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1 – Introduction

Throughout this paper we adopt the notations and terminology of [6], [1]

and [3] and the following conventions: (X, τ), (Y, σ) and (Z, γ) (or simply X,

Y and Z) will always denote topological spaces on which no separation axioms

are assumed unless explicitly stated. Let A be a subset of (X, τ). A subset A

of X is said to be semi-open [6] if for some open set 0, 0 ⊂ A ⊂ Cl(0), where

Cl(0) denotes the closure of 0 in X. The complement of a semi-open set is called

semi-closed [2]. The family of all semi-open (resp. semi-closed) sets in (X, τ) is

denoted by S0(X, τ) (resp. SC(X, τ)). The intersection of all semi-closed sets

containing A is called the semi-closure of A [5] and is denoted by sCl(A). A map

f : (X, τ) → (Y, σ) is said to be semi-continuous [6] (resp. irresolute [5]) if the

inverse image of every open subset (resp. semi-open subset) of (Y, σ) is semi-open

in (X, τ).

Levine [7] has defined a subset A to be g-closed if Cl(A) ⊂ 0 when A ⊂ 0 and

0 is open. The complement of a g-closed set is called g-open. The purpose of this

paper is to introduce and study the concepts of two new class of maps, namely

sg-continuous maps, which includes the class of continuous maps; and the class of

sg-irresolute maps defined analogous irresolute maps. Moreover we introduce the

concepts of sg-compactness and sg-connectedness of topological spaces. Among

the theorems proved are the following:
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(A) The following are equivalent:

i) X is sg-connected;

ii) X and φ are the only subsets of X which are both sg-open and sg-

closed;

iii) Each sg-continuous map of X into a discrete space Y with at least

two points is a constant map.

(B) sg-connectedness is preserved under sg-irresolute surjections.

2 – Semi-generalized continuous maps

Here we introduce the concept of semi-generalized continuous maps. To state

this, we recall some definitions and properties.

Definition 2.1. A subset A of a space X is said to be semi-generalized

closed (written in short as sg-closed set) [1] if sCl(A) ⊂ 0 whenever A ⊂ 0 and

0 ∈ S0(X, τ). A subset A of X is said to be a semi-generalized open set (written

in short as sg-open) if, its complement Ac is sg-closed in X.

Example 2.1:

i) [1]. Let τ be the usual topology on the real line IR and let A be the open

interval (a, b). Then A is sg-closed but not g-closed.

ii) Let X = {a, b, c} and τ = {φ, {a}, X}. If A = {a, b}, then A is g-closed

but not sg-closed.

Remark 2.1.

i) Example 2.1 shows that g-closed and sg-closed sets are, in general, inde-

pendent.

ii) Every semi-closed set is sg-closed but the converse is not true as may be

seen from the following example.

Example 2.2: Let X = {a, b, c, d} and τ = {φ, {c, d}, X}. If A = {a, b, d},

then sCl(A) = X and so A is not semi-closed. Since X is the only semi-open set

containing A, A is sg-closed.

In [1] has proved that the intersection and the union of two sg-closed sets is

generally not a sg-closed. Hence, we have the following definition.



SEMI-GENERALIZED CONTINUOUS MAPS 401

Definition 2.2. The intersection of all sg-closed sets containing a set A is

called the semi-generalized-closure of A and is denoted by sgCl(A).

If A is a sg-closed set, then sgCl(A) = A. The converse is not true, since the

intersection of sg-closed sets need not be sg-closed.

Lemma 2.1. If A ⊂ X, then A ⊂ sgCl(A) ⊂ sCl(A) ⊂ Cl(A).

Proof: A closed (semi-closed) set is sg-closed.

Definition 2.3. A map f : X → Y is said to be semi-generalized continuous

(abbreviated by sg-continuous) if, for every closed set F of Y the inverse image

f−1(F ) is sg-closed in X.

Clearly it is proved that a map f : X → Y is sg-continuous if and only if the

inverse image of every open set in Y is sg-open in X.

Remark 2.2. Every semi-continuous map f : X → Y (in particular, con-

tinuous) is sg-continuous, but the converse is not true as may be seen from the

following examples.

Example 2.3: [6]. Let X = Y = [0, 1]. Let f : X → Y as follows: f(x) = 1

if 0 ≤ x ≤ 1

2
and f(x) = 0 if 1

2
≤ x ≤ 1. Then f is semi-continuous, therefore by

Remark 2.2, sg-continuous but it is not continuous.

Example 2.4: Let X = {a, b, c, d}, τ = {φ, {c, d}, X}, Y = {p, q}, σ =

{φ, {q}, Y }. Let f : (X, τ) → (Y, σ) be defined by f(a) = f(b) = f(d) = p,

f(c) = q. Since if A = {a, b, d} then, by Example 2.2, A is sg-closed. But A not

semi-closed. Therefore f is sg-continuous but it is not semi-continuous.

Remark 2.3. When X is semi T1/2, the concepts of semi-continuity and

sg-continuity coincide (see [1] and [4] for the concept and property of semi T1/2-

spaces).

Theorem 2.1. Let f : X → Y be a map from a topological space X into a

topological space Y .

i) The following statements are equivalent.

a) f is sg-continuous.

b) The inverse image of each open set in Y is sg-open in X.

ii) If f : X → Y is sg-continuous, then f(sgCl(A) ⊂ Cl(f(A))) for every

subset A of X.
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iii) The following statements are equivalent.

a) For each point x in X and each open set V in Y with f(x) ∈ V , there

is a sg-open set U in X such that x ∈ U , f(U) ⊂ V .

b) For every subset A of X, f(sgCl(A)) ⊂ Cl(f(A)) holds.

c) For each subset B of Y , sgCl(f−1(B)) ⊂ f−1(Cl(B)).

Proof: i) a)⇔b): See Definition 2.3.

ii) Since A ⊂ f−1f(A), we have A ⊂ f−1(Cl(f(A))). Now Cl(f(A)) is a closed

set in Y and hence f−1(Cl(f(A))) is a sg-closed set containing A. Consequently

sgCl(A) ⊂ f−1(Cl(f(A))). Therefore f(sgCl(A)) ⊂ ff−1(Cl(f(A))) ⊂ Cl(a(A)).

iii) a)⇔b): Suppose that a) holds and let y ∈ f(sgCl(A)) and let V be any

open neighbourhood of y. Then there exists a point x ∈ X and a sg-open U such

that f(x) = y, x ∈ U , x ∈ sgCl(A) and f(U) ⊂ V . Since x ∈ sgCl(A), U ∩A 6= ∅

holds and hence f(A) ∩ V 6= ∅. Therefore we have y = f(x) ∈ Cl(f(A)).

Conversely, if b) holds and let x ∈ X and let V be any open set containing

f(x). Let A = f−1(V c), then x /∈ A. Since f(sgCl(A)) ⊂ Cl(f(A)) ⊂ V c, it is

shown that sgCl(A) = A. Then, since x /∈ sgCl(A), there exists a sg-open set U

containing x such that U ∩A = ∅ and hence f(U) ⊂ f(Ac) ⊂ V .

b)⇔c): Suppose that b) holds and let B be any subset of Y . Replacing

A by f−1(B) we get from b) f(sgCl(f−1(B))) ⊂ Cl(ff−1(B)) ⊂ (B). Hence

sgCl(f−1(B)) ⊂ f−1(Cl(B)).

Conversely, suppose that c) holds, let B = f(A) where A is a subset of

X. Then sgCl(A) ⊂ sgCl(f−1(B)) ⊂ f−1(Cl(f(A))). Therefore f(sgCl(A)) ⊂

Cl(f(A)). This completes the proof.

3 – Relation between sg-continuous maps and sg-irresolute maps

Analogous to irresolute maps in topological spaces, we introduce the class of

semi-generalized-irresolute (or sg-irresolute) maps which is included in the class of

sg-continuous maps. In this section we investigate basic properties of sg-irresolute

maps.

Definition 3.1. A map f : X → Y from a topological space X into a

topological space Y is called sg-irresolute if the inverse image of every sg-closed

set in Y is sg-closed in X.
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Theorem 3.1. A map f : X → Y is sg-irresolute if and only if, for every

sg-open A of Y , f−1(A) is sg-open in X.

Proof: Necessity . If f : X → Y is sg-irresolute, then for every sg-closed

B of Y , f−1(B) is sg-closed in X. If A is any sg-open subset of Y , then Ac is

sg-closed. Thus f−1(Ac) is sg-closed, but f−1(Ac) = (f−1(A))c so that f−1(A)

is sg-open.

Sufficiency . If for all sg-open subsets A of Y , f−1(A) is sg-open in X, and if

B is any sg-closed subset of Y , then Bc is sg-open. Also f−1(Bc) = (f−1(B))c is

sg-open. Thus f−1(B) is sg-closed.

Theorem 3.2. If a map f : X → Y is sg-irresolute, then it is sg-continuous

but not conversely.

Proof: Since every closed set is sg-closed, it is proved that f is sg-continuous.

The converse need not be true as seen from the following example.

Example 3.1: Let X = Y = {a, b, c}, τ = {φ, {a}, {c}, {a, c}, X} and

σ = {φ, {a}, Y }. Let f : (X, τ) → (Y, τ) be defined by f(a) = f(c) = b and

f(b) = c. Then f is sg-continuous. However, {b} is sg-closed in Y but f−1({b})

is not sg-closed in X. Therefore, f is not sg-irresolute.

Theorem 3.3. If f : X → Y and g : Y → Z are both sg-irresolute, then

g0f : X → Z is sg-irresolute.

Proof: If A ⊂ Z is sg-open, then g−1(A) is sg-open and f−1(g−1(A)) is sg-

open since g and f are sg-irresolute. Thus (g0f)
−1(A) = f−1(g−1(A)) is sg-open,

and g0f is sg-irresolute.

Theorem 3.4. Let X, Y and Z be any topological spaces. For any sg-

irresolute map f : X → Y and any sg-continuous map g : Y → Z, the composition

g0f : X → Y is sg-continuous.

Proof: It follows from definitions.

Theorem 3.5. Let (Y, σ) be a topological space where “every semi-closed

subset is closed”. If f : (X, τ) → (Y, σ) is bijective, pre-semi-open (i.e., for all

O ∈ SO(X, τ), f(O) ∈ SO(Y, σ)) and sg-continuous, then f is sg-irresolute.

Proof: Let A be a sg-closed set in (Y, σ). Let f−1(A) ⊂ O where O ∈

SO(X, τ). Therefore, A ⊂ f(O) holds. Since f(O) is semi-open in Y and A is sg-
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closed in Y , sCl(A) ⊂ f(O) holds and hence f−1(sCl(A)) ⊂ f−1f(O) = O. Since

f is sg-continuous, and sCl(A) is closed in Y , f−1(sCl(A)) is sg-closed. Therefore

sCl(f−1(sCl(A))) ⊂ 0 and so sCl(f−1(A)) ⊂ 0. Hence f−1(A) is sg-closed in X.

Then f is sg-irresolute.

Example 3.2: Let X = Y = {a, b, c}, τ = {φ, {a}, {b}, {a, b}, X} and

σ = {φ, {a}, {b, c}, Y }. Let f : (X, τ) → (Y, σ) the identity map. We have that

in (Y, σ) every semi-closed subset is closed. f is sg-continuous bijective but it is

not pre-semi-open and so f is not sg-irresolute.

Theorem 3.6. If a map f : X → Y is sg-irresolute, then, for every subset

A of X, f(sgCl(A)) ⊂ sCl(f(A)).

Proof: If A ⊂ X, then consider sCl(f(A)) which is sg-closed in Y . Thus by

Definition 3.1, f−1(sCl(f(A))) is sg-closed in X. Furthermore, A ⊂ f−1(f(A)) ⊂

f−1(sCl(f(A))). Therefore by the destination of sg-closure sgCl(A)⊂f−1(sCl(f(A))),

and consequently, f(sgCl(A)) ⊂ f(f−1(sCl(f(A)))) ⊂ sCl(f(A)).

The following two examples show that the concepts of irresolute maps and

sg-irresolute maps are independent of each other.

Example 3.3: Let (X, τ) and (Y, σ) be the space in Example 3.2. Then,

the identity map f : (X, τ) → (Y, σ) is irresolute. However {a, b} is sg-closed in

Y but is not sg-closed in X. Therefore f is not sg-irresolute.

Example 3.4: Let X, Y and f be as in Example 2.4. Now {p} is semi-closed

in Y and A = {a, b, d} sg-closed, but it is not semi-closed in X. Therefore f is

sg-irresolute but it is not irresolute.

4 – sg-compactness and sg-connectedness

Definition 4.1. A collection {Aα : α ∈ ∇} of sg-open sets in a topological

space X is called a sg-open cover of a subset B of X if B ⊂
⊔

{Aα : α ∈ ∇} holds.

Definition 4.2. A topological space X is semi-generalized-compact (or sg-

compact) if every sg-open cover of X has a finite subcover.

Definition 4.3. A subset B of a topological space X is said to be sg-

compact relative to X if, for every collection {Aα : α ∈ ∇} of sg-open subsets of
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X such that B ⊂
⊔

{Aα : α ∈ ∇}, there exists a finite subset ∇0 of ∇ such that

B ⊂
⊔

{Aα : α ∈ ∇0}.

Definition 4.4. A subset B of a topological space X is said to be sg-compact

if B is sg-compact as a subspace of X.

Theorem 4.1. Every sg-closed subset of a sg-compact spaceX is sg-compact

relative to X.

Proof: Let A be a sg-closed subset of X. Then Ac is sg-open in X. LetM =

{Gα : α ∈ ∇} be a cover of A by sg-open subsets inX. ThenM ∗ =MtAc is a sg-

open cover ofX, i.e., X = (
⊔

{Gα : α ∈ ∇})tA
c. By hypothesis, X is sg-compact,

hence M∗ is reducible to a finite cover of X, say X = Gα1
tGα2

t ...tGαm tA
c,

Gαk
∈M . But A and Ac are disjoint; hence A ⊂ Gα1

t ... tGαm , Gαk
∈M . We

have just shown that any sg-open cover M of A contains a finite subcover, i.e.,

A is sg-compact relative to X.

Theorem 4.2.

i) A sg-continuous image of a sg-compact space is compact.

ii) If a map f : X → Y is sg-irresolute and a subset B of X is sg-compact

relative to X, then the image f(B) is sg-compact relative to Y .

Proof: i) Let f : X → Y be a sg-continuous map from a sg-compact space

X onto a topological space Y . Let {Aα : α ∈ ∇} be an open cover of Y . Then

{f−1(Aα); α ∈ ∇} is a sg-open cover of X. Since X is sg-compact, it has a finite

subcover, say {f−1(A1), ..., f
−1(An)}. Since f is onto {A1, ..., An} is a cover of

Y and so Y is compact.

ii) Let {Aα : α ∈ ∇} be any collection of sg-open subsets of Y such that

f(B) ⊂
⊔

{Aα : α ∈ ∇}. Then B ⊂
⊔

{f−1(Aα) : α ∈ ∇} holds. By hypothesis

there exists a finite subset ∇0 of ∇ such that B ⊂
⊔

{f−1(Aα) : α ∈ ∇0}.

Therefore we have f(B) ⊂
⊔

{Aα : α ∈ ∇0} which shows that f(B) is sg-compact

relative to Y .

Definition 4.5. A topological space X is said to be sg-connected if X can

not be written as a disjoint union of two non-empty sg-open sets. A subset of X

is sg-connected if it is sg-connected as a subspace.

In view of the Definition 4.5, we can give a characterization of sg-connected

spaces.
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Theorem 4.3. For a topological space X, the following are equivalent.

i) X is sg-connected.

ii) X and φ are the only subsets of X which are both sg-open and sg-closed.

iii) Each sg-continuous map of X into a discrete space Y with at least two

points is a constant map.

Proof: i)⇒ii): Let O be a sg-open and sg-closed subset of X. Then Oc is

both sg-open and sg-closed. Since X is the disjoint union of the sg-open sets O

and Oc, one of these must be empty, that is O = φ or O = X.

ii)⇒i): Suppose that X = A ∪ B where A and B are disjoint non-empty

sg-open subsets of X. Then A is both sg-open and sg-closed. By assumption,

A = φ or X. Therefore X is sg-connected.

ii)⇒iii): Let f : X → Y be a sg-continuous map then X is covered by sg-open

and sg-closed covering {f−1(y) : y ∈ Y }. By assumption f−1(y) = φ or X for

each y ∈ Y . If f−1(y) = ∅ for all y ∈ Y , then f fails to be map. Then, there

exists only one point y ∈ Y such that f−1(y) 6= ∅ and hence f−1(y) = X. This

shows that f is a constant map.

iii)⇒ii): Let O be both sg-open and sg-closed in X. Suppose O 6= ∅. Let

f : X → Y be a sg-continuous map defined by f(O) = {y} and f(Oc) = {w} for

some distinct points y and w in Y . By assumption f is constant. Therefore we

have O = X.

It is obvious that every sg-connected space is connected. The following exam-

ple shows that the converse is not true.

Example 4.1: Let X = {a, b, c, d} and τ = {∅, {a}, {b}, {a, b}, X}. Then the

topological space (X, τ) is connected. However, since {a} is both sg-open and

sg-closed, X is not sg-connected by Theorem 4.3.

As a direct consequence of Theorem 4.3, we have:

Corollary 4.1. In a topological space (X, τ) with at least two points, if

SO(X, τ) = SC(X, τ), X is not sg-connected.

Proof: Using the hypothesis and Theorem 5 due to in [1] there is a proper

non-empty subset of X which is both sg-open and sg-closed in X. By Theo-

rem 4.3, X is not sg-connected.
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Finally, we proved sg-connectedness is preserved under sg-irresolute surjec-

tions.

Theorem 4.4.

i) f : X → Y is a sg-continuous surjection and X is sg-connected, then Y is

connected.

ii) If f : X → Y is sg-irresolute surjection and X is sg-connected, then Y is

sg-connected.

Proof: i) Suppose that Y is not connected. Let Y = A t B where A and

B are disjoint non-empty open set in Y . Since f is sg-continuous and onto,

X = f−1(A) t f−1(B) where f−1(A) and f−1(B) are disjoint non-empty and

sg-open in X. This contradicts the fact that X is sg-connected. Hence Y is

connected.

ii) The argument is a minor modification of the proof i).
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