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CONVERGENCE IN SPACES OF
RAPIDLY INCREASING DISTRIBUTIONS

SALEH ABDULLAH

Abstract: In this note we show that if (7)) is a sequence in K, the space of
distributions of rapid growth (resp. O. the space of its convolution operators), and
(Tj * ¢) converges to 0 in K}, (resp. in O)) for all ¢ in K,,, then (Tj) converges to 0 in
K, (resp. O.). Moreover, if (1;) is in O, such that (i); x ¢) converges to 0 in O, for
every ¢ in Ky, then (¢;) converges to 0 in O,.. This is no more true if the sequence (¢;)
is in K]u.

1 — Introduction

When one considers the convolution of elements from K, (the space of dis-
tributions of rapid growth) with elements from Kj; (the space of C'™° functions
which are very rapidly decreasing at infinity), it follows trivially that if (7}) is
any sequence which converges to 0 in K, then the sequence (Tj * ¢) converges
to 0 for every ¢ in Kjys. Moreover, if (T}) is a sequence in O/, (the space of con-
volution operators in K,), and T; — 0 in O, then Tjx¢ — 0 in K for every ¢
in K. In this note we consider the following questions: given (7}) C K}, such
that T « ¢ — 0 in K, for every ¢ € Ky, does it follow that T; — 0 in K},?
Similarly, if (T}) C Op and Tj *x ¢ — 0 in Ky for every ¢ € Ky, does it follow
that T; — 0 in O, 7 In both cases we show that the answer is affirmative. Simi-
lar questions have been considered by K. Keller [5] for the space S’ of tempered
distributions, our methods of proof are different from those of Keller, and they
work if we replace Kj; by any complete metric space of test functions. Finally
we consider these questions of convergence for sequences of functions in O, and
K.
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By D, E, D' and E’ we denote Schwartz spaces of test functions and dis-

tributions, N™ consists of all n-tuples o = (a1, 2,...,a,), a; € N, and the
« Qn
differential operator D%, o« € N™, denotes (—ia%l) Lo (—i%) . Let M(z),

x > 0, be a function which is continuous, increasing and convex with M (0) = 0,
M(00) = 0o. For x < 0 define M (x) to be M(—=z), and for x = (1, z2,...,x,),
we define M () = M(z1)+ M (x2) + ...+ M(x,). Examples of such function are
M(x) = %p, p> 1, and M(x) = e*.

For a function M as above, we define the space Kj; to be the space of all

infinitely differentiable functions ¢ on R™ such that

vp(p) = Sup, eME2) | DY (1) <00, aeN", k=0,1,2,...
|| <k

The space K is provided with the topology generated by the semi-norm vy,
k =0,1,2,... It follows that Kj; is a Frechet Montel space. Moreover, it is a
normal space of distributions. By K, we denote the space of all continuous
linear functionals on K); provided with the strong dual topology. By O we
denote the subspace of K}, consisting of all S € K, such that for every ¢ in K,
the convolution S % ¢ is in K s, and the map ¢ — S x ¢ from Kj; into itself is
continuous. O, is the space of convolution operators on K}, and will be provided
with the topology of uniform convergence on bounded subsets of K ;. The space
O, consists of all c®-functions such that D f(z) = O(e™*2)) for all &« € N, and
some positive integer k independent of . It turns out that O, is the strong dual
of O, we provide it with the strong dual topology. Another equivalent topology
is 7, of uniform convergence on bounded subset of K (see [2] and [3]).

We denote by V(Kj; x K)yy) the subspace of Kj; generated by the elements
of Ky~ Ky, and we provide it with the relative topology inherited from K.
In particular V(K x Kpy) is metrizable.

2 —The results

Lemma 1. V(Kj; + Kyy) is dense in K.

Proof: Let ¢ be any element of Ky, let (¢-; € > 0) be a sequence in D
converging to 0 in E’. Since the convolution map Ay, from O, into K which maps
S to Sx1 is continuous, and {¢.: € > 0} is bounded in E’ which is continuously
embedded in O it follows that the sequence (¢ x ¥; € > 0) converges to 1 in
Ky.n

Lemma 2. The space V(K * Kjy) is Montel.
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Proof: We show first that every bounded subset of V(K x Kjy) is relatively
compact. Let U be a bounded subset of V(K xKyy), by COV(U) and CCK p;(U)
we denote the closures of U in V' and K respectively. One has C/V(U) =V N
ClKy(U). Let {O;, j =1,2,...} be an open cover of C4V(U) in V(K * Kyr),
then O; = VNG, where the G;’s, j = 1,2, ..., are open subsets of K, and one
has
VNnCtKyU)y=ctvU)c|Jo,=JvnGn=vn(JG) .
j=1

j=1 j=1

Since V(K x Kpr) is dense in Ky it follows that CUK(U) is contained in
U52,Gj. Since Kpy is Montel it follows that there exists a finite set of indices
J1,325 - - -+ jm such that CCKy(U) C Ui, Gj,. Hence

CevU) =vnctkyU) cvn(lJG) =
=1 =1

s

ie. CLV(U) is compact in V(K x Kpr).

Finally we show that V(Kj; = Kjp) is barreled. Let F be a barrel in
V(Kn + Kpr), F is a closed, absorbing, balanced and convex subset of V. We
show that F' is a neighborhood of 0 in V. Let Fiy = CUKp(F). It is clear that
F =V N Fy. We claim that F); is a barrel in Kj;. First we show that it is ab-
sorbing. Let ¢ € Ky, ¢ ¢ Fiy. Since V(K jprx Kjpy) is dense in Ky it follows that
there exists a sequence (¢;) C V, such that ¢; — ¢ in Kjs. Since F' is absorbing
subset of V' there exists a sequence (\;) C R, A\j > 0 such that A\;¢; € F for all
J=1,2,.... Without loss of generality we can assume that 0 < A; < 1. Thus the
sequence (\j¢;) is bounded in Fjy, hence it has a convergent subsequence, call it
also (A\j@;), \j¢; — 1 in Fyy. We can assume also that \; — X in R. Let p be
the metric on Kj;. Given any ¢ > 0, it follows that for j large enough

pP(Ajd; — AP) < p(Ajdj — Ajd) + p(A;d — Ao)
< Ajp(95 — &) + 1A — Al p(e)
€ €

Thus (\j¢;) converges to A¢ in K. Hence A\¢p = ¢, and A\p € Fiy, ie. Fyy is
absorbing.

Next, we show that F)j; is convex. Let ¢1, ¢2 be in Fjy, a real number,
0 < a <1, we show that a¢y + (1 — a)p2 € Fyy. We will consider the general
case that ¢1 ane ¢9 are not in F. Since V(K s x Kjy) is dense in Ky it follows
that there exist sequences (¢;,), (¢;,) of functions in V' such that ¢;, — ¢1 and
¢j, — ¢2 in Kjpr. Since F' is absorbing there exist sequences of positive real
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numbers (kj, ), (kj,) such that {k; ¢;, } and {kj,¢;,} are contained in F. Since
F'is convex it follows that 0 < kj;, <1 and 0 < kj, < 1. Let

1
>‘j1 = SuP{kji: kj1¢j1 € F} - ; )

1
>‘12 = SUP{ka: kaﬁbjz €F}— ; .

For each j =1,2,3,...,i=1,2, one hasO<k:ji—%<k:ji <1, and
1 1

ki — = = (2T ks by 4 (1= J>’
( Ji j>¢]z < kjl > Ji ¢]z +< ka 0

is in F'. Hence (\;,¢5,) C F, i =1,2. Since CUKy;(F) = F)y, it follows that

lim sup{kj,: kj;¢;, € F} =1,
J—00

and A = lim; o Aj, = 1,4 =1,2. Thus A\j ¢;, — ¢1 and \j,¢j, — @2 in Ky as
j — oo. Hence

adrt(l-a)gp=lim [, 050+ (1= ) Ay 6] -
J2—00
Since for each ji, jo the term in the bracket is in F' (by convexity), it is in F)y.
Since F)y is closed it follows that a¢y + (1 — a)¢g is in Fyy, i.e. Fpy is convex.
Finally we show that F)js is balanced. Let ¢ € Fy, o € R, || < 1. If
¢ € F there is nothing to prove. Otherwise, as in the proof of convexity, there
exist sequences (¢;), (A;) in V and R respectively, such that for all j =1,2,...,
Njop; € F, ¢pj\j — ¢ as j — o0o. Since F is balanced one has a)\j¢; € I, and since
Fyy is closed it follows that a¢ = lim; ., a)j¢; is in Fyy, i.e. Fj is balanced.
Thus Fjs is a neighborhood of 0 in Kj; because Kj; is Montel. Hence
F =V N Fyy is a neighborhood of 0 in V(K j; x Kpy). m

From the definition of V(K » Kjr) and its topology it follows that K, is
contained in (V (K x Kp))'. Now we give the main result of this paper.

Theorem 1. Let (Tj) be a sequence in K, such that for every ¢ in Ky the
sequence (Ty x ¢) converges to 0 in K}, then (Tj) converges to 0 in K},.

Proof: Since K, is the strong dual of the Montel space Kjs it suffices
to show that (7)) converges to 0 weakly in K),. Let ¢ € Ky, we show that
(Tj,¢) — 0. Let (¢e; € > 0) be the sequence as in the proof of Lemma 1,
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¢e * ¢ — ¢ in Kpr as € — 0. Moreover, the set {¢. *x ¢: ¢ > 0} is bounded in
V(KM * KM) Thus

(1) lim (Tj,¢) = lim hm( Tj, e % @) .

j—00 j—o0e—0
Since Tjx¢ — 0in K’;, and the bilinear map (T, 1) — T%% from K, x Kpr — O,
is continous in each variable (see [2]), it follows that (T} x ¢) x ¢ — 0 in O, as
J — oo. Hence

lim (T, ¢ ¢)) = lim (Tj * §,¢) = lim (T % $) ) (0) =
j—00 j—0o0 j—00

Thus (7)) converges weakly to O in (V (K +Kpr))'. Since V(KK ) is Montel

by Lemma 2, it follows that (7)) converges strongly to O in (V(Kar * Kar))', i.e

it converges uniformly on bounded subsets of V(K *x Kjr). Since {¢p-*¢; € > 0}

is bounded in V(K x Kyy) it follows that lim; .o (T}, ¢ * ¢-) = 0 uniformly in

. Thus we can interchange the limits on the right hand side of (I), and one gets,

lim (T;,6) = lim T (T;, 6% 6.)

J—00 —700

= lim lim (T}, ¢ % ¢c) =0

e—0j—00
This completes the proof of the theorem. n

Next, we consider the same question of convergence in O’. In this direction
we have:

Theorem 2. Let (T};) be a sequence in O, such that, for every ¢ in Ky the
sequence (Tj x ¢) converges to 0 in O, then (T}) converges to 0 in O,

Proof: It is clear that Tjx ¢ € O, for every T in O, and ¢ in K. Let T be
any element in K}, we claim that T; x 7' — 0 in K,;. For given ¢ in K/, one
has

(T;xT)xp=(Tjx¢p)xT —0 in Kj .

From Theorem 1 it follows that T; x 7" — 0 in K 5\4 Let B be a bounded subset
of Ky, then for any T' € K}, one has

(IT) (Tjx¢,T) = (TjxT,¢) — 0 uniformly in ¢ € B .

Since Ky is reflexive and K7}, is Montel (being the strong dual of a Montel space).
(IT) implies that T x ¢ — 0 in Ky, uniformly in ¢ € B. This complete the proof
of the theorem. n
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Corollary. Let (T;) be a sequence in O, such that for any ¢ € Ky, (T; * ¢)
converges to 0 in Ky, then (T}) converges to 0 in O),.

As in the case of the space K| of distribution of exponential growth, it is
possible to extend the definition of Fourier transform of distributions of compact
support to the elements of O’. It turns out that for S € O., its Fourier transform
S could be extended to ©" as an entire function, which satisfies a Paley~Wiener
type theorem, see Pahk [6] (the theorem was quoted and used in [1]). In [8],
Zielezny proved that the space O, (K] : K1) is bornologic. A simple modification
of the proof of Theorem 9 of [8] shows that O is bornologic. Since O is the
projective limit of the Montel spaces w %', and the topology of w=*S’ is finer
than the topology of w™7S’ for k > j, it follows from the Corollary to Proposition
3.9.6 of Horvath [4] that O is semi-Montel. Thus O/, is Montel. Hence its strong
dual O, is Montel. As in Lemma 2, one can show that Kj; as a subspace of O/,
with the relative topology of O is Montel. Following the idea of the proof of
Theorem 1, we can prove the following.

Theorem 3. Let (1;) be a sequence in O, such that (1j * ¢) converges to 0
in O, for every ¢ in Ky, then (1) converges to 0 in O,.

The last result of this note is of negative nature, it simply says that in Theorem
1, one can not replace K}, by K. More precisely we have

Theorem 4. There exist a sequence (1j) in Ky and ¢ in Ky, where the
map ¢ * 1 — 1 from ¢« Ky to Ky is well-defined, such that (¢ x1;) converges
to 0 in Ky but (v;) does not converge to 0 in K.

Proof: Assume the contrary, since for given ¢ in K s the space ¢ x Ky
with the relative topology of K is metric, it follows that the linear map A from
¢ * Ky into Ky which takes ¢+ is continuous. We claim that ¢ x Ky = K.
Indeed, given T in K, let S be the Hahn-Banach extension to K s of T oA from
¢ Ky into €. S is in K}, and ¢ xS = T. But on the other hand the equality
of ¢« Ky and K % 1s impossible, because ¢ x S is infinitely differentiable for all
S in K, and can never be equal to §. The contradiction completes the proof of
the theorem. m

Remarks.
(1) It will be nice to have a concrete example of a sequence (1;) and a function
¢ in Ky which satisfy the conditions of the above result.

(2) Theorem 4 and its proof remain valid if the sequence (1) is in € and ¢ is
in D.
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Added in proof. In a recent article Stevan Pilipovic (Proceedings of the

AMS, Vol. 111, N°4, April 1991) has shown that, if (7}) is a sequence in S’ such
that (T} x ¢) converges to 0 in S’ for any ¢ in D, then (7}) converges to 0 in S’.
In his proof he followed the method of Keller [5].
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