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1 – Introduction

Let E be a complete convex bornological vector space (denoted by the letters
b.v.s.). This means that E is an injective algebraic inductive limit of a family
{Ei}i∈I of Banach spaces Ei, i ∈ I, such that for i < j the canonical linear map
from Ei to Ej is continuous. A subset of E is called bounded if it is contained
and bounded in a Banach space Ei. We say that E is a Schwartz (resp. weak
Schwartz) b.v.s. if the canonical map from Ei to Ej is compact (resp. weakly
compact) for every i < j.

Given D a subset of E such that Di :=D∩Ei is open in Ei for every i ∈ I. A
function f on D is said to be holomorphic if f |Di is holomorphic for every i ∈ I.
By H(D) we denote the space of holomorphic functions on D equipped with the
compact-open topology, where as above a subset K of D is called compact if
Ki :=K ∩ Ei is compact. Consider the Fourier–Borel transformation

FD : H ′(D)→ H(E+)

given by

FD(µ)(x
∗) = µ(expx∗) for µ ∈ H ′(D) and x∗ ∈ E ,

where H ′(D) denotes the dual space of H(D) equipped with the compact-open
topology and

E+ =
{
f ∈ H(E) : f is linear

}
.

Equip ImFD the quotient topology via FD. For each α ∈ E
+ define the transla-

tion operator τα on H(E+) by the form

τα(φ)(x
∗) = φ(x∗ + α)

for x∗ ∈ E+ and φ ∈ H(E+).
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Since
FD τ̃α = ταFD ,

where τ̃α : H
′(D)→ H ′(D) given by

(τ̃αµ)(ϕ) = µ(ϕ expα)

for ϕ ∈ H(D) and µ ∈ H ′(D), it follows that

τα : ImFD → ImFD

is continuous.
Now a continuous linear map θ : ImFD → ImFD is called a convolution

operator if it commutes with every translation.

2 – Statement of the results

In this note we always assume that E is a b.v.s. which is separated by E+ and
D is a subset of E such that D ∩Ei is connected and open in Ei for every i ∈ I.

Existence Theorem. Every non-zero convolution operator on ImFD is

surjective.

Approximation Theorem. Let hold one of the following two conditions

i) D is balanced;

ii) D is polynomially convex and E is a weak Schwartz b.v.s. such that every

Ei has the approximation property.

Then every solution u of the homogeneous equation θu = 0 is a limit for the

topology of ImFD of solutions in P(E) Exp(D), where P(E) denotes the set of

all continuous polynomials on E and Exp(D) = span{exp(x) : x ∈ D}.

In the case E is a Schwartz b.v.s. such that every space Ei has the approxima-
tion property and D is a balanced convex open subset of E the above results have
established by Colombeau and Perrot [3]. Some particular cases were proved by
Boland [1], Dwyer [4], [5], [6] and Gupta [8].

3 – Proof

Let T ∈ (ImFD)
′, the dual space of ImFD, equipped with the strong topology,

and let T ∗ : ImFD → ImFD given by the form

(T ∗φ)(α) = T (ταφ) for φ ∈ ImFD and α ∈ E+ .
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Lemma 1. T ∗ is a convolution operator on ImFD and conversely each

convolution operator on ImFD is a T ∗ for some T .

Proof: First observe that F ′D : (ImFD)
′ → H ′′(D) = H(D) (algebraically).

Define the continuous linear map UT from H ′(D) to H ′(D) by

UT (µ)(ψ) = µ(F ′D(T )ψ)

for µ ∈ H ′(D) and ψ ∈ H(D).
We have

(T ∗FD)(µ)(α) = (T ∗FD(µ))(α) = T (ταFD(µ))

= T (FD τ̃α(µ)) = F
′
D(T )(τ̃α(µ))

= µ(F ′D(T ) expα) = (FD UT (µ))(α)

for all µ ∈ H ′(D) and α ∈ E+.
Thus

T ∗FD = FD UT .

This yields the continuity of T ∗.
LetM denote the algebra of all convolution operators on ImFD and let γ be

the map from M to (ImFD)
′ given by

γ : θ 7→ (φ 7→ θφ(0)) .

It is easy to see that

γ(T ∗) = T and (γθ)∗ = θ .

Hence the map T 7→ T ∗ is a bijection between (ImFD)
′ and M.

Lemma 2. Let F be a Fréchet space and let C(F ) denote the set consisting

of all compact balanced convex subsets of F . Then for every K ∈ C(F ) there

exists L ∈ C(F ) such that the canonical map from the canonical Banach space

F (K) spanned by K to F (L) is compact.

Proof: Let H be a closed separated subspace of F containing K. From a
result of Geijler [7] we can find a continuous linear map η from a Fréchet–Montel
space Q onto H. Since K is compact in H there exists B ∈ C(Q) such that
η(B) = K. Observe that the map η̃ : Q(B)→ F (K) induced by η is open. Thus
it suffices to show that there exists B̃ ∈ C(Q) such that B ≤ B̃ and the canonical
map e(B, B̃) from Q(B) to Q(B̃) is compact.

Let {‖ · ‖n} be an increasing sequence of continuous semi-norms defining the
topology of Q and let Qn be the canonical Banach space associated to ‖·‖n. Since
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Q is reflexive, Q′ is bornological [10]. Hence Q′ = lim indQ′n. Put P =
⊕

n≥1Q
′
n.

Let α be the canonical map from P onto Q′.
First we find a continuous semi-norm ρ on P such that the map α̃ : Pρ →

Q′p(K) induced by α is compact, where p(K) denotes the sup-norm on B. Take a
sequence λj ↓ 0 such that

∑
j λj ≤ 1 and such that for the unit open ball Uj in

Qj we have λjB ⊆ Uj . Consider the semi-norm ρ on P given by

ρ({uj}) =
∑

j

‖uj‖j/λ
2
j ,

where uj ∈ Q
′
j and ‖ · ‖j is the sup-norm on Uj .

Obviously α induces a continuous linear map α̃ from Pρ to Q′p(B).
We show that α̃ is compact.
Indeed let {u(n)} be a sequence in P such that

M = sup{ρ(u(n)) : n ≥ 1} <∞ .

Then for every m ≥ 1 and for every x ∈ B we have
∑

j≥m

|u
(n)
j (x)| =

∑

j≥m

λj |u
(n)
j (λjx)|/λ

2
j ≤M

∑

j≥m

λj

and

sup{‖u
(n)
j ‖j : n ≥ 1} ≤M λ2

j for every j ≥ 1 .

These inequalities show that {α̃(u
(n)
j )} is equicontinuous on B. Since B is com-

pact it follows that {u(n)} is relatively compact in Q′p(B).

Now by the openness of α : P → Q′ there exists B̃ ∈ C(Q) containing B such
that the canonical map induced by α from Pρ onto Q′p(B) is open. Hence the

canonical map from Q′
p(B̃)

to Q′p(B) is compact. This yields from the commuta-

tivity of the diagram
Q(B) −→ Q(B)
↓ ↓

[Q′p(B)]
′ −→ [Q′p(B)]

′

∩ ∩

in which the maps Q(B) ↪→ [Q′p(B)]
′ and Q(B̃) ↪→ [Q′

p(B̃)
]′ are canonical embed-

dings, the compactness of e(B, B̃).

Lemma 3. Let θ be a non-zero convolution operator on ImFD. Then UT
with T = γ θ, is surjective.

Proof: i) Let ψ ∈ H(D) with U ′T (ψ) = 0. Then

µ(F ′D(T )ψ) = (U ′T µ)(ψ) = 0
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for every µ ∈ H ′(D).
By the Hahn–Banach Theorem we have F ′D(T )ψ = 0. Since F ′D(T ) 6= 0 it

follows that ψ = 0. Thus U ′T is injective.
Assume now that {ψα} ⊂ ImU ′T which is weakly convergent to ϕ in H(D).

Then for every finite dimensional subspace F of E, the sequence {F ′D(T )ψα | F ∩
D} is weakly convergent to ϕ |F ∩ D. Since the ideal in H(F ∩ D) generated
by F ′D(T ) |F ∩ D is weakly closed in H(F ∩ D) it follows that ϕ |F ∩ D =
F ′D(T ) |F∩D ψF for some ψF ∈ H(F ∩ D). By the unique principle the family
{ψF } defines a Gateaux holomorphic function ψ on D such that F ′D(T )

ψ = ϕ.
This relation yields by the Zorn Theorem the holomorphicity of ψ on D. Hence
U ′T has the weakly closed image in H(D).

ii) Let φ ∈ H ′(D) with UT (φ) 6= 0 and let µ be an arbitrary element of H ′(D).
Take i0 ∈ I such that φ, µ ∈ H ′(Di0). Let us note that the canonical map from
H ′(Di0) to H ′(D) induces a continuous linear map from ImFDi0

to ImFD for
which the following diagram is commutative

(1)

H ′(D)
UT

H ′(D)

H ′(Di0)
FD

H ′(Di0) FD

FDi0
ImFD

T ∗

ImFD
FDi0

ImFDi0 T ∗
0

ImFDi0

-

-

-

-

? ?

??

©©
©©*

©©
©©*

©©
©*

©©
©*

where T0 ∈ (ImFDi0
)′ is induced by T .

Hence by Lemma 2 without loss of generality we may assume that E is a
Schwartz b.v.s. Take a strictly increasing sequence {ij}j≥0 in I. Put

F = lim indEij , D0 = D ∩ F

and

T0 = T | ImFD0
.

Consider the commutative diagram (1) in which Di0 is replaced by D0 with
φ, µ ∈ H ′(Di0). By i) U ′T0

is injective and has the weakly closed image. This
implies that UT0

= U ′′T0
is surjective. Thus µ = UT (β) for some β ∈ H ′(D).

Proof of Existence Theorem: By the relation T ∗FD = FD UT we infer
that Existence Theorem is an immediate consequence of Lemma 3.

To prove Approximation Theorem we need the following five lemmas.

Lemma 4. Exp(D) is dense in ImFD.
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Proof: Let S ∈ (ImFD)
′ such that S(expx) = 0 for every x ∈ D.

Then
F ′D(S)(x) = 0 for every x ∈ D .

Since F ′D is injective, it follows that S = 0.

Lemma 5. Let f, g ∈ H(D) such that for every finite dimensional subspace

F of E on which g 6= 0, the function f |F ∩D is divisible by g |F ∩D. Then f
is divisible by g.

Proof: By the unique principle there exists a Gateaux holomorphic function
h on D such that f = h g. Since h is holomorphic at every x ∈ D with g(x) 6= 0,
by the Zorn Theorem h is holomorphic on D.

Lemma 6. Let X,T ∈ (ImFD)
′, T 6= 0, such that

∀x ∈ D, ∀P ∈ P(E) : T ∗ P exp(x) = 0 ⇒ X(P exp(x)) = 0 .

Then F ′D(X) is divisible by F ′D(T ).

Proof: By hypothesis we have

∀x ∈ D : F ′D(T )(x) = 0 ⇒ F ′D(X)(x) = 0 .

This implies that F ′D(X) |F ∩ D is divisible by F ′D(T ) |F ∩ D for every finite
dimensional subspace F of E on which F ′D(T ) 6= 0. Lemma 5 yields that F ′D(X)
is divisible by F ′D(T ).

Lemma 7. Let E be a weak Schwartz b.v.s. and let i < j < k. Then E+ is

dense in E′k |Ei.

Proof: Denote by E+
i the completion of E+/Ker ‖ · ‖i, where ‖ · ‖i is the

semi-norm on E+ defined by the unit open ball Ui in Ei. Since E
+ separates the

points of E, it follows that E+ ⊆ lim indE+
i (algebraically). On the other hand,

by the weak compactness of the canonical map ωij from Ei to Ej for every i < j
and since Ui is σ(E

+′
i , E

+
i )-dense in the unit open ball U+′

i in E+′
i we have

Clω+′
ij (U

+′
i ) = Clω+′

ij (Clσ(E+′
i
,E+

i
) Ui) ≤ Clσ(E+′

j
,E+

j
) ω

+′
ij (Ui) = Clωij(Ui) ≤ Ej ,

where ω+
ij is the restriction map from E+

j to E+
i and U+

i is the unit open in E+
i .

Thus for i < j < k we have by the weak compactness of ω+
ij the following two

commutative diagrams

Ej −→ E+′
j

ωjk | ↙ | ω+′
jk

Ek −→ E+′
k

E+
j −→ E+

j

ω+

jk
| ↙ | ω+′′

ij

E+
i −→ E+

i
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This implies that E+ is dense in E′k |Ei.

Put

H0(D) =
{
f ∈ H(D) : Dnf(x) can be approximated

by elements of E⊗n for every x ∈ D
}
.

Lemma 8. KerFD = [H0(D)]⊥ and hence ImFD ⊆ H0(D).

Proof: Let µ ∈ [H0(D)]⊥. Then

(FDµ)(x
∗) = µ(expx∗) =

∑

k≥0

(1/k!)µ(x∗
k

) = 0

for every x∗ ∈ E+.
Hence µ ∈ KerFD. Conversely, assume that FD µ = 0. By hypothesis on D

and on E it follows that H0(E) is dense in H0(D).

Proof of Approximation Theorem: If θ = 0, the result is true
since P(E) Exp(D) is dense in ImFD. Let θ 6= 0 and let X ∈ (ImFD)

′,
X | P(E) Exp(D) ∩Ker θ = 0. This means that

∀P ∈ P(E), ∀x ∈ D : T ∗ P exp(x) = 0 ⇒ X(P exp(x)) = 0

where T ∗ = θ.
Lemma 6 implies that F ′D(X) = hF ′D(T ) for some h ∈ H(D). From the

relations F ′D(X) ∈ H0(D) and F ′D(T ) ∈ H0(D), it is easy to see that
h ∈ H0(D) = (KerFD)

⊥. Thus h = F ′D(Q) for some Q ∈ (ImFD)
′. Hence

F ′D(X) = F ′D(Q)F ′D(T ) = F
′
D(Q

∗ T ). From the injectivity of F ′D we have

X = Q∗ T = T ∗Q = (T ∗)′Q = θ′(Q) .

These equalities imply X = 0 on Ker θ.
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