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CENTRAL MORPHISMS AND ENVELOPES OF HOLOMORPHY

Athanasios Kyriazis

Abstract: In this paper we study a particular class of continuous algebra morphisms

the so-called C-central A-morphisms; i.e. continuous A-morphisms between topological

A-algebras (viz. we take coefficients from a topological algebra A) such that their images

have C-trivial center. In particular, we examine such morphisms for algebra-valued

holomorphic functions on a complex manifold X, giving conditions that the set of the

previous morphisms be the classical envelope of holomorphy of X.

1 – Introduction

The envelope of holomorphy of a domain X ⊆ Cn, EnvO(X)(X), is classically

defined as the maximal Riemann domain to which every holomorphic C-valued

function on X can be extended [8]. Moreover, EnvO(X)(X) is equal to the spec-

trum (Gel’fand space) of O(X), denoted by M(O(X)) [6], i.e. the set of continuous

C-characters of the algebra O(X) of C-valued holomorphic functions on X, the

latter algebra being endowed with the compact open topology. In this context,

one is interested in the following: Given a complex (analytic) manifold X and a

locally m-convex algebra A (not necessarily commutative), which is the maximal

complex manifold Y such that every A-valued holomorphic function on X can be

extended to Y ? An answer was given by J.G. Craw [1] in the case of a Riemann

domain X and a Banach algebra A, considering as Y the set of A-characters of

O(X,A) (viz. A-morphisms of O(X,A) into A) which restrict to a character of

O(X). In [4] (see also [5]) we gave another interpretation of the previous result

by realizing it as the set of C-central A-morphisms of O(X,A) into a locally
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m-convex algebra (cf. §3 for definitions). This set is the EnvO(X,A)(X) (envelope

of X with respect to O(X,A)), in analogy with the complex case; indeed, one can

prove that it is a Riemann domain and O(X,A)-convex, when X is a Riemann

domain and A a Fréchet locally m-convex algebra (ibid.).

We consider below, in an entirely general context, continuous A-morphisms

(§2) and C-central A-morphisms (§3) with respect to topological tensor product

algebras. Precisely, using the above technique, we study these sets of morphisms

defined on algebra-valued function algebras, since these algebras can be expressed

as tensor product algebras under suitable conditions (cf. (2.5), (2.6)). Thus, we

take analogous results to the classical case of the C-valued algebras through the

corresponding spectra (cf. Corollaries 3.2, 3.3). In particular, we examine in §4

the set of C-central A-morphisms on O(X,A), and give conditions under which

one identifies the set EnvO(X,A)(X) with the EnvO(X)(X) (cf. Corollary 4.1). To

this end we use the notion of a Runge pair with respect to the sheaf O ⊗̂ A (cf.

also [7]).

2 – The generalized A-spectrum of E ⊗̂
τ
F

Given a topological algebra A, an A-algebra E is called a topological

A-algebra if E is a topological algebra and the “action” of A on E is a (jointly)

continuous map.

If E, F are topological A-algebras, the generalized A-spectrum of E with

respect to (w.r.t.) F is the set MA(E,F ) of non-zero continuous A-morphisms

of E into F , equipped with the topology induced on it by LA(E,F )s (the space

of continuous A-linear maps between the corresponding modules with the simple

convergence topology on E; cf. [2: §3]). If the algebras involved have identities,

the respective morphisms are assumed to be “identity preserving”.

Now, given a (C-) algebra E and an A-algebra F , we consider the corre-

sponding (algebraic) tensor product algebra E ⊗ F , which is an A-algebra such

that

(2.1) a · (x⊗ y) :=x⊗ a · y ,

for any a ∈ A and x ⊗ y ∈ E ⊗ F . Analogously, if E is an A-algebra and F a

(C-) algebra.

Definition 2.1. Let E, F be topological (C-) algebras with F being a

topological A-algebra. By a compatible topology on the corresponding tensor
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product A-algebra E ⊗ F we mean a (Hausdorff) topology τ such that the pair

(E ⊗ F, τ) ≡ E ⊗
τ
F is a topological A-algebra of the same type as E, F .

This type of compatibility of a tensorial topology is analogous to that of [6:

Chapter X, Definition 3.1] and [2: Definition 1.1] suitably modified in our case.

In the sequel, we are interested in compatible topologies τ satisfying the following

conditions

(2.2) The canonical map of E × F into E ⊗
τ
F is separately continuous.

(2.3) For every topological A-algebra G, and for any pair (f, g) ∈ MC(E,G) ×

MA(F,G) one has f ⊗ g ∈ LA(E ⊗
τ
F,G).

Here by MC(E,G) we consider the generalized C-spectrum of E (w.r.t.) G

and moreover f ⊗ g is defined by (f ⊗ g)(x⊗ y) := f(x) · g(y), x⊗ y ∈ E ⊗
τ
F .

A stronger version of (2.3) is applied when one has to consider completed

tensor product A-algebras. That is, we assume that

(2.4) For any equicontinuous subsets M ⊆ MC(E,G), N ⊆ MA(F,G), the

set M ⊗ N ≡ {f ⊗ g : f ∈ M , g ∈ N} is an equicontinuous subset of

LA(E ⊗
τ
F,G).

Examples. In case of locally convex algebras the projective (C-)tensorial

topology π is a compatible topology on E ⊗ F (Definition 2.1) satisfying (2.2)

and (2.4) (and hence (2.3), cf. [6: Chapter X, Lemma 3.1]). The remark is still

in force concerning locally convex A-algebras with continuous multiplication,

or yet in case of locally m-convex ones. On the other hand, the preceding is

still possible within the context of not necessarily locally convex A-algebras.

Thus, if A is a locally bounded algebra with continuous multiplication [6], then

every locally bounded A-algebra with continuous multiplication is a topological

A-algebra (not necessarily locally convex). So for a pair (E,F ) of locally bounded

algebras with F being a locally boundedA-algebra, the corresponding compatible

topology on E⊗F (cf. [6: Chapter VI, Theorem 3.1]) is, in fact, a (not necessarily

locally convex) topology on E ⊗ F , as above.

One has the above situation taking algebra-valued function algebras which

may be considered as topological tensor product A-algebras in the sense of the

previous remarks.

Thus, if X is a completely regular k-space and E a complete locally convex
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A-algebra, then one has

(2.5) Cc(X,E) = Cc(X) ⊗̂
ε
E

within an isomorphism of locally convex A-algebras (cf. [6: Chapter XI, Theo-

rem 1.1]). Here Cc(X,E) (resp. Cc(X)) is the algebra of E- (resp. C-) valued

continuous functions on X, equipped with the compact-open topology, which is

also a locally convex A-algebra defining (af)(x) := a · f(x), for every a ∈ A,

f ∈ Cc(X,E), x ∈ E. In the second member of (2.5) ε denotes the biprojective

tensorial topology (ibid.), which is also a compatible topology as above through

the isomorphism (2.5). One has analogous results by considering E-valued holo-

morphic (resp. C∞-) functions. Precisely, if K is a compact subset of a second

countable complex manifold X (resp. a paracompact C∞-manifold X) and E

a locally convex A-algebra, then one gets the following isomorphisms of locally

convex A-algebras

(2.6) O(K,E) = O(K) ⊗̂
ε
E (resp. C∞(X,E)) = C∞(X) ⊗̂

ε
E

(cf. §4 and also [6: Chapter XI, Lemma 4.1, Theorem 2.1, (2.8)]). For the relevant

definitions cf. [6].

Proposition 2.1. Let E, F be unital topological algebras with F being also

a topological A-algebra and G a unital topological A-algebra with continuous

multiplication. Moreover, let τ be a compatible topology on E ⊗ F satisfying

(2.2), (2.3) and the closed set

(2.7)

Q =
{
(f, g) : f(x) g(y) = g(y) f(x); x ∈ E, y ∈ F

}
⊆ MC(E,G)×MA(F,G) .

Then one gets the next homeomorphism

(2.8) MA(E ⊗
τ
F,G) = Q

and for G commutative

(2.9) MA(E ⊗
τ
F,G) = MC(E,G)×MA(F,G) .

Proof: For any h ∈ MA(E ⊗
τ
F,G) we define

(2.10) f(x) :=h(x⊗ 1F ), x ∈ E, and g(y) :=h(1E ⊗ y), y ∈ F ,
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with 1E , 1F the identities of E, F respectively, such that one has

(2.11) h = f ⊗ g

and moreover, (f, g) ∈ MC(E,G)×MA(F,G); hence one gets the map

(2.12) MA(E ⊗
τ
F,G)→ MC(E,G)×MA(F,G) ,

which is an injection (cf. (2.11)). Furthermore for a given (f, g) ∈ Q one has

h := f ⊗ g ∈ MA(E ⊗
τ
F,G) and every element thus defined yields according to

(2.11) the initial pair (f, g), that is (2.12)is a bijection onto Q. The bicontinuity

of (2.12) can be proved analogously to [6: Chapter XII, Lemma 3.1]. Concerning

(2.9), this is immediate from (2.7), (2.8).

For the study of the generalized spectrum of the (complete) topological

A-algebra E ⊗̂
τ
F we need some more terminology.

Thus, let E, G be topological A-algebras where E has continuous multiplica-

tion and G is complete. The continuous bijection

(2.13) MA(E,G)→ MA(Ê, G) : f 7→ f ,

where f is the (continuous) extension of f to the completion Ê of E, is a homeo-

morphism iff either one of the sets MA(E,G), MA(Ê, G) is locally equicontinuous

(cf. [2: (3.10), (3.11)]).

Proposition 2.1 and relation (2.13) yield the following lemma, whose proof is

analogous to [6: Chapter VI, Lemma 6.2].

Lemma 2.1. Let E, F , G be topological algebras as in Proposition 2.1 and

τ a compatible topology satisfying (2.2), (2.3). Moreover, consider the following

assertions

i) MC(E,G), MA(F,G) are both locally equicontinuous;

ii) MA(E ⊗
τ
F,G) is locally equicontinuous.

Then i)⇒ii). Besides, or every (f, g) ∈ Q, there exist an equicontinuous

neighbourhood U of f in MC(E,G) and V of g in MA(F,G) such that U ⊗ V is

an equicontinuous neighbourhood of f⊗g in MA(E ⊗
τ
F,G). In particular ii)⇒i)

as well, whenever G is commutative.

Now, we have the main result of this section as follows.
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Theorem 2.1. Let E, F be unital topological algebras with continuous

multiplication where F is, in particular, a topological A-algebra. Moreover, sup-

pose that MC(E,G), MA(F,G) are locally equicontinuous, where G is a unital

complete topological A-algebra with continuous multiplication and let τ be a

compatible topology on E ⊗ F satisfying (2.2), (2.4). If Q is the set (2.7), then

(2.14)
MA(E ⊗̂

τ
F,G) = Q = MA(E ⊗

τ
F,G) ⊂→ MC(E,G)×MA(F,G)

= MC(Ê, G)×MA(F̂ , G)

within homeomorphisms. In case G is commutative, the “inclusion map” in (2.14)

may be replaced by an equality.

Proof: Lemma 2.1 shows that MA(E ⊗
τ
F,G) is locally equicontinuous

so that MA(E ⊗̂
τ
F,G) = MA(E ⊗

τ
F,G) (cf. (2.13)). Thus, the assertion is

immediate from Proposition 2.1.

If E is a topological A-algebra, a non-zero continuous A-morphism f: E→A

is called a continuous A-character of E.

Now, the set MA(A,A) is equal to {idA} (identity of A) since for any f ∈

MA(A,A), a ∈ A, one has f(a) = f(a · 1A) = f(a · 1A) = a · f(1A) = a · 1A = a.

Thus, by Proposition 2.1 there exists a map

(2.15) MA(E ⊗
τ
A,A)→ MC(E,A)× {idA} : h 7→ (f, idA) ,

such that

(2.16) h = f ⊗ idA .

So, Proposition 2.1 and Theorem 2.1 yield the next

Corollary 2.1. Let E, A be unital topological algebras with continuous

multiplications and τ a compatible topology on E ⊗ A satisfying (2.2), (2.3).

Moreover, let S be the subset of MC(E,A) consisting of all f ∈ MC(E,A) such

that A = (Im f)′ :={a ∈ A : a · f(x) = f(x) · a, x ∈ E}. Then

(2.17) MA(E ⊗
τ
A,A) = S ,

within a homeomorphism. Furthermore, if A is complete, MA(E,A) is locally

equicontinuous and τ satisfies (2.4), then

(2.18) MA(E ⊗̂
τ
A,A) = MA(E ⊗

τ
A,A) = S .
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In case A is commutative, the relations (2.17), (2.18) take the form

(2.19) MA(E ⊗
τ
A,A) = MC(E,A) , MA(E ⊗̂

τ
A,A) = MC(Ê,A) ,

respectively.

Corolary 2.1 and relation (2.5) gives the following.

Corollary 2.2. Let X be a completely regular k-space and A a com-

plete locally convex algebra with continuous multiplication. Then each h ∈

MA(Cc(X,A),A) is of the form

(2.20) h = f ⊗ idA ,

with f ∈ MC(Cc(X),A). In particular, if A is commutative, then

(2.21) MA(Cc(X,A),A) = MC(Cc(X),A)

within a homeomorphism.

One has analogous results to Corollary 2.2 in the case of vector-valued holo-

morphic (resp. C∞-) functions (cf. (2.6) and also §4 below).

Under suitable conditions analogous to [2: §3] the results of this section are

also in force if the involved algebras have bounded approximate identities instead

of identities.

3 – C-central A-morphisms

In this section we examine a new class of central morphisms, as the title

indicates which is different from that of central morphisms defined in [2,3].

So a continuous A-morphism h : E → F between two topological A-algebras

E, F with identities 1E , 1F is said to be C-central if the center of Imh (closure

of Imh in F ) is C-trivial, in the sense that

(3.1) G(Imh) ≡ Imh ∩ (Imh)′ = C · 1F ' C ⊂→ A .

Denoting by M0
A
(E,F )C this set of morphisms, we endow it with the simple

convergence topology in E, being thus a subset of MA(E,F ) ⊆ LA(E,F )s.

Each C-central A-morphism is a central A-morphism as in [3], while if, in

addition, Imh is closed, is as in [2]. The converse is true in case A = C.
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Now, if E is a commutative topological A-algebra, every h ∈ M0
A
(E,F )C

takes the form

(3.2) h = χ⊗ 1F ,

where χ ∈ M(E) (spectrum of E) such that (χ ⊗ 1F )(x) :=χ(x) · 1F , x ∈ E.

Indeed, by (3.1) G(Imh) = Imh = C · 1F such that f(x) = λx · 1F , λx ∈ C,

for every x ∈ E; hence one defines a map χ : E → C : x 7→ χ(x) :=λx which

is an element of M(E) such that f(x) = χ(x) · 1F = (χ ⊗ 1F )(x). Thus, since

C ' C · 1F ⊂→ F , one obtains the next homeomorphism

(3.3) MA(E,F )C =M(E) .

The following theorem is analogous to [2: Propositions 4.1, 4.2] and [3:

Lemma 1.1] in the present framework.

Theorem 3.1. Let E, F be unital topological algebras with E commutative

and F a topological A-algebra. Moreover let G be a complete unital topological

A-algebra with continuous multiplication and τ a compatible topology on E⊗F

satisfying (2.2), (2.3). Then,

(3.4) M0
A
(E ⊗

τ
F,G)C =M(E)×M0

A
(F,G)C

within a homeomorphism. Moreover, if E, F have continuous multiplications, τ

satisfies (2.4) and M(E), M0
A
(F,G)C are locally equicontinuous, then

(3.5) M0
A
(E ⊗̂

τ
F,G)C =M(Ê)×M0

A
(F̂ , G)C

within a homeomorphism.

Proof: Each h ∈ M0
A
(E ⊗

τ
F,G)C is of the form h = f ⊗ g with (f, g) ∈

MC(E,G) ×MA(F,G) (cf. Proposition 2.1) such that the commutativity of E

yields

G(Im g) ⊆ G(Imh) , G(Im f) = Im f ⊆ G(Imh) .

Thus, for h as above one has (f, g) ∈ M(E) × M0
A
(F,G)C (cf. (3.6), (3.3)).

Conversely, if (f, g) ∈ M0
C
(E,G)C×M0

A
(F,G)C then f(x) = λx · 1G, λx ∈ C (cf.

(3.3), (3.6)) such that

f(x) · g(y) = λx · g(y) = g(y) · f(x)

for all (x, y) ∈ E × F , so that h = f ⊗ g ∈ MA(E ⊗
τ
F,G) (cf. Proposition 2.1).

Moreover,

C · 1G = G(Im f) ⊆ G(Imh) ⊆ G(Im g) = C · 1G ,
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i.e., h ∈ M0
A
(E ⊗

τ
F,G)C. That is, h = f ⊗ g is a C-central A-morphism iff this

is true for f , g, so that (3.4) is imediate from Proposition 2.1, relation (3.3).

Now, one obtains that M0
A
(E ⊗

τ
F,G)C is locally equicontinuous iff M(E),

M0
A
(F,G)C are locally equicontinuous (cf. also Lemma 2.1) such that

M0
A
(E ⊗̂

τ
F,G)C = M0

A
(E ⊗

τ
F,G)C (cf. also (3.1), (3.6)); hence (3.4) implies

(3.5).

Corollary 2.1 and Theorem 3.1 imply the following.

Corollary 3.1. Let E, A be unital complete topological algebras with

continuous multiplications and E commutative. Moreover, let τ be a compatible

topology on E⊗A satisfying (2.2), (2.3) and letM(E) be locally equicontinuous.

Then one has

(3.7) M0
A
(E ⊗̂

τ
A,A)C =M(E)

within a homeomorphism.

Corollary 3.1 and the relations (2.5), (2.6) (cf. also [6: Chapter VII, Theo-

rems 1.2, 2.1]) prove the following corollaries.

Corollary 3.2. Let X be a locally compact space and A a unital complete

locally convex algebra with continuous multiplication. Then,

(3.8) M0
A
(Cc(X,A),A)C = X

within a homeomorphism of the respective spaces.

Corollary 3.3. Let X be an n-dimensional compact C∞-manifold and A a

unital Fréchet locally convex algebra. Then,

(3.9) M0
A
(C∞(X,A),A)C = X

within a homeomorphism of the respective spaces.

4 – Envelopes of holomorphy

We use in this section the preceding by studying the algebra of vector-valued

holomorphic functions.
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Let X be a complex (analytic) manifold, K a compact subset of X and E a

unital complete locally convex A-algebra with continuous multiplication. Then,

O(K) ⊗̂ E is a locally convex A-algebra (cf. (2.6) and also [5: §2]).

Now, if X is second countable, (Un) a (denumerable) fundamental system of

open neighbourhoods of K in X and E a complete locally m-convex A-algebra,

for which the respective topological vector space is a DF -space, then

(4.1) O(K,E) = O(K) ⊗̂ E

within an isomorphism of locally convex A-algebras (cf. [7] and relation (2.6)).

Theorem 3.1 and relation (4.1) prove the following.

Lemma 4.1. Let X be a complex (analytic) manifold which is second count-

able and (Un) a (denumerable) fundamental system of open neighbourhood of a

compact subset K of X. Moreover, let E be a unital complete Fréchet localy

m-convex A-algebra and G a unital complete locally convex A-algebra with con-

tinuous multiplication such thatM(O(K)), M0
A
(E,G)C are locally equicontinu-

ous. Then one has

(4.2) M0
A
(O(K,E), G)C =M(O(K))×M0

A
(E,G)C

within a homeomorphism.

In this concern, let K be a compact subset of a Stein manifold X and (Un)

an open basis of neighbourhoods of K in X. Considering the respective sequence

(Ũn)n∈IN with Ũn =M(O(Un)), n ∈ IN, one gets a decreasing sequence of Stein

manifolds containing K, such that

(4.3) M(O(K)) = lim
←−
M(O(Un)) = lim

←−
Ũn =

⋂

n

Ũn = K

within homeomorphisms (cf. also [6: p. 163]). Thus, Lemma 4.1 and (4.3) yield

the following homeomorphism

(4.4) M0
A
(O(K,E), G)C = K ×M0

A
(E,G)C .

In particular, if E = A = G, the last relation gives the following homeomor-

phism

(4.5) M0
A
(O(K,A),A) = K ;

i.e. the set of C-centralA-morphisms of O(K,A), with respect toA, is a compact

subset of a Stein manifold (cf. also [4, 5]).
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On the other hand, if (X,O) is a complex space and A an open subset of X,

we shall say that (X,A) is a Runge pair, with respect to the (structure) sheaf O,

if the topological algebra O(X) ⊂→ O(A) is dense in O(A) (cf. [7]).

Let (X,O) be a complex space with X second countable and K a subset of

X. Moreover, let (Un) be a (denumerable) fundamental system of open neigh-

bourhoods of K in X, such that (X,Un), n ∈ IN, is a Runge pair with respect to

O. If E is a unital Fréchet locally convex algebra, then (X,Un) is a Runge pair

with respect to O ⊗̂ E (cf. [7: Corollary 3.1, p. 370]), such that (X,K) is also a

Runge pair with respect to O ⊗̂ E. So we now have the following.

Theorem 4.1. Let (X,O) be a complex space with X second countable and

K a subset of X. Moreover, let (Un) be a (denumerable) fundamental system of

open neighbourhoods of K in X, such that (X,Un), n ∈ IN, is a Runge pair with

respect to O. Furthermore, let E be a unital Fréchet locally convex A-algebra

and G a unital complete locally convex A-algebra with continuous multiplication

such that M0
A
(E,G)C is locally equicontinuous. Then

(4.6) M0
A
(O(X,E), G)C =M(O(X))×M0

A
(E,G)C

within a homeomorphism.

Proof: The hypotheses and the above comments (cf. also Theorem 3.1) yield

M0
A
(O(X,E), G)C = M0

A
(O(K,E), G)C = M0

A
(O(K,E), G)C

within homeomorphisms. Thus, Lemma 4.1 and the preceding definitions show

the homeomorphism (4.6).

As an application of the above we have the following.

Corollary 4.1. Let the hypotheses of Theorem 4.1 be satisfied such that in

particular E = G = A. Then,

(4.7) EnvO(X,A)(X) = EnvO(X)(X) ,

within a homeomorphism.

Proof: The hypotheses in connection with Theorem 4.1, Corollary 3.1 give

the homeomorphism

(4.8) M0
A
(O(X,A),A)C =M(O(X)) .

In [5] (cf. also [4]) the first member of (4.8) was proved to be a Riemann domain

and moreover an O(X,A)-convex set in the case X is a Riemann domain; hence,
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it is, by definition, EnvO(X,A)(X). Moreover, the second member of (4.8) is, by

definition the classical EnvO(X)(X) (cf. [6: Chapter V, Definition 4.1]). Thus

(4.7) is an immediate consequence of (4.8) and the previous comments.

The above Corollary 4.1 lead us to the following.

Theorem 4.2 (A. Mallios). Let the hypotheses of Corollary 4.1 be satisfied.

Then EnvO(X,A)(X) is independent of the algebra A, range of the holomorphic

functions considered.
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