1 = 0 we see that the integrals over Σ(z
0) and

Σ∗ in (6.7) define continuous linear functionals when f ∈ L
1(0, T ;V ). Hence ψe

exists uniquely as an element of L∞(0, T ;V ′). Similar arguments hold for ψe0 and
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ψe1. We use the backward problem to establish the exact controllability in the
next section.

7 – The operator Λe and exact controllability

Following HUM, we now define a linear operator Λe and prove that it is
invertible uniformly with respect to e. This will establish the uniform exact
controllability of our problem (2.8).

Λe will be bounded linear operator from F onto F ′ and it is defined as follows:
Let us start with {φ0, φ1} ∈ F . We solve first the forward Cauchy problem (3.1)
for φe. Next we solve backward Cauchy problem (6.5) for ψe (or rather its weak
formulation (6.7)). This gives the element {ψe1 − ψ

e
0} ∈ F

′. We define

(7.1)
Λe : F → F ′ ,

{φ0, φ1} → {ψe1 − ψ
e
0} .

Properties of Λe are listed in the result below:

Theorem 7.1.

a) Λe is a continuous linear operator whose norm is bounded independent of
e.

b) Λe is an isomorphism onto F ′. The norm of its inverse is bounded inde-
pendent of e.

Proof:

a) In the weak formulation (6.7), we take f = 0.

〈

F ′
{ψe1,−ψ

e
0}, {θ0, θ1}

〉

F
=

∫

Σ(z0)

∂φe

∂ν

∂θe

∂ν
dσ dt+

∫

Σ±

[
∂φe

∂t

∂θe

∂t
+ φe θe

]
dσ dt .

The right side is by definition equal to the inner product ({φ0, φ1}, {θ0, θ1}) in
the space F . As a consequence, we get

(7.2) ‖{ψe1,−ψ
e
0}‖F ′ ≤ ‖{φ0, φ1}‖F ,

which means that ‖Λe‖ ≤ 1.

b) We take {θ0, θ1} = {φ0, φ1} and f = 0 in the weak formulation (6.7). Then
the problem (3.4) is the same thing on (3.1) and hence θe = φe. Therefore, we
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get

(7.3)

〈

F ′
{ψe1,−ψ

e
0}, {θ0, θ1}

〉

F
= ‖{φ0, φ1}‖

2
F ,

(i.e.)
〈

F ′
Λe{φ0, φ1}, {θ0, θ1}

〉

F
= ‖{φ0, φ1}‖

2
F .

(b) follows easily from this property.

Now we are in a position to show the exact controllability of the problem
(2.8). We shall also specify the spaces in which the initial conditions ye0, y

e
1 are

taken and in which sense the problem (2.8) is solved. We take {ye1,−y
e
0} ∈ F ′

and the problem (2.8) is understood in a similar to (6.5). We solve

(7.4) Λe{φe0, φ
e
1} = {y

e
1,−y

e
0} ,

with {φe0, φ
e
1} ∈ F . This is possible because Λ

e : F → F ′ is isomorphism. Next
we solve (3.1) for φe with initial conditions {φe0, φ

e
1}. We next take

ve =
∂φe

∂ν
on Σ(z0) ,(7.5a)

we± = e

{
∂

∂t

(
∂φe

∂t

)
− φe

}
on Σ± ,(7.5b)

as controls in the problem (2.8). With these choices, we observe that problem
(2.8) coincides with (6.5) and so ye = ψe. In particular,

ye(T ) =
∂ye

∂t
(T ) = 0 in Ω .

We states this as a separate result.

Theorem 7.2. As mentioned before, we fix T > 0 such that the inverse
inequality hold. Then the problem (2.8) with initial data {ye0, y

e
1} ∈ F

′ is exactly
controllable at time T with controls defined by (7.4) and (7.5). Moreover these
controls have the following regularity properties:

(7.6)

ve ∈ L2(Σ(z0)) ,

we± ∈
[
H1(0, T ;L2(Γ±))

]′
.
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8 – Behaviour when the thickness parameter is small

In this section, we let the thickness parameter e → 0 and we shall analyze
the behaviour of the exact controllability problem which we have solved the in
the previous section. We will naturally use the various bounds independent of
e established already and pass to the limit in various problems introduced pre-
viously. Recall that the minimal time of exact controllability was show to be
bounded above as e varies this can be chosen independent of e. We fix one such
time T > 0 throughout our discussion.
This section is divided into several subsections. In §8.1 and §8.2, we analyze

the behaviour of the homogeneous forward problem and nonhomogeneous back-
ward problem respectively. These results are subsequently used to pass to the
limit in the exact controllability problem. Indeed in §8.4, it is show that the top
bottom controls converge to zero while the lateral control converges to a limit con-
trol which is independent of z3. Indeed there exists a two-dimensional exact con-
trollability problem which involves an interior control apart from a boundary con-
trol and this boundary control coincides with the limit of the three-dimensional
lateral controls. Our task is to identify this limit control. The subsection 8.3 is
devoted to the description and the study the two dimensional exact controllability
problem mentioned above.
In this section, adopt a new notation which was used in previous sections.

For a section g of three variables (z1, z2, z3) defined on Ω, we denote by m(g), its
average with respect to z3, which is a function of two variables (z1, z2) defined
on ω:

(8.1) m(g) (z1, z2) =

∫ 1

2

− 1
2

g(z1, z2, z3) dz3 .

We add that m(g) can be interpreted as the duality bracket between g and the
constant function identically equal to unity in the z3-variable.

8.1. Behaviour of the Homogeneous Forward problem

Here we Study the behaviour of θe as e→ 0 and where θe is the unique solution
of the problem (3.4). With applications in mind, we take the initial conditions
in (3.4d) to depend on e. Let us therefore rewrite the system:

∂2θeθe

∂t2
−

(
∂2θe

∂z21
+
∂2θe

∂z22
+ e−2

∂2θe

∂z23

)
= f in Q ,(8.2a)

θe = 0 on Σ0(8.2b)

∂θe

∂ν
= 0 on Σ± ,(8.2c)

θe(0) = θe0 and
∂θe

∂t
(0) = θe1 in Ω .(8.2d)
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We have then the following result:

Theorem 8.1 Suppose that f ∈ L1(0, T ;L2(Ω)) and further that

θe0 → θ∗0 weakly in V ,(8.3a)
{
e−1

∂θe0
∂z3

}
bounded in L2(Ω) ,(8.3b)

θe1 → θ∗1 weakly in L2(Ω) .(8.3c)

Then

θe → θ∗ weakly in L∞(0, T ;V ) ,(8.4a)

∂θe

∂t
→

∂θ∗

∂t
weakly in L∞(0, T ;L2(Ω)) ,(8.4b)

where θ∗ is the unique solution of the following problem:

∂2θ∗

∂t2
−

(
∂2θ∗

∂z21
+
∂2θ∗

∂z22

)
= m(f) in ω × (0, T ) ,(8.5a)

θ∗ = 0 on γ × (0, T ) ,(8.5b)

θ∗(0) = m(θ∗0),
∂θ∗

∂t
(0) = m(θ∗1) in ω ,(8.5c)

θ∗ is independent of z3 .(8.5d)

Proof: We first remark that one can solve the problem (8.5) in a unique
manner with the following regularity:

θ∗ ∈ C0([0, T ]; Ṽ ) ∩ C1([0, T ], L2(ω)) ,(8.6)

where

Ṽ =
{
v ∈ H1(ω), v = 0 on γ

}
,(8.7)

because m(f) ∈ L1(0, T ;L2(ω)), m(θ∗0) ∈ Ṽ and m(θ
∗
1) ∈ L

2(ω).
In order to pass to the limit in (8.2) we establish bounds on θe. The energy

estimate (3.5) with our hypotheses on f , θe0, θ
e
1 imply that

∂θe

∂t
∈ bounded in L∞(0, T ;L2(Ω)) ,(8.8a)

θe ∈ bounded in L∞(0, T ;V ) ,(8.8b)

e−1
∂θe

∂z3
∈ bounded in L∞(0, T ;L2(Ω)) .(8.8c)
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We conclude therefore that there exists θ∗ such that (along a subsequence)

θe → θ∗ in L∞(0, T ;V )-weak* ,(8.9a)

∂θe

∂t
→

∂θ∗

∂t
in L∞(0, T ;L2(Ω))-weak* ,(8.9a)

∂θ∗

∂z3
= 0 .(8.9c)

As a consequence of (8.9c), we see that

(8.10) θ∗ ∈ L∞(0, T ; Ṽ ) and
∂θ∗

∂t
∈ L∞(0, T ;L2(ω)) .

Next, to see that this limit θ∗ is actually a solution of (8.5), we multiply the
problem (8.2) by a test function v which is independent of z3 and pass to the
limit using the weak convergence (8.2). More precisely, we take v in L1(0, T ; Ṽ )∩
H2(0, T ;L2(ω)) and multiply (8.2) and integrate by parts:

(8.11)

∫

Q
f v dz dt =

∫

Q
θe
∂2v

∂t2
dz dt+

∫

Q

{
∂θe

∂z1

∂v

∂z1
+
∂θe

∂z2

∂v

∂z2

}
dz dt

+

[∫

Ω

∂θe

∂t
v dz

]T

0
−

[∫

Ω
θe
∂v

∂t
dz

]T

0
.

We remark that there are no terms involving the derivatives with respect to z3
because v is independent of z3. We further restrict v such that

v(T ) =
∂v

∂t
(T ) = 0 in Ω .

We can obviously pass to the limit in the above relation (8.11) as e→ 0. In the
resulting relation, we integrate with respect to z3 keeping z1, z2 fixed. We obtain
(8.12)∫

ω×(0,T )
m(f) v dz̃ dt =

∫

ω×(0,T )
θ∗
∂2v

∂t2
dz̃ dt+

∫

ω×(0,T )

[
∂θ∗

∂z1

∂v

∂z1
+
∂θ∗

∂z2

∂v

∂z2

]
dz̃ dt

+

[∫

ω
m(θ∗1) v dz̃

]T

0
−

[∫

ω
m(θ∗0)

∂v

∂t
dz̃

]T

0
.

This relation is obviously a weak form of (8.5) since the limit is unique we get
the convergence of the entire sequence and hence the theorem.

As a corollary of the previous theorem, we can deduce the following conver-
gence result on the problem (3.1) where the initial conditions also depend on
e.
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Theorem 8.2 Let φe be the solution of the following system:

∂2φe

∂t2
−

(
∂2φe

∂z21
+
∂2φe

∂z22
+ e−2

∂2φe

∂z23

)
= 0 in Q ,(8.13a)

φe = 0 on Σ0 ,(8.13b)

∂φe

∂ν
= 0 on Σ± ,(8.13c)

φe(0) = φe0,
∂φe

∂t
(0) = φe1 in Ω .(8.13d)

Suppose that

φe0 → φ∗0 in V weakly ,(8.14a)
{
e−1

∂φe0
∂z3

}
bounded in L2(Ω) ,(8.14b)

φe1 → φ∗1 in L2(Ω) weakly .(8.14c)

Then

φe → φ∗ in L∞(0, T ;V ) weakly* ,(8.15a)

∂φe

∂t
→

∂φ∗

∂t
in L∞(0, T ;L2(Ω)) weakly* ,(8.15b)

where φ∗ is the unique solution characterized by

φ∗ indepednt of z3 ,(8.16a)

∂2φ∗

∂t2
−

(
∂2φ∗

∂z21
+
∂2φ∗

∂z22

)
= 0 in ω × (0, T ) ,(8.16b)

φ∗ = 0 on γ × (0, T ) ,(8.16c)

φ∗(0) = m(φ∗0),
∂φ∗

∂t
(0) = m(φ∗1) in ω .(8.16d)

8.2. Behaviour of the Nonhomogeneous backward problem

Our next aim is to pass to the limit in the backward Cauchy problem (6.5).
This is done in our next result. We start with {φe0, φ

e
1} such that

(8.17) ‖{φe0, φ
e
1}‖F ≤ c6 independent of e .
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We then have, for a subsequence

(8.18) {φe0, φ
e
1} → {φ∗0, φ

∗
1} in F weak .

Since the norm in F dominates the energy norm ‖ ‖F uniformly with respect to
e (cf. (6.4)), it follows that the hypotheses of Theorem 8.2 are satisfied. Thus we
have the convergence given by (8.15), (8.16). However, our stronger assumption
(8.18) is equivalent to

∂φe

∂t
→

∂φ∗

∂t
in L2(Σ±) weak ,(8.19a)

∂φe

∂ν
→

∂φ∗

∂ν
in L2(Σ(z0)) weak ,(8.19b)

where φ∗ is the unique solution of (8.16).
We are now ready to examine the consequence of the convergence (8.19) on

the solution ψe of (6.5). More precisely, we have the following result:

Theorem 8.3 Let us start with {φe0, φ
e
1} satisfying (8.18). We solve (8.13)

for φe and then solve (6.5) for ψe ∈ L∞(0, T ;V ′). Then we have

m(ψe) makes sense as an element of L∞(0, T ;L2(ω)) ,(8.20a)

m(ψe)→ ψ∗ weak* in L∞(0, T ;L2(ω)) ,(8.20b)

where ψ∗ is the unique solution of

ψ∗ is independent of z3 ,(8.21b)

ψ∗ ∈ L∞(0, T ;L2(ω)) ,(8.21b)

∂2ψ∗

∂t2
−

(
∂2ψ∗

∂z21
+
∂2ψ∗

∂z22

)
= 2

(
∂2φ∗

∂t2
− φ∗

)
in ω × (0, T ) ,(8.21c)

ψ∗ =
∂φ∗

∂ν
on γ(z0)× (0, T ) ,(8.21d)

ψ∗ = 0 on γ∗ × (0, T ) ,(8.21e)

ψ∗(T ) =
∂ψ∗

∂t
(T ) = 0 in ω ,(8.21f)

with φ∗ being the solution of (8.16).

Proof: In order to pass to the limit in the backward problem (6.5), we
consider its weak formulation (6.7). The idea is to take

(8.22) θ0, θ1 and f independent of z3 .
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With this choice, it is easily seen that the unique solution θe of (3.4) does not
depend on z3 neither on e

(8.23) (i.e.) θe = θ∗ ,

where θ∗ is the solution of (8.5) Thus the weak converges (8.19) is sufficient to
pass to the limit in (6.7).

Let us make this idea more precise. Recall that the weak formulation (6.7) is
valid for f ∈ L1(0, T ;V ) and {θ0, θ1} ∈ F . However we observe that if we impose
the condition (8.22) then the weak formulation (6.7) is available to us with

(8.24) f ∈ L1(0, T ;L2(ω)) , θ0 ∈ Ṽ , θ1 ∈ L
2(ω) .

Indeed, one has automatically that (without {θ0, θ1} ∈ F )

∂θe

∂ν
∈ L2(Σ(z0)) ,(8.25a)

∂θe

∂t
∈ L2(Σ±) ,(8.25b)

for the following reasons:

i) According to (4.4), we have ∂θe

∂ν
∈ L2(Σ(z0)) for any solution with finite

energy and in particular the same is valid under (8.24). Indeed

(8.26)

∫

Σ(z0)

(
∂θe

∂ν

)2

dσ dt ≤ C1T

{
‖θ0‖

2
Ṽ
+ ‖θ1‖

2
L2(ω) +

(∫ T

0
‖f(s)‖L2(ω) ds

)2}
.

ii) With (8.23) we see that θe is independent of z3 and hence

(8.27)

∫

Σ±

(
∂θe

∂t

)2

dσ dt =

∫

ω×(0,T )

(
∂θe

∂t

)2

dz̃ dt =

∫

Q

(
∂θe

∂t

)2

dz dt

≤ C0

{
‖θ0‖

2
Ṽ
+ ‖θ1‖

2
L2(ω) +

(∫ T

0
‖f(s)‖L2(ω)ds

)2}

using (3.5).

We now choose θ0 = θ1 = 0 and f respecting the conditions (8.22), (8.24).
Using (6.7), (8.26) and (8.27) we see that

(8.28)
∣∣∣
∫

Q
ψe f dz dt

∣∣∣ ≤ C7

(∫ T

0
‖f(s)‖L2(ω)ds

)
,

with a constant C7 independent of e.
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This means that

m(ψe) ∈ bounded in L∞(0, T ;L2(ω)) .

As usual by passing to a subsequence, we assume that

(8.29) m(ψe)→ ψ∗ in L∞(0, T ;L2(ω)) weak ∗ .

As the next step, we take f ≡ 0 and {θ0, θ1} satisfying (8.22), (8.24). We see,
by above argument, that m(ψe0) and m(ψ

e
1) make sense and

m(ψe0) is bounded in L2(ω) ,

m(ψe1) is bounded in Ṽ ′ .

As usual, we suppose that

m(ψe0)→ ψ∗0 weakly in L2(ω) ,(8.30a)

m(ψe1)→ ψ∗1 weakly in Ṽ ′ .(8.30b)

We are now in a position to pass to the limit in (6.7) and we obtain
(8.31)

Ṽ ′
〈ψ∗1, θ0〉Ṽ − L2(ω)〈ψ

∗
0, θ1〉L2(ω) =

∫

ω×(0,T )
ψ∗ f dz̃ dt+

∫

γ(z0)×(0,T )

∂φ∗

∂ν

∂θ∗

∂ν
dσ̃ dt

+

∫

ω×(0,T )

[
∂φ∗

∂t

∂θ∗

∂t
+ φ∗ θ∗

]
dz̃ dt .

This remains true for all f , θ0, θ1 satisfying (8.24). To finish the proof, it remains
to observe that (8.31) is nothing but a weak formulation of (8.21).

Let us note that the above result gives the convergence of the average m(ψe)
and not of ψe.

8.3. The Limiting two-dimensional exact controllability problem

In this section, we introduce and analyze the exact controllability problem
which will be the limit of the three dimensional problems (2.8) as e → 0. This
limit problem is two dimensional and posed in ω. Our task here is to define it
and examine its well posedness via Hum. We could have this earlier but it could
look very artificial. Having seen the behaviour of the forward and backward
Cauchy problems in the previous sections, we feel that this is the appropriate
place to introduce the limit problem. As mentioned earlier and as is evident from
(821c, d), this limit problem will have an anterior control apart from a boundary
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one. The analysis of this problem parallels that of the three-dimensional problem
presented in sections 2–7 and so we will be brief. The question of convergence of
the three-dimensional problem (2.8) to the limit problem described here will be
taken up in the next section.
Let us fix one interior control w̃ and one boundary control ṽ and consider the

following problem:

∂2ỹ

∂t2
−

(
∂2ỹ

∂z21
+
∂2ỹ

∂z22

)
= w̃ in ω × (0, T̃ ) ,(8.32a)

ỹ = ṽ on γ(z0)× (0, T̃ ) ,(8.32b)

ỹ = 0 on γ∗ × (0, T̃ ) ,(8.32c)

ỹ(0) = ỹ0 and
∂ỹ

∂t
(0) = ỹ1 in ω .(8.32d)

For the moment T̃ > 0 is fixed. The problem is to suitable controls ṽ, w̃ and
time T̃ such that the state of system (9.32) is driven to rest at time T̃ :

(8.33) ỹ(T̃ ) =
∂ỹ

∂t
(T̃ ) = 0 in ω .

To show that this problem admits a solution via Hum, we introduce, as usual,
the associated homogeneous forward problem: given initial conditions {φ̃0, φ̃1} ∈
Ṽ × L2(ω), we seek φ̃ ∈ C0([0, T̃ ], Ṽ ) ∩ C1([0, T̃ ], L2(ω)) such that

∂2φ̃

∂t2
−

(
∂2φ̃

∂z21
+
∂2φ̃

∂z22

)
= 0 in ω × (0, T̃ ) ,(8.34a)

φ̃ = 0 on γ × (0, T̃ ) ,(8.34b)

φ̃(0) = φ̃0,
∂φ̃

∂t
(0) = φ̃1 in ω .(8.34c)

This problem is seen to admit a unique solution via a unitary group which pre-
serves the following energy functional:

(8.35) Ẽ(t) =

∫

ω

{
|∇φ̃(z̃, t)|2 +

∂φ̃

∂t
(z̃, t)2

}
dz̃ .

We have in fact that

Ẽ(t) ≡ Ẽ(0) , ∀ t ,(8.36)

Ẽ(0) =

∫

ω

[
|∇φ̃0|

2 + |φ̃1|
2
]
dz̃ (≡ ‖{φ̃0, φ̃1}‖

2
Ẽ
) .(8.37)
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One establishes, next, by the method of multipliers the following direct and
inverse inequalities for the problem (8.34). (cf. Lions [4], p. 401, p. 55)

∫

γ(z0)×(0,T̃ )

(
∂φ̃

∂ν

)2

dσ dt ≤ C8T̃ ‖{φ̃0, φ̃1}‖
2
Ẽ
,(8.38a)

‖{φ̃0, φ̃1}‖
2
Ẽ
≤ C8

∫

γ(z0)×(0,T̃ )

(
∂φ̃

∂ν

)2

dσ dt ,(8.38b)

‖{φ̃0, φ̃1}‖
2
Ẽ
≤ C8

∫

ω×(0,T̃ )

(
∂φ̃

∂t

)2

dz̃ dt .(8.38c)

We remark that while (8.33a) and (8.38c) are valid for all times T̃ > 0, the
inequality (8.38b) holds for time T̃ sufficiently large.
Next we associate a space F̃ to the exact controllability problem (8.32). Define

F̃ to be the completion of smooth functions for the norm defined below:

(8.39) ‖{φ̃0, φ̃1}‖
2
F̃
=

∫

γ(z0)×(0,T̃ )

(
∂φ̃

∂ν

)2

dσ dt+2

∫

ω×(0,T̃ )

[(
∂φ̃

∂t

)2

+(φ̃2)

]
dz̃ dt .

It follows immediately from (8.36)–(8.38) that the norms ‖ ‖
F̃
and ‖ ‖

Ẽ
are

equivalent ∀ T̃ > 0 and hence

(8.40a) F̃ = Ṽ × L2(ω) ;

consequently, we obtain

(8.40b) F̃ ′ = Ṽ ′ × L2(ω) .

Remark: Even though we have the equivalence of the norms ‖ ‖
Ẽ
and ‖ ‖

F̃

for all T̃ > 0, we are not going to use it in the sequel. We will use it only
for T̃ sufficiently large. This is because, for e > 0, the inequality and exact
controllability for the problem (2.8) were shown only for T sufficiently large.
(cf. Theorem 5.1). Hence to prove the convergence results in the next section, we
are forced to take T̃ = T so that both the problems (2.8) and (8.32) are exactly
controllable at the same time.

The next step in HUM is to define the corresponding nonhomogeneous back-
ward Cauchy problem:
Find ψ̃ ∈ L∞(0, T̃ ;L2(ω)) such that

∂2ψ̃

∂t2
−

(
∂2ψ̃

∂z21
+
∂2ψ̃

∂z22

)
= 2

(
∂2φ̃

∂t2
− φ̃

)
in ω × (0, T̃ ) ,(8.41a)
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ψ̃ =
∂φ̃

∂ν
on γ(z0)× (0, T̃ ) ,(8.41b)

ψ̃ = 0 on γ∗ × (0, T̃ ) ,(8.41c)

ψ̃(T̃ ) =
∂ψ̃

∂t
(T̃ ) = 0 in ω .(8.41d)

Here φ̃ is the solution of the problem (8.34).
To obtain the required weak formulation of (8.41), we take

(8.42) f̃ ∈ L1(0, T̃ , L2(ω)) , θ̃0 ∈ Ṽ , θ̃1 ∈ L
2(ω) .

Let us solve uniquely the following problem:

∂2θ̃

∂t2
−

(
∂2θ̃

∂z21
+
∂2θ̃

∂z22

)
= f̃ in ω × (0, T̃ ) ,(8.43a)

θ̃ = 0 in γ × (0, T̃ ) ,(8.43b)

θ̃(0) = θ̃0,
∂θ̃

∂t
(0) = θ̃1 in ω ,(8.43c)

θ̃ ∈ C0([0, T̃ ]; Ṽ ) ∩ C1([0, T̃ ];L2(ω)) .(8.43d)

We multiply (8.41) by θ̃ and integrate by parts twice to obtain the following weak
formulation of the problem (8.41):
There exist {ψ̃0, ψ̃1} ∈ L2(ω) × Ṽ ′ and ψ̃ ∈ L∞(0, T̃ ;L2(ω)) such that the

relation
(8.44)

Ṽ ′
〈ψ̃1, θ̃0〉Ṽ − L2(ω)〈ψ̃0, θ̃1〉L2(ω) =

∫

ω×(0,T̃ )
ψ∗ f̃ dz̃ dt+

∫

γ(z0)×(0,T̃ )

∂φ̃

∂ν

∂θ̃

∂ν
dσ̃ dt

+ 2

∫

ω×(0,T̃ )

(
∂φ̃

∂t

∂θ̃

∂t
+ φ̃ θ̃

)
dz̃ dt

holds for all f̃ , θ̃0, θ̃1 satisfying (8.42).
It is easily seen that (8.44) admits a unique solution.
The final step in the preparation towards solving the exact controllability

problem is to introduce the linear operator Λ̃ as follows:

(8.45)
Λ̃ : F̃ → F̃ ′ ,

Λ̃{φ̃0, φ̃1} = {ψ̃1,−ψ̃0} .

By taking f̃ = 0, θ̃0 = φ̃0 and θ̃1 = φ̃1 in (8.44) we see that

(8.46)
〈

F̃ ′
Λ̃{φ̃0, φ̃1}, {φ̃0, φ̃1}

〉

F̃
= ‖{φ̃0, φ̃1}‖

2
F̃
.
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This proves that Λ̃ is a isomorphism.

Now that all the preparatory material out of our way, it is a simple matter to
solve the exact controllability problem (8.32) and (8.33). In fact the problem is
equivalent to finding {φ̃0, φ̃1} ∈ F̃ such that

(8.47) Λ̃{φ̃0, φ̃1} = {ỹ1,−ỹ0} ∈ F̃ ′

and then taking

w̃ = 2

(
∂2φ̃

∂t2
− φ̃

)
in ω × (0, T̃ ) ,(8.48a)

ṽ =
∂φ̃

∂ν
on γ(z0)× (0, T̃ ) ,(8.48b)

where φ̃ solves (8.34). In particular, we see that the controls have the following
properties:

w̃ ∈ C0([0, T̃ ];H−1(ω)) ,(8.49a)

ṽ ∈ L2(γ(z0)) .(8.49b)

Thus we have analyzed completely, in this section, the two dimensional exact
controllability problem (8.32) (8.33). We group these results in our next propo-
sition.

Theorem 8.4 We consider the two-dimensional exact controllability problem
(8.32) (8.33). We take the initial conditions {ỹ1,−ỹ0} ∈ Ṽ ′ × L2(ω). We also
suppose that T̃ = T , the time of exact controllability fixed in Theorem 7.2. Then
the problem is exactly controllable with exact controls given by (8.47), (8.48),
(8.34).

8.4. Behaviour of the exact controllability problem

We have shown in Sections 8.1, 8.2 how to pass to the limit in the forward and
backward Cauchy problems under certain hypotheses. We are now in a position
to pass to the limit in the three-dimensional exact controllability problem (2.8).
Recall that we proved the exact controllability with the controls given by (7.4)
and (7.5). The aim here is to describe the behaviour of these controls as e→ 0.
According to our results below, the controls we± on the top-bottom surfaces Σ±
go to zero in a suitable sense. On the other hand, the lateral control ve on Σ(z0)
approaches the boundary control ṽ in the two dimensional problem (8.32) (8.33).
Recall that there is an interior control also in the problem (8.32) (8.33). These
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two controls are not independent as (8.48) shows and they cannot be separated
in general. We achieve these results by making some natural hypotheses on the
initial data of the problem (2.8). In fact, we suppose that

‖{ye1,−y
e
0}‖F ′ ≤ C9, independent of e ,(8.50a)

m(ye0)→ y∗0 in L2(ω) weak ,(8.50b)

m(ye1)→ y∗1 in Ṽ ′ weak .(8.50c)

Thanks to (6.4), one can give sufficient conditions which guarantee (8.50). For
example, one can take {ye1,−y

e
0} such that

{ye0} bounded in L2(Ω) ,(8.51a)

m(ye0)→ y∗0 in L2(ω) weak ,(8.51b)

ye1 =
∂ge1
∂z1

+
∂ge2
∂z2

in Ω ,(8.51c)

{ge1} and {ge2} bounded in L2(Ω) ,(8.51d)

m(ge1)→ g∗1 in L2(ω) weak ,(8.51e)

m(ge2)→ g∗2 in L2(ω) weak .(8.51f)

The importance of the hypothesis (8.50) is that it implies in conjunction with
Theorem 7.1 (b) that

(8.52) ‖{φe0, φ
e
1}‖F ≤ C10 ,

where {φe0, φ
e
1} is the solution of (7.4) and C10 is a constant independent of e. It

follows then that (cf. (6.4))

(8.53) ‖{φe0, φ
e
1}‖E ≤ C(10)C5 .

Hence for a subsequence of e→ 0, we will have the convergence results described
by (8.14) and (8.19). In particular, we see that the hypotheses of Theorem 8.2,
8.3 are satisfied and so we have convergence properties described by Theorem 8.2
and Theorem 8.3 for the subsequence under consideration. We now show that the
convergence takes place for the entire sequence. To this end, let us first observe
that (8.14a) (8.14b) imply that φ∗0 is independent of z3:

(8.54) (i.e.) m(φ∗0) = φ∗0 .

Secondly, we observe that it is enough to show that

(8.55) m(φ∗0), m(φ
∗
1) are uniquely determined .
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Indeed this will imply that the solution φ∗ of (8.16) and therefore the solution ψ∗

of (8.21) are uniquely determined. Hence the convergences (8.14a) (8.15), (8.19),
(8.20b) and (8.30) take the entire sequence . The only exception being that
(8.14c) may not be true for whole sequence {φe1}. However the entire sequence
m(φe1) will converge.
In order to deduce (8.55), we apply the results of §8.3 and in particular the

definition of the operator Λ̃. From (8.16) and (8.21) we conclude that

Λ̃
{
m(φ∗0)

}
=
{
ψ∗1,−ψ

∗
0

}
.

Recall the right side element is obtained as the limit of {m(ψe1)−m(φ
e
0)} (cf.

(8.30)). However we always have ψe = ye and hence our hypothesis (8.50) on the
initial data permits us to conclude that ψ∗1 = y∗1 and ψ

∗
0 = y∗0. Thus we get

(8.56) Λ̃
{
m(φ∗0),m(φ

∗
1)
}
=
{
y∗1,−y

∗
0

}
.

Since Λ̃ is an isomorphism, this immediately implies (8.55).
For its importance, we single out the convergence (8.19b) which shows that

the lateral boundary control ve = ∂φe

∂ν
on Σ(z0) converges to the boundary control

ṽ = ∂φ∗

∂ν
of the problem (8.32) and (8.33) described in §8.3 with initial conditions

given by

(8.57) ỹ0 = m(φ∗0) , ỹ1 = m(φ∗1) ,

On other hand, the convergence (8.19a) shows that the top-bottom bound-

ary controls we± = e(∂
2φe

∂t2
− φe) on Σ± converges strongly to zero in the space

[H1(0, T ;L2(Γ±))].
Let us summarize these results in our concluding theorem:

Theorem 8.5 Let us consider the exact controllability problem (2.8) in
three-dimensions. We assume that the initial conditions {ye0, y

e
1} satisfy the re-

quirement (8.50). Furthermore, the time of exact controllability T is fixed as in
Theorem 7.2.

i) Then the exact controls {ve, we±} enjoy the following properties:

we± = 0(e) in
[
H1(0, T ;L2(Γ±))

]′
,(8.58a)

ve → ṽ =
∂φ∗

∂ν
in L2(Σ(z0)) weak .(8.58b)

ii) The solution ye of the original problem (2.8) has the following behaviour:

(8.59) m(ye)→ y∗ in L∞(0, T ;L2(ω)) weak* ,



452 J.S.J. PAULIN and M. VANNINATHAN

where y∗ satisfies

∂2y∗

∂t2
−

(
∂2y∗

∂z21
+
∂2y∗

∂z22

)
= 2

(
∂2φ∗

∂t2
− φ∗

)
in ω × (0, T ) ,(8.60a)

y∗ =
∂φ∗

∂ν
on γ(z0)× (0, T ) ,(8.60b)

y∗ = 0 on γ∗ × (0, T ) ,(8.60c)

y∗(0) = y∗0 and
∂y∗

∂t
(0) = y∗1 in ω .(8.60d)

Here φ∗ is the unique solution of (8.16), (8.50) and (8.56).

Remark 8.6. We choose to control by w+ and w− on the top and the bottom
boundaries because these play the same role geometrically. But it is sufficient to
control by w on one of these two boundaries and to set a homogeneous Neumann
boundary condition on the other one (see Lions [5]). Then the factor 2 which
appears in (8.21c), Theorem 8.3 and in similar relations and which comes from
the two control w+ and w− has to be replaced by 1 when there is only one control
w. The proofs are the same.

Remark 8.7. After the completion of our work, we came to know that
the same exact controllability problem was treated by Yan [8]. We now make a
few remarks of comparison between his article and our work. First of all, Yan
follows an approach different from ours. The exact controls suggested by him are
different from the ones suggests by us, naturally hence their limit behaviour of
the exact controls: Yan proves strong convergences with the hypothesis that the
initial conditions converges strongly. We show weak convergence with the weak
convergence property of the initial conditions. Secondly, the nature of the limit
problem: in particular, there is an interior control in our case apart from the
boundary one whereas Yan has only a boundary control. As a consequence, the
minimal time of exact controllability will be bounded away from zero as thickness
goes to zero in Yan. In our case, the limit problem is exactly controllable for all
T > 0 and so the possibility that the minimal time of exact controllability of the
three-dimensional problem tends to zero when the thickness tends to zero is not
ruled out.
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