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A NOTE ON THE EXISTENCE OF TWO NONTRIVIAL
SOLUTIONS OF A RESONANCE PROBLEM

To Fu Ma*

Abstract: We study the existence of two nontrivial solutions for an elliptic boundary

value problem at resonance. In the variational setting, the associated action functional

of the problem is bounded from below but not coercive.

1 – Introduction

Let Ω be a bounded domain in IRN with smooth boundary ∂Ω. We study the
existence of two nontrivial weak solutions of the nonlinear elliptic problem

(1.1) −∆u = λ1 u+ g(x, u) in Ω , u = 0 in ∂Ω ,

where λ1 is the first eigenvalue of the linear problem,

(1.2) −∆u = λ1 u in Ω , u = 0 in ∂Ω .

The function g : Ω× IR→ IR will be taken as a Carathéodory function such that

(g1) |g(x, s)| ≤ a |s|p + b ∀ s ∈ IR a.e. in Ω

for some a, b ≥ 0 with 0 < p < (N + 2)/(N − 2) if N ≥ 3 and 0 < p < ∞ if
N = 1, 2. We also assume that there exists k ∈ L1(Ω) such that

(g2) |G(x, s)| ≤ k(x) ∀ s ∈ IR a.e. in Ω ,

where G(x, s) =
∫ s
0 g(x, t) dt.
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In order to find solutions for (1.1), we use variational methods. So let us
consider the functional F : H1

0 (Ω)→ IR defined by

(1.3) F (u) =
1

2

∫

Ω
(|∇u|2 − λ1 u

2) dx−
∫

Ω
G(x, u(x)) dx .

From condition (g1) it is easy to see that F is of class C1 in H1
0 (Ω). Moreover, it

is well known that, critical points of F are precisely the weak solutions of (1.1).
The condition (g2) implies that the functional F is bounded from below but

not coercive. In particular the Palais–Smale condition does not hold. Neverthe-
less, with a suitable hypothesis on the behaviour of G at the infinity, the (PS)c
condition will be satisfied in some convenient interval (Theorem 2).

We assume that

(g3) g(x, 0) = 0 a.e. in Ω .

Thus u = 0 is a trivial solution of (1.1) and so we are interested to find nonzero
critical points of F . For this purpose we consider the following “twist condition”
on the behaviour of g near zero.

There exist m ∈ L1(Ω), m ≥ 0, with strict inequality holding in some subset
of positive measure, such that

(g4) lim inf
s→0

G(x, s)

s2
= m(x) in the L1-sense .

In other words (cf. [FM]), there exist δn ↓ 0, εn ∈ L1(Ω) with ‖εn‖1 → 0, such
that

G(x, s)

s2
≥ m(x)− εn(x) if 0 < |s| ≤ δn .

In particular, if ∂ug(x, 0) ≡ m > 0, then (g4) holds.
Now we state our main result.

Theorem 1. Suppose that the conditions (g1)–(g4) hold and that

(g5)

∫

Ω
lim sup
|s|→∞

G(x, s) dx ≤ 0 .

Then problem (1.1) has at least one nontrivial solution. If in addition,

(g6) G(x, s) ≤
λ2 − λ1

2
s2 ∀ s ∈ IR a.e. in Ω ,

then problem (1.1) has another nontrivial solution.

The proof of this theorem will be presented in Section 3. The idea is to show
that F has two negative critical values, one corresponding to the minimum and
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another deduced from a contradiction argument using a deformation lemma and
a minimax principle.

There is a large quantity of works about the existence of solutions for problem
(1.1) when the associated functional F is coercive. In the case where F is bounded
below and coerciveness is not assumed, existence results were studied in e.g. [BBF,
CLS, RS, S, T]. Some of them also give multiplicity results, but with a symmetry
condition. In a recent paper, Gonçalves and Miyagaki [GM] has obtained the
existence of two nontrivial solutions for (1.1), without any symmetry, in the case
of strong resonance, that is, when G is bounded and

g(x, s)→ 0 as |s| → ∞ a.e. in Ω .

They use a condition like (g4), with m ≤ 0, and the proof is based on the
generalized saddle point theorem of Rabinowitz [R]. Of course, our result is also
applicable in the case of strong resonance.

2 – Preliminaries

Let ϕ1 be the λ1-eigenfunction of the problem (1.2). We may choose ϕ1 > 0
with ‖ϕ1‖ = 1, where ‖u‖ =

∫
Ω |∇u|

2 dx is the usual norm of the Sobolev space
H1
0 (Ω). The Lp-norm is denoted by ‖ · ‖p.
Set V = Span{ϕ1} and W = V ⊥ ∩H1

0 (Ω) in the L2-sense. Then we have the
orthogonal decomposition H1

0 (Ω) = V ⊕W and for u ∈ H1
0 (Ω), we can write in

a unique way u = v + w such that v ∈ V and w ∈W .
Let us consider the equation (1.1) with a forcing term h ∈ L2(Ω) satisfying

(2.1)

∫

Ω
hϕ1 dx = 0 ,

that is,

(2.2) −∆u = λ1 u+ g(x, u) + h in Ω , u = 0 in ∂Ω .

It follows that weak solutions of (2.2) are the critical points of

F̂ (u) =
1

2

∫

Ω
(|∇w|2 − λ1w

2) dx−
∫

Ω
G(x, u(x)) dx−

∫

Ω
hw dx .

Moreover given such h ∈ L2(Ω), it is well known that the auxiliary problem

−∆w = λ1w + h in Ω , w = 0 in ∂Ω ,

is uniquely solvable in W and this solution

w0 ∈W



520 TO FU MA

minimises in W the functional

I(w) =
1

2

∫

Ω
(|∇w|2 − λ1w

2) dx−
∫

Ω
hw dx .

Not that, for u = v + w, F̂ (u) = I(w)−
∫
G(x, u) dx.

The following result is primarily concerned with the (PS)c condition. We
recall that F satisfies the Palais–Smale condition at level c, (PS)c for short, if
any sequence un such F (un)→ c and F ′(un)→ 0 has a convergent subsequence.
If (PS)c holds for all c ∈ IR, then we say that F satisfies the Palais–Smale
condition (PS).

Theorem 2. Suppose that conditions (g1), (g2) and (2.1) hold. If

(g7)

∫

Ω
lim sup
|s|→∞

G(x, s) = γ

then F̂ satisfies the (PS)c condition for every c < −γ + I(w0). Moreover, if

γ <

∫

Ω
G(x,w0) dx ,

then (2.2) has at least one solution.

Proof: Let un = vn+wn be a sequence such that F̂ (un)→ c and F̂ ′(un)→ 0
with c < −γ + I(w0). From the growth condition (g1) it suffices to show that un
has a bounded subsequence (see [R, appendix B]). Suppose by contradiction that
‖un‖ → ∞. From the variational characterization of λ1 and λ2,

F̂ (un) ≥
1

2
(1− λ1/λ2) ‖wn‖

2 − ‖k‖1 − ‖h‖2 ‖wn‖2 ,

which implies that ‖wn‖ is bounded and since ‖un‖ ≤ ‖vn‖ + ‖wn‖, we have
‖vn‖ → ∞. On the other hand, for some subsequence, there exists w ∈ W such
that wn → w a.e. in Ω and consequently |un(x)| → ∞ as n→∞ a.e. in Ω. Then
from (g7) and the Fatou’s Lemma,

c = lim F̂ (un) ≥ I(w0)− lim sup

∫

Ω
G(x, un(x)) dx ≥ I(w0)− γ .

This is impossible since c < −γ + I(w0).
As for the second part of the theorem, suppose that γ <

∫
G(x,w0) dx. Since

F̂ is bounded from below,

−∞ < l = inf F̂ ≤ F̂ (w0) = I(w0)−
∫

Ω
G(x,w0) dx < I(w0)− γ .
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This shows that (PS)c condition holds at the level of infimum l and therefore it
is attained in H1

0 (Ω). So (2.2) has a solution.

Remarks 1.

a) The existence result in Theorem 2 was firstly reported in [RS], but we
provide additional information about the validity of (PS)c condition.

b) If h = 0 then (PS)c holds for every c < −γ since w0 = 0 and I(w0) = 0.
In this case, if γ < 0, then problem (1.1) has at least one solution.

3 – The proof of Theorem 1

The proof of Theorem 1 makes use of a deformation lemma. We follow the
version for C1-functions stated in [RR], that is recalled here for completeness.
See also [MP].

Let X be a real Banach space and F : X → IR a C1-functional. We set

Kc =
{
u ∈ X; F ′(u) = 0 and F (u) = c

}

and

F c =
{
u ∈ X; F (u) ≤ c

}
.

Lemma 1 (Deformation). Suppose that F has no critical values in the
interval (a, b) and that F−1({a}) contains at most a finite number of critical
points of F . Then if (PS)c condition holds for every c ∈ [a, b), there exists an
F -decreasing homotopy of homeomorphisms h : [0, 1]× F b\Kb → X such that

h(0, u) = u ∀u ∈ F b\Kb ,

h(1, F b\Kb) ⊂ F a and h(t, u) = u ∀u ∈ F a .

Proof of Theorem 1: From (g4) we can fix n so large that

K =

∫

Ω
mϕ21 dx− ‖εn‖1 ‖ϕ1‖

2
∞ > 0 .

Then for all v ∈ V = Span{ϕ1}, ‖v‖ ≤ δn/‖ϕ1‖∞,

(3.1) F (v) ≤ −
∫

Ω
mv2 dx+

∫

Ω
εn v

2 dx ≤ −K ‖v‖2 .

Therefore l = inf F < 0 and since by (g5) (PS)c holds for c < 0 (Remark 1 b)),
we conclude that the infimum l is attained at some point u0 ∈ H1

0 (Ω), and this
provides us with one nontrivial solution of problem (1.1).
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Now we are going to find a second nonzero critical point of F . Suppose by
contradiction that zero and u0 are the only critical points of F . From (g6) and
(3.1) there exists R > 0 and l < d < 0 such that

(3.2) d = sup
∂B

F < inf
W

F = 0 ,

where B = {v ∈ V ; ‖v‖ ≤ R}. Set

α = inf
γ∈Γ

sup
u∈B

F (γ(u))

with Γ = {γ ∈ C(B,H1
0 (Ω)); γ(v) = v ∀ v ∈ ∂B}. It is proved in [BBF] that ∂B

and W link. So γ(B) ∩W 6= ∅ ∀ γ ∈ Γ and since infW F = 0 we have α ≥ 0.
Now since (PS)c holds for c < 0, and there are no critical values in (l, 0), the

above deformation lemma yields an homotopy h : [0, 1]× F 0\{0} → H1
0 (Ω) such

that
h(0, u) = u ∀u ∈ F 0\{0} ,

h(1, u) ∈ F l = {u0} ∀u ∈ F 0\{0} .

We define γ0 : B → H1
0 (Ω) by

γ0(v) =





u0 if ‖v‖ < R/2,

h

(
2(R− ‖v‖)

R
,
Rv

‖v‖

)
if ‖v‖ ≥ R/2 .

It is easy to see that γ0 is continuous and that γ0(v) = v if v ∈ ∂B. So γ0 ∈ Γ.
Moreover, as h is F -decreasing, that is, F (h(s, u)) < F (h(t, u)) if s > t, we have
also F (γ0(v)) ≤ d ∀ v ∈ B. But this implies (that maxu∈B F (γ0(u)) ≤ d and
therefore) 0 ≤ α ≤ d < 0; a contradiction. This ends the proof.

Remarks 2.

a) In some applications, condition (3.2) may not hold, as is the case if (g6) is
dropped. Consequently we cannot apply the linking argument in the above
proof. However, local linking theorems may be used if (PS) condition is
provided. In this direction, we refer the reader to [L] and [BN].

b) Of course, conditions (g2) and (g5) can be replaced by any set of conditions
on g near infinity that guarantees lower boundedness for F and (PS)c for
c < 0. For example, it is proved in [FG] that if G is bounded above and
G(x, s) → −∞ as |s| → ∞ in a subset of positive measure, then F is
coercive. In particular F is bounded below and satisfies (PS)c for all c.
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