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WEIGHTED FRECHET AND LB-SPACES
OF MOSCATELLI TYPE

Yolanda Melendez

Abstract: The structure of the weighted Fréchet and LB-spaces of Moscatelli type

appears when one combines both the structure of the Köthe sequence spaces [3] and

the structure of Fréchet and LB-spaces of Moscatelli type, introduced by Moscatelli in

1980 [11] and developed by Bonet and Dierolf in [4, 5]. The theory of this new structure

includes both theories.

The main motivation for our research on these spaces are the questions which re-

main open in the theory of LB-spaces. The most important one is the question posed

by Grothendieck [8] asking whether every regular LB-space is complete. This question

is answered positively in our present frame here.

This paper is divided into three sections. In the first section we introduce the weighted

LB-spaces of Moscatelli type and study strictness, regularity and bounded retractivity.

We also prove that these inductive limits are regular if and only if they are complete (un-

der mild additional assumptions). In the second section we define the weighted Fréchet

spaces of Moscatelli type and investigate when they are Montel, Schwartz and when

they satisfy property (Ωϕ) or property (DNϕ) of Vogt. In our third and last section

we establish a certain duality between the weighted Fréchet and LB-spaces of Moscatelli

type.

1 – Weighted LB-spaces of Moscatelli type

1.1 Definition and preliminaries

In what follows, (L, ‖ ‖) will denote a normal Banach sequence space, i.e., a
Banach sequence space which satisfies:

(α) ϕ ⊂ L ⊂ ω algebraically and the inclusion (L, ‖ ‖) → ω is continuous,
where ω =

∏

k∈IN IK and ϕ =
⊕

k∈IN IK.
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(β) ∀ a = (ak)k∈IN ∈ L, ∀ b = (bk)k∈IN ∈ ω such that |bk| ≤ |ak|, ∀ k ∈ IN, we
have b ∈ L and ‖b‖ ≤ ‖a‖.

Clearly every projection onto the first n coordinates pn : ω → ω, (ak)k∈IN →
((ak)k≤n, (0)k>n) induces a norm-decreasing endomorphism on L.

We shall also consider on (L, ‖ ‖) the following properties:

(γ) ‖a‖ = limn ‖pn(a)‖ ∀ a ∈ L.

(δ) If a ∈ ω, supn ‖pn(a)‖ <∞, then a ∈ L and ‖a‖ = limn ‖pn(a)‖.

(ε) limn ‖a− pn(a)‖ = 0 ∀ a ∈ L.

Unexplained notation as in [9, 12].

Following the classical notations (see [3]), given a strictly positive Köthe ma-
trix A = (an)n∈IN on IN, that is 0 < an(k) ≤ an+1(k) (n, k ∈ IN), we shall denote
by V = (vn)n∈IN the associated decreasing sequence of strictly positive weights
with vn = 1

an
(n ∈ IN) and by V the family

V :=

{

v = (v(k)) ∈ ω : sup
k∈IN

v(k)

vn(k)
<∞, ∀n ∈ IN

}

.

We shall always assume without loss of generality that for every v ∈ V , we have
v(k) > 0 (k ∈ IN).

Let (L, ‖ ‖) be a normal Banach sequence space, (Yk, sk)k∈IN a sequence of
Banach spaces and V =(vn)n∈IN a decreasing sequence of strictly positive weights.
For each n ∈ IN we put

L(vn, (Yk)k∈IN) :=
{

(xk)k∈IN ∈
∏

k∈IN

Yk : (vn(k) sk(xk))k∈IN ∈ L
}

endowed with the norm ‖(xk)k∈IN‖:=‖(vn(k) sk(xk))k∈IN‖ and k(V, L, (Yk)k∈IN}:=
indn L(vn, (Yk)k∈IN).

For every v ∈ V , we define

L(v, (Yk)k∈IN) =
{

(xk)k∈IN ∈
∏

k∈IN

Yk : (v(k) sk(xk))k∈IN ∈ L
}

endowed with the norm ‖(xk)k∈IN‖ := ‖(v(k) sk(xk))k∈IN‖.

The inclusion

L(vn, (Yk)k∈IN) ⊂ L(v, (Yk)k∈IN)

is continuous for arbitrary v ∈ V and n ∈ IN, so that, if

K(V , L, (Yk)k∈IN) := projv∈V L(v, (Yk)) ,
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then k(V, L, (Yk)k∈IN) is continously injected in K(V , L, (Yk)k∈IN). For the case
Yk = IK (k ∈ IN) we shall omit (Yk)k∈IN and write L(vn), k(V, L), L(v) and
K(V , L), following the classical notations.

Clearly, for the case Yk = IK (k ∈ IN) and L = 1p, the space k(V, L, (Yk)k∈IN)
is the corresponding scalar Köthe co-echelon space and K(V , L, (Yk)k∈IN) coin-
cides with its well-known projective hull (see [3]). In fact the idea for our inclusion
is taken from the one in [3] for this particular case.

Moreover it is easy to see that k(V, L, (Yk)k∈IN) and K(V , L, (Yk)k∈IN) induce
on

⊕

k∈IN Yk the same topology. In particular, if L satisfies property (ε), then
k(V, L, (Yk)k∈IN) is a topological subspace of K(V , L, (Yk)k∈IN) (compare with [3]
and 2.4 in [5]).

In order to define the weighted LB-spaces of Moscatelli type, we would like
to make the following three conventions for this first section:

– (L, ‖ ‖) will denote a normal Banach sequence space with property (γ).

– V = (vn)n∈IN will stand for a decreasing sequence of strictly positive weights.

– (Xk, rk)k∈IN and (Yk, sk)k∈IN will represent two sequences of Banach spaces
such that for each k ∈ IN, Yk is a subspace of Xk and sk ≥ rk | Yk
(in consequence, Bk :={y ∈ Yk : sk(y) ≤ 1} ⊂ {x ∈ Xk : rk(x) ≤ 1}=:Ak).

For every n ∈ IN, the space L(vn, (Xk, rk)k<n, (Yk, sk)k≥n) is a Banach space,
the inclusion

L
(

vn, (Xk)k<n, (Yk)k≥n
)

→ L
(

vn+1, (Xk)k<n+1, (Yk)k≥n+1

)

is continuous and the unit ball of the first space – which we shall always denote
by Bn – is contained in the unit ball of the second one, Bn+1. Now the inductive
limit

k
(

V, L, (Xk), (Yk)
)

:= indn L
(

vn, (Xk)k<n, (Yk)k≥n
)

is the LB-space of Moscatelli type w.r.t. (L, ‖ ‖), V = (vn)n∈IN, (Xk, rk)k∈IN and
(Yk, sk)k∈IN.

Recall that ifXk = Yk = IK and L = 1p we obtain the Köthe co-echelon spaces
[3] and for the case vn(k) = 1 (k, n ∈ IN) we get the LB-spaces of Moscatelli type
[4].

Clearly k(V, L, (Xk), (Yk)) is a quotient of
⊕

k∈IN Xk×k(V, L, (Yk)k∈IN). There-
fore there is a basis of 0-neighbourhoods of the form

⊕

k∈IN εkAk + U , where
(εk)k∈IN is a sequence of positive real numbers and U is a 0-neighbourhood in
k(V, L, (Xk), (Yk)), is given by

⊕

k∈IN εkAk + Bv ∩ k(V, L, (Yk)k∈IN) with v ∈ V ,
where Bv stands for the unit ball in L(v, (Yk)k∈IN).

We introduce the following auxiliary spaces.
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For each k ∈ IN let Ck denote the closure of Bk in (Xk, rk), Zk its linear span
and tk the Minkowski functional of Ck (we will keep these notations through all
section 1). The space (Zk, tk) is a Banach space. Obviously sk ≥ tk|Yk

≥ rk|Yk
,

hence k(V, L, (Xk), (Yk)) is continuously injected in k(V, L, (Xk), (Zk)).

Now given (εk)k∈IN ∈ IKIN, εk > 0 (k ∈ IN) and v ∈ V , pεk,v will denote the
Minkowski functional of εkAk + 1

v(k)Bk. Then pεk,v is a norm on Xk which is

equivalent to rk. Therefore (Xk, pεk,v) is a Banach space. Since supk
v(k)
vn(k) < ∞

(n ∈ IN), the spaces L(vn, (Xk)k≥n, (Yk)k≥n) and L(vn, (Xk)k<n, (Zk)k≥n) are
both continuously injected in L((Xk, pεk,v)k∈IN), for arbitrary (εk)k∈IN ∈ IKIN,
εk > 0 (k ∈ IN), v ∈ V and n ∈ IN. Consequently, the inclusions:

k
(

V, L, (Xk), (Yk)
)

⊂ k
(

V, L, (Xk), (Zk)
)

⊂ projL(Xk, pεk,v)k∈IN =:K
(

V , L, (Xk), (Yk)
)

are continuous. For the case (Yk, sk) = (Xk, rk) (k ∈ IN), the space K(V , L, (Xk),
(Yk)) coincides with K(V , L, (Yk)k∈IN) algebraically and topologically.

Furthermore, K(V , L, (Xk), (Yk)) has a basis of 0-neighbourhoods formed by
the sets

(

∏

k∈IN

εkAk + δBv
)

∩K
(

V , L, (Xk), (Yk)
)

, (εk)k∈IN ∈ IKIN, εk > 0 δ > 0 ,

and v ∈ V where Bv stands for the unit ball in L(v, (Yk)k∈IN). Moreover k(V, L,
(Xk), (Yk)) and K(V , L, (Xk), (Yk)) induce the same topology on

⊕

k∈IN Xk.

1.2 Proposition. Let (Zk, tk)k∈IN be as in 1.1 and k(V, L, (Xk), (Yk)), k(V, L,
(Xk), (Zk)) the corresponding weighted LB-spaces of Moscatelli type. The fol-
lowing assertions hold:

i) k(V, L, (Xk), (Yk)) = k(V, L, (Xk), (Zk)) if and only if for every n ∈ IN
there are m ≥ n, Mn > 0 with 1

vn(k)Ck ⊂
Mn

vm(k)Bk (k ≥ m).

ii) If k(V, L, (Xk), (Yk)) is regular, then k(V, L, (Xk), (Yk))=k(V, L, (Xk), (Zk))
and indn L(vn) is regular.

1.3 Remarks.

i) The converse of 1.2 ii) holds whenever any of the following conditions is
satisfied:

a) each subset in k(V, L) = indn L(vn) which is bounded for the relative
K(V , L)-topology is also bounded in k(V, L) (see [3]);

b) there is m ∈ IN such that Yk is a topological subspace of Xk (k ≥ m).
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ii) Condition 2.4 ii) in [5] implies our condition 1.2 i) and they are different
(of course they coincide if vn(k) = 1, (k ∈ IN)). Indeed, from 2.6 in [5], given an
infinite dimensional Banach space (X, r), for each m ∈ IN, there is a bounded Ba-
nach disc in (X, r), Dm, whose closure is contained in MDm, for some M ≥ 1 but
not contained in mDm. According to this, we can obtain a sequence of bounded
Banach discs, (Bk)k∈IN, and a strictly increasing sequence of natural numbers,
(nk)k∈IN, such that Bk ⊂ nkBk and Bk+1 6⊂ nkBk+1. Put Yk :=LIN(Bk) (linear
span of Bk), sk the Minkowski functional of Bk, and take (X, r), (Yk, sk)k∈IN and

V = (vm)m∈IN with vm(k) =
(

1
nk

)m
, m, k ∈ IN. For each k ≥ m+ 1,

1

vm(k)
Bk

x
= (nk)

mBk
x
⊂ (nk)

m+1Bk =
1

vm+1
Bk .

It follows from 1.2 i) that

k
(

V, L, (X, r), (Yk)
)

= k
(

V, L, (X, r), (Zk)
)

.

However, there is no ρ ≥ 1 satisfying Bk
x
⊂ ρBk, for all k ∈ IN.

1.4 Proposition. k(V, L, (Xk), (Yk)) is boundedly retractive if and only if
the following two conditions hold:

1) There exists m ∈ IN such that Yk is a topological subspace of Xk (k ≥ m);

2) indn L(vn) is boundedly retractive.

Proof: Assume k(V, L, (Xk), (Yk)) is boundedly retractive. Then for B1 there
is m ∈ IN such that L(vr, (Xk)k<r, (Yk)k≥r) and L(vm, (Xk)k<m, (Yk)k≥m) induce
the same topology on B1, for all r ≥ m. It follows easily that Yk and Xk induce
the same topology on Bk, k ≥ m, thus Yk is a topological subspace of Xk for all
k ≥ m.

Since k(V, L, (Xk), (Yk)) is regular, indL(vn) has to be regular. If it is not
boundedly retractive, without loss of generality we may assume that for all
n ∈ IN, L(vn) and L(vn+1) dot not induce the same topology on the unit ball
of L(v1), namely Bv1,1. Therefore, for each n ∈ IN we can find (λnp )p∈IN ⊂ Bv1,1

which is L(vn+1)-null and not L(vn)-null. We can also assume that λnp,j = 0,
1 ≤ j < n + 1. Take xj ∈ Yj with sj(xj) = 1 (j ∈ IN), and put xnp =
(λnp,kxk)k∈IN (p, n ∈ IN). Then {xnp : n, p ∈ IN} ⊂ B1, the sequence (xnp )p∈IN

is L(vn+1, (Xk)k<n+1, (Yk)k≥n+1)-null but it is not L(vn, (Xk)k<n, (Yk)k≥n)-null.
For the converse assume conditions 1) and 2). It follows from 1) that for all

k ≥ m there is λk > 0 such that λk sk ≤ rk ≤ sk. Since k(V, L, (Xk), (Yk)) is
regular it suffices to prove that the topologies coincide on Bn residually, n ≥ m.
For every n ≥ m, put Dn :={((rk(xk)k<n, (sk(xk))k≥n) : x ∈ Bn}; then Dn ⊂
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Bvn,1, hence there is l ∈ IN such that L(vl) and L(vr) coincide on Dn, for all
r ≥ l, i.e. for every ε > 0, there is δ > 0 such that δBvr,1 ∩ Dn ⊂ εBvl,1. Take
δ′ = λn · · ·λr−1δ and let x ∈ δ′Br ∩ Bn be given. Then,
∥

∥

∥

(

(vr(k) rk(xk))k<n, (vr(k) sk(xk))k≥n
)∥

∥

∥ ≤

≤
1

λn λn+1 · · ·λr−1

∥

∥

∥

(

(vr(k)rk(xk))k<r, (vr(k)sk(xk))k≥r
)∥

∥

∥ < δ ,

thus we obtain
(

(rk(xk))k<n, (sk(xk))k≥n
)

∈ δBvr,1 ∩Bvn,1 ⊂ εBvl,1 ;

that is, ‖((vl(k) rk(xk))k<n, (vl(k) sk(xk))k≥n)‖ ≤ ε and therefore x ∈ Bl.

1.5 Proposition. The following statements are equivalent:

i) k(V, L, (Xk), (Yk)) is strict;

ii) For every k ∈ IN, Yk is a topological subspace of Xk and for every n ∈ IN,
there is Mn > 0 with 1

vn(k) ≤
Mn

v1(k) (k ∈ IN).

Regarding Grothendieck’s question [8] whether regularity implies complete-
ness for LB-spaces, we shall provide a positive answer in the frame of these
weighted LB-spaces of Moscatelli type when either the space (L, ‖ ‖) is a step
space (in the sense of [13]) satisfying property (ε) or (L, ‖ ‖) = (1∞, ‖ ‖∞) or
(L, ‖ ‖) = (c0, ‖ ‖∞). First we should remember the definition of a step (cf. [13]).

A sequence space (L, ‖ ‖) is said to be a step if:

a) (L, ‖ ‖) is perfect;

b) (11, ‖ ‖1) ⊂ (L, ‖ ‖) ⊂ (1∞, ‖ ‖∞);

c) (L, β(L,Lx)) is a Banach space, where Lx denotes the α-dual of L.

(Normal Banach sequence spaces satisfy always property b), cf. [6]).

1.6 Proposition. If (L, ‖ ‖) is a step, then k(V, L, (Xk), (Zk)) and
k(V , L, (Xk), (Yk)) coincide algebraically, they have the same bounded sets
and k(V, L, (Xk), (Zk)) is regular.

Proof: Let B be a bounded set in K(V , L, (Xk), (Yk)).

1) An argument similar to the one in 3.1 iii) in [4] shows that there is n ∈ IN
such that xk ∈ Zk (k ≥ n), ∀ (xk)k∈IN ∈ B.

2) Let us see that ((0)k<n, (tk(xk))k≥n) ∈ indm L(vm) (x ∈ B). Assume there
is x ∈ B such that ((0)k<n, (tk(xk))k≥n) /∈ indm L(vm). Since L is perfect, for all
m ∈ IN, there is zm ∈ Lx with ‖zm‖x = 1 and

∑∞
k=n vm(k) tk(xk) z

m
k =∞.
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Take ym ∈ ϕ, such that ‖ym‖x ≤ 1, max{k ∈ IN : ymk 6= 0} < min{k :
ym+1
k 6= 0}, ynk = 0 for all k < n and

∑∞
k=n v(k) tk(xk) |y

m
k | > m. We put

Jm :={k ∈ IN : ymk 6= 0}. Thus (Jm)m∈IN is a sequence of pairwise disjoint
subsets of IN.

Take v ∈ V , with v(k) = vn(k) if k < min J1; v(k) = vm(k) if min Jm ≤ k <
min Jm+1. For all k ∈ IN such that tk(xk) 6= 0, we have

xk /∈
1

2
tk(xk)Ck =

1

2
tk(xk) v(k)

1

v(k)
Ck ,

whence there is εk > 0 such that

xk /∈
1

2
tk(xk) v(k)

(

1

v(k)
Bk + εk Ak

)

and therefore for every k ∈ IN we can find εk > 0 such that

Pεk,v(xk) ≥
1

2
tk(xk) v(k) .

Let U be the unit ball in the α-dual Lx. We have

sup
y∈U

∣

∣

∣

〈

(pεk,v
(xk)), y

〉∣

∣

∣ ≥ sup
m

∞
∑

k=n

vm(k) tk(xk) |y
m
k | =∞

which contradicts that x ∈ K(V , L, (Xk), (Yk)).

3) To end the proof, it suffices to show that there exists an index m ≥ n such
that supx∈B supy∈U

∑∞
k=m vm(k) tk(xk) |yk| <∞.

Assume the contrary. Then for each m ≥ n, we can find ym ∈ B ∩
⊕

k∈IN Zk,
and zm ∈ U such that

∞
∑

k=m

vm(k) tk(y
m
k ) |zmk | > m , ynk = 0 (k < n)

and

max{k ∈ IN : ymk 6= 0} < min{k : ym+1
k 6= 0} .

Now the proof finishes as in part 2.

1.7 Corollary. If (L, | ‖) is a step, then k(V, L, (Xk), (Yk)) is regular if and
only if it coincides with k(V, L, (Xk), (Zk)).

1.8 Proposition. If (L, ‖ ‖) is a step with property (ε), then k(V,L,(Xk),(Yk))
is regular if and only if it is complete.
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Proof: Let (xα)α∈A be a Cauchy net in k(V, L, (Xk), (Yk)), hence a Cauchy
net in K(V , L, (Xk), (Yk)). There is x ∈ K(V , L, (Xk), (Yk)) such that (xα)α∈A
converges to x inK(V , L, (Xk), (Yk)). SinceK(V , L, (Xk), (Yk)) and k(V, L, (Xk),
(Yk)) induce the same topology on

⊕m
n=1 Xn for all m ∈ IN, we obtain that

(pm(xα))α∈A converges to pm(x) in k(V, L, (Xk), (Yk)) for each m ∈ IN, where pm
stands for the projection onto the first m coordinates.

Let p be a continuous seminorm on k(V, L, (Xk), (Yk)). Given ε > 0, there is
α0 in A such that p(xα − xα′) < ε/9, for α, α′ ≥ α0.

Fix α0 and find m1 ∈ IN such that p(pm(xα0
) − xα0

) < ε/9 (m ≥ m1). Now
for α ≥ α0 and m ≥ m1 we may write:

p(xα− pm(xα)) ≤ p(xα− xα0
)+ p(xα0

− pm(xα0
))+ p(pm(xα0

)− pm(xα)) < ε/3 .

There is m2 such that p(x− pm(x)) < ε/3 (m ≥ m2). Take m0 = max(m1,m2).
There must be α1 such that p(pm0

(x) − pm0
(xα)) < ε/3 (α ≥ α1). Choose

α2 ≥ α0, α2 ≥ α1 to obtain

p(x− xα) ≤ p(x− pm0
(x)) + p(pm0

(x)− pm0
(xα)) + p(pm0

(xα)− xα) < ε ,

which proves the completeness of k(V, L, (Xk), (Yk)).

In the case L = 1∞ the equivalence between regularity and completeness holds
too.

1.9 Proposition. k(V, 1∞, (Xk), (Yk)) is regular if and only if it is complete.

Proof: Let (Zk, tk)k∈IN be as in 1.1. It follows from (1.7) that k(V, 1∞, (Xk),
(Yk)) is regular if and only if it coincides with k(V, 1∞, (Xk), (Zk)), and that
k(V, 1∞, (Xk), (Yk)) is the bornological space associated to K(V , 1∞, (Xk), (Yk)).
Assume that k(V, 1∞, (Xk), (Yk)) is regular.

We shall show – following the technics in [5] – that for every sequence of
positive real numbers (εk)k∈IN,

m
∑

n=1

εn Cn ⊂ 2
m+1
∑

n=1

εn Cn (m ∈ IN) ,

where Cn stands for the unit ball in 1∞(vn, (Xk)k<n, (Zk)k≥n) and the closure is
taken in k(V, l∞, (Xk), (Zk)) with respect to

∏

k∈IN (Xk, rk).
Given m ∈ IN, let pm : k(V, l∞, (Xk), (Zk)) → k(V, l∞, (Xk), (Zk)) be the

projection onto the first m coordinates and Qm := Id− pm, then

m
∑

n=1

εn Cn ⊂
m
∑

n=1

εn pm(Cn) +
m
∑

n=1

εnQm(Cn) .
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Since pm(Cm+1) is a 0-neighbourhood in
∏m
k=1(Xk, rk),

m
∑

n=1

εn pm(Cn) ⊂
m+1
∑

n=1

εn pm(Cn) ⊂
m+1
∑

n=1

εn Cn .

Put Dm :={(((0)k≤m), (xk)k>m) : xk ∈ Zk, tk(xk) ≤
∑m

n=1
εn

vn(k) (k ≥ m)}.

Then Dm is closed in
∏

k∈IN(Xk, rk). We claim that Dm =
∑m

n=1 εnQm(Cn). The
argument we are going to use is due to Ernst and Schnettler (see [7]).

Given x = ((0)k≤m, (xk)k>m) ∈ Dm, put x
1
k = xk if tk(xk) <

ε1
v1(k) . Otherwise

put

x1
k =

εk
v1(k)

xk
tk(xk)

.

Then tk(x
1
k) ≤ tk(xk). Consequently, x

1 ∈ k(V, 1∞, (Xk), (Yk)) and tk(x
1
k) ≤

ε1
v1(k)

(k ≥ m).

Define x2 = x− x1. Thus x2
k = 0 whenever tk(xk) ≤

ε1
v1(k) . For tk(xk) >

ε1
v1(k) ,

tk(x
2
k) = tk

(

xk −
ε1

v1(k)

xk
tk(xk)

)

= tk(xk)

∣

∣

∣

∣

1−
ε1

v1(k)tk(xk)

∣

∣

∣

∣

= tk(xk)−
ε1

v1(k)
≤

m
∑

n=2

εn
vn(k)

.

After finitely many times, we obtain x ∈
∑m

n=1 εnQm(Cn).

Accordingly
m
∑

n=1

εn Cn ⊂ 2
m+1
∑

n=1

εn Cn

and this shows that k(V, 1∞, (Xk), (Yk)) is the barrelled space associated to
K(V , 1∞, (Xk), (Yk)), hence complete.

In order to deal with the case (L, ‖ ‖) = (c0, ‖ ‖∞) in our next proposition,
we should remember that a decreasing sequence of strictly positive weights
V = (vn)n∈IN is said to be regularly decreasing (see [2,3]) if for every n ∈ IN,
there is m ≥ n such that for each ε > 0 there is v ∈ V with

vm(i) ≤ ε vn(i) if v(i) < vm(i) .

1.10 Proposition. k(V, c0, (Xk), (Yk)) is regular if and only if it is complete.

In this case k(V, c0, (Xk), (Yk)) coincides algebraically and topologically with
K(V , c0, (Xk), (Yk)).
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Proof: Let (Zk, tk)k∈IN be as in 1.1. From 1.2 ii) and 1.3 i) we get that
k(V, c0, (Xk), (Yk)) is a topological subspace of K(V , c0, (Xk), (Yk)) and it is reg-
ular if and only if k(V, c0, (Xk), (Yk)) = k(V, c0, (Xk), (Zk)) and V is regularly
decreasing.

Assume that k(V, c0, (Xk), (Yk)) is regular. Let B be a bounded set in
K(V , c0, (Xk), (Yk)), hence bounded in K(V , 1∞, (Xk), (Yk)). There must be
n ∈ IN such that

sup
x∈B

sup
k≥n

vn(k) tk(xk) = M <∞ .

Since V is regularly decreasing, there is m ≥ n such that for each ε > 0 there
is v ∈ V satisfying vm(i) ≤

ε
2M vn(i) if v(i) < vm(i).

If k ≥ m and v(k) ≥ vm(k), we have

xk /∈
1

2
tk(xk) v(k)

1

v(k)
Cn .

Hence there is εk > 0 such that

xk /∈
1

2
tk(xk) v(k)

(

1

v(k)
Bk + εkAk

)

.

Put I0 :={k ≥ n : v(k) ≥ vm(k)}. If k ∈ I0,

pεk,v(xk) ≥
1

2
tk(xk) v(k) ≥

1

2
tk(xk) vm(k) .

On the other hand if v(k) < vm(k), then

vm(k) tk(xk) ≤ vn(k) tk(xk)
ε

2M
< ε .

Since (pεk,v(xk))k∈IN ∈ c0, we have (vm(k) tk(xk))k≥m ∈ c0. Therefore B
is contained in c0(vm, (Xk)k<m, (Zk)k≥m). In particular K(V , c0(Xk), (Yk)) =
k(V, c0, (Xk)(Yk)).

2 – Weighted Fréchet spaces of Moscatelli type

2.1 Definitions and preliminaries

In this section 2, we would like to make the following conventions:

– (L, ‖ ‖) will be a normal Banach sequence space with property (γ).

– A = (an)n∈IN will stand for a strictly positive Koẗhe matrix.
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– (Yk, sk)k∈IN and (Xk, rk)k∈IN will represent two sequences of Banach spaces
and fk : Yk → Xk will be a continuous linear mapping such that fk(Bk) ⊂
Ak where Ak (resp. Bk) stands for the unit ball of Xk (resp. Yk) (k ∈ IN).

Now, for every n ∈ IN, we define:

Gn = L
(

an, (Yk)k<n, (Xk)k≥n
)

=

{

(xk)k∈IN ∈
∏

k<n

Yk ×
∏

k≥n

Xk :

(

(

an(k) sk(xk)
)

k<n
,
(

an(k) rk(xk)
)

k≥n

)

∈L

}

provided with the norm:

‖(xk)k∈IN‖n =
∥

∥

∥

(

(an(k) sk(xk))k<n, (an(k) rk(xk))k≥n
)
∥

∥

∥ .

Clearly Gn is a Banach space (n ∈ IN). We put gn : Gn+1 → Gn, (xk)k∈IN →
((xk)k<n, fn(xn), (xk)k>n) (n ∈ IN). Clearly gn is a continuous linear mapping
(n ∈ IN) and we define the weighted Fréchet space of Moscatelli type w.r.t. A,
(L, ‖ ‖), (Yk, sk)k∈IN (Xk, rk)k∈IN and fk : Yk → Xk (k ∈ IN) by

G = λ(A,L, (Yk), (Xk)) :=projn∈IN(Gn, gn) .

As in [5], it is easy to check that G coincides algebraically with

{

y = (yk)k∈IN ∈
∏

k∈IN

Yk :
(

fk(yk))k∈IN ∈ projn L(an, (Xk)k∈IN)
)

}

and G has the initial topology w.r.t. the inclusion j : G →
∏

k∈IN Yk and the
linear mapping f̃ : G → projn L(an, (Yk)k∈IN), (xk)k∈IN → (fk(yk))k∈IN. We can
always assume without loss of generality that fk(Yk) is dense in Xk (k ∈ IN).

If Xk = Yk = IK (k ∈ IN), we shall write λ(A,L), following the classical
notations.

Recall that if Xk = Yk = IK (k ∈ IN) and L = 1p we obtain the Köthe echelon
spaces [3] and the case an(k) = 1 (k, n ∈ IN), we get the LB-spaces of Moscatelli
type [4].

Let us investigate when the weighted Fréchet spaces of Moscatelli type are
Montel, Schwartz, satisfy property (Ωϕ) and property (DNϕ).

The properties (Ωϕ) and (DNϕ) were introduced by D. Vogt in [14] as follows.
For an increasing continuous function ϕ : (0,∞) → (0,∞) we say that a

Fréchet space with a basis of zero-neighbourhoods {Un}n∈IN has property (Ωϕ)
if ∀p ∃q ∀k ∃C > 0 ∀ r > 0: Uq ⊂ Cϕ(r)Uk + r−1Up and a Fréchet space with a
fundamental sequence of seminorms {‖ ‖n}n∈IN satisfies property (DNϕ) if:

∃n0 ∀m ∃n ∈ IN, ∃C > 0: ∀x ∈ F, ∀ r > 0: ‖x‖m ≤ C ϕ(r) ‖x‖n0
+r−1‖x‖n .
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These two conditions play an important role in [10, 15].
By [10], a Fréchet space is quasinormable if and only if it has (Ωϕ) for some

ϕ.
By [16], a Fréchet space F has (Ωϕ) for ϕ(k) = 1 (k ∈ IN) if and only if F ′′ is a

quojection and this is equivalent to the fact that F does not satisfy the condition
(*) of Bellenot and Dubinsky (cf. [1]).

Property (DNϕ) is related with some normability conditions (see [14]).

2.2 Lemma.

a) λ(A,L, (Yk), (Xk)) is a complemented subspace of

λ(A,L, F ):=
{

(xn)n∈IN∈F
IN: (am(n) r(x

n))n∈IN∈L, ∀ r∈cs(F ), ∀m∈ IN
}

,

where F is the Fréchet space of Moscatelli type w.r.t. (K, ‖ ‖), (Yk, sk)k∈IN

(Xk, rk)k∈IN and (fk)k∈IN (see [4]).

b) The sectional subspace (λ(A,L))J :={(αk)k∈IN ∈ λ(A,L) : αk = 0
∀ k /∈ J}, with J :={k ∈ IN : fk(Yk) 6≡ 0} of the Köthe echelon space
is algebraically and topologically isomorphic to a complemented subspace
of λ(A,L, (Yk), (Xk)).

2.3 Proposition. Let J :={k ∈ IN : fk(Yk) 6≡ 0} and consider the sectional
subspace (λ(A,L))J . Then,

i) λ(A,L, (Yk), (Xk)) is Montel (resp. Schwartz) if and only if (λ(A,L))J is
Montel (resp. Schwartz) and Yk is finite dimensional for all k ∈ IN.

ii) λ(A,L, (Yk), (Xk)) has property (DNϕ) (resp. property (Ωϕ)) if and only
if (λ(A,L))J and F have property (DNϕ) (resp. Ωϕ)) where F is the
Fréchet space of Moscatelli type w.r.t. (L, ‖ ‖), (Yk, sk)k∈IN (Xk, rk)k∈IN

and (fk)k∈IN.

The proof of the result above is an easy consequence of lemma 2.2 (for the
case of the property (Ωϕ) use also 2.9 and 2.10 in [5] and for property (DNϕ) use
2.17 in [5]).

3 – Duality

In this section, we shall follow the ideas in [3] and [5] to establish the duality
between the weighted Fréchet and LB-spaces of Moscatelli type.

In order to settle such a duality we need the following proposition whose proof
follows thoroughly its restricted version to the Köthe sequence spaces appearing
in [3].
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3.1 Proposition. Let (L, ‖ ‖) be a normal Banach sequence space with
property (γ). Let (Xk, rk)k∈IN be a sequence of Banach spaces and A = (an)n∈IN

a strictly positive Koẗhe matrix. A subset B ⊂ projn L(an, (Xk)k∈IN) is bounded
if and only if there exists v ∈ V (cf 1.1) such that for every (xk)k∈IN ∈ B,
(rk(xk))k∈IN ∈ vBL, where BL is the unit ball in L.

Let (L, ‖ ‖) be a normal Banach sequence space with property (γ). Let
(Yk, sk)k∈IN (Xk, rk)k∈IN be two sequences of Banach spaces and fk : Yk → Xk

a continuous linear mapping with fk(Bk) ⊂ Ak (k ∈ IN). Let A = (an)n∈IN be
a strictly positive Köthe matrix and G = λ(A,L, (Yk), (XK)) the corresponding
weighted Fréchet space of Moscatelli type. Let v ∈ V , µk > 0 (k ∈ IN) be given.
We consider the set v(k)f−1

k (Ak)∩µkBk and denote its Minkowski functional by
qv(k)µk

. Then qv(k)µk
is a norm on Yk and it is equivalent to sk (k ∈ IN). We

define Gv(k)µk
:=L((Yk, qv(k)µk

)k∈IN). Clearly Gv(k)µk
is a Banach space and is

continuously contained in G (v ∈ V , µk > 0 (k ∈ IN)).

3.2 Proposition. Under the hypotheses above, for every bounded set B in
G, there are v ∈ V , (µk) ∈ IKIN, µk > 0 (k ∈ IN) such that B is a bounded set of
Gv(k)µk

. In particular, G can be represented as an (uncountable) inductive limit:

G = ind
(

Gv(k)µk
: v ∈ V , (µk) ∈ IKIN, µk > 0 (k ∈ IN)

)

.

Proof: Let B be a bounded set in G. According to proposition 3.1, there
exist v ∈ V , (λk)k∈IN ∈ IKIN, λk > 0 (k ∈ IN) such that

sup

{∥

∥

∥

∥

1

v(k)
rk(fk(yk)))k∈IN

∥

∥

∥

∥

: y = (yk)k∈IN ∈ B

}

≤ 1

and

sup
{

sm(ym) : y = (yk)k∈IN ∈ B
}

≤ λm (m ∈ IN) .

Choose (ηk)k∈IN ∈ L with ηk > 0 (k ∈ IN) and ‖(ηk)k∈IN‖ = 1. Put µk :=λk η
−1
k

(k ∈ IN). Let us see that B is bounded in Gv(k)µk
. Let y ∈ B. Then for all k ∈ IN,

yk ∈ rk(fk(yk)) f
−1
k (Ak) ∩ sk(yk)Bk .

Call

I1 :=

{

k ∈ N : µ−1
k sk(yk) ≤

1

v(k)
rk(fk(yk))

}

;

I2 :=

{

k ∈ N :
1

v(k)
rk(fk(yk)) < µ−1

k sk(yk)

}

.
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Take k ∈ I1, then yk ∈
1

v(k)rk(fk(yk))(v(k)f
−1
k (Ak) ∩ µkBk) and

∥

∥

∥

∥

(

(qv(k)µk
(yk))k∈I1 , (0)k∈I2

)

∥

∥

∥

∥

≤

∥

∥

∥

∥

((

1

v(k)
rk(fk(yk))

)

k∈I1

, (0)k∈I2

)∥

∥

∥

∥

≤ 1 .

Take k ∈ I2, then yk ∈ µ−1
k sk(yk)(v(k)f

−1
k (Ak) ∩ µkBk) and

∥

∥

∥

(

(0)k∈I1 , (qv(k)µk
(yk))k∈I2

)∥

∥

∥ ≤
∥

∥

∥

(

(0)k∈I1 , (µ
−1
k sk(yk))k∈I2

)∥

∥

∥

≤
∥

∥

∥

(

(0)k∈I1 , (ηk)k∈I2

)
∥

∥

∥ ≤ 1 .

Thus ‖((qv(k)µk
(yk))k∈IN‖ ≤ 2 and that finishes the proof since G is ultrabornolog-

ical.

Let G = λ(A,L, (Yk), (Xk)) be the weighted Fréchet space of Moscatelli type
w.r.t. (L, ‖ ‖) with (ε), A = (an)n∈IN, (Yk, sk)k∈IN (Xk, rk)k∈IN, (fk)k∈IN, each
fk having dense range and fk(Bk) ⊂ Ak (k ∈ IN). Because of lemma 2.2 in
[5] we may naturally identify (algebraically and topologically) the strong dual of
Gn :=L(an, (Yk, sk)k<n, (Xk, rk)k≥n) with Hn = L′(vn, (Y

′
k, s

′
k)k<n, (X

′
k, r

′
k)k≥n)

and define the weighted LB space of Moscatelli type H := indn∈IN Hn = k(V, L,
(Y ′k), (X

′
k)) w.r.t. the duals. We shall keep these notation all over this section 3.

Next we study the relationship between G′β and H.

3.3 Proposition. There is an identity map I : H → G′β which is contin-
uous. Moreover H is the bornological space associates to G′β and G′β coincides

topologically with K(V , L′, (Y ′k), (X
′
k)).

Proof: Let B ∈ G be bounded. By (3.2), we can find v ∈ V , µk > 0
(k ∈ IN) such that sup ‖(qv(k)µk

(yk))k∈IN‖ : y ∈ B} ≤ 1. Take εk = µ−1
k (k ∈ IN)

and consider the Minkowski functional pεkv(k) of 1
v(k)A

′
k + εkB

′
k. Observe that

1
2q
′
v(k)µk

≤ pεkv(k) ≤ 2q′v(k)µk
(k ∈ IN). Now

U :=

{

(fk)k∈IN ∈ H :
∥

∥

∥(pεkv(k)(fk))k∈IN

∥

∥

∥ ≤
1

2

}

⊂ B◦ .

Indeed, let f ∈ U and y ∈ B. Then,
∣

∣

∣

∑

k∈IN

fk(yk)
∣

∣

∣ ≤ 2
∑

k∈IN

pεkv(k)(fk) qv(k)µk
(yk)

≤
∥

∥

∥(pεkv(k)(fk))k∈IN

∥

∥

∥

′ ∥
∥

∥(qv(k)µk
(yk))k∈IN

∥

∥

∥ ≤ 1 .

Conversely let v ∈ V , εk > 0 (k ∈ IN) be given and put µk = ε−1
k (k ∈ IN).

Then the polar of the bounded set B :={y ∈
∏

k∈IN Yk : ‖qv(k)µk
(yk))k∈IN‖ ≤ 1}
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in G′ is contained in

U :=
{

(fk)k∈IN ∈ H :
∥

∥

∥(pεkv(k)(fk))k∈IN

∥

∥

∥ ≤ 2
}

.

Indeed, let f ∈ B◦. It suffices to show that
∑

k∈IN pεkv(k)(fk) ‖αk‖ ≤ 2 for all
α = (αk)k∈IN ∈ L such that ‖α‖ ≤ 1 and αk > 0 (k ∈ IN). Fix one of those α
and take y ∈

∏

k∈IN Yk with qv(k)µk
(yk) ≤ 1 (k ∈ IN). Then (αkyk)k∈IN ∈ B and

therefore
∑

k∈IN

αk |fk(yk)| =
∑

k∈IN

|fk(αkyk)| ≤ 1 .

Since pεkv(k) ≤ 2 q′v(k)µk
(k ∈ IN), we conclude

∑

k∈IN

pεv(k)(αkfk) ≤ 2 .

3.4 Corollary. G is distinguished if and only if the corresponding weighted
LB-space w.r.t. the duals k(V, L′, (Y ′k), (X

′
k)) satisfies k(V, L′, (Y ′k), (X

′
k)) =

K(V , L′, (Y ′k), (X
′
k)) topologically.

3.4 Remark. Under the above hypotheses, if there is an index n ∈ IN
such that X ′

k is a normed subspace of Y ′k (k ≥ n), then k(V, L′, (Yk), (X
′
k)) =

k(V , L′, (Y ′k), (X
′
k)) topologically if and only if k(V, L′) = K(V , L′) topologically.
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spaces and the characterization of the distinguished Köthe echelon spaces, Math.
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