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PENTAGONAL NUMBERS IN THE LUCAS SEQUENCE

Ming Luo

Abstract: In this paper we have proved that the only pentagonal number in the

Lucas sequence Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1 is L1 = 1, the only generalized

pentagonal numbers in this sequence are L0 = 2, L1 = 1 and L±4 = 7.

1 – Introduction

It is well known that for positive integers m, the numbers of the form
1
2
m(3m − 1) are called pentagonal numbers. In the paper [1], the author had

proved that F±1 = F2 = 1 and F±5 = 5 are the only pentagonal numbers in the

Fibonacci sequence Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1, where n is an integer.

The Lucas sequence Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1 is closely related to the

Fibonacci sequence. The object of this paper is to show that the only pentagonal

number in this sequence is L1 = 1. In fact, the result obtained is more general.

Using the method similar to [2] and [3], we can prove that 24Ln + 1 is a perfect

square only for n = 0, 1 or ±4. It follows that only L0, L1 and L±4 can be of

the form of 1
2
m(3m − 1) with m integral, not necessarily positive, i.e., so-called

generalized pentagonal numbers [4].

2 – Cases n = 0, 1,±4 (mod 672)

To prove our result, we shall use the following well known properties concern-

ing the Lucas numbers (refer. [5] and [6])

L−n = (−1)n Ln ,(1)
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L3n = Ln(L2n − (−1)n) ,(2)

2 |Ln iff 3 |n .(3)

For even m, let

Lm =

{

Lm if m ≡ ±2 (mod 6),
1
2
Lm if m ≡ 0 (mod 6) ,

then the congruence

(4) Ln+2km ≡ (−1)k Ln (modLm)

holds, where k is an integer.

In this paper we shall also use the Jacobi symbol ( 24 Ln+1
P

) to prove that

24Ln +1 is not a perfect square provided that for some positive odd P the value

of this symbol is −1.

Lemma 1. If m ≡ 0 (mod 24) and n 6= 0, then 24Ln + 1 is not a perfect

square.

Proof: Put n = (12k ± 4)m such that m = 2 · 3r with r ≥ 1, then, by (4)

and (1),

Ln ≡ L±4m ≡ −L∓2m ≡ −L2m (mod 1
2
L3m) .

Since (2) implies 1
2
L3m = 1

2
Lm(L2m − 1), so that

24Ln + 1 ≡ −24L2m + 1 (mod(L2m − 1)) .

Thus we have
(

24Ln + 1

L2m − 1

)

=

(

−24L2m + 1

L2m − 1

)

=

(

−23

L2m − 1

)

=

(

L2m − 1

23

)

.

The residue sequence of {Ln} modulo 23 has period 48. Note that 2m ≡ ±12

(mod 48), which imply L2m ≡ 0 (mod 23), so that
(

24Ln + 1

L2m − 1

)

=

(

−1

23

)

= −1 ,

24Ln + 1 is not a perfect square.

Lemma 2. If n≡1 (mod 32) and n 6=1, then 24Ln+1 is not a perfect square.

Proof: Put n = 1 + 2km such that m = 2r, r ≥ 4 and 26 | k, then m ≡ ±16

(mod 48). Now (4) gives

24Ln + 1 ≡ −24L1 + 1 ≡ −23 (modLm) .



PENTAGONAL NUMBERS IN THE LUCAS SEQUENCE 327

Since the residue sequence of {Ln} modulo 23 has period 48 and m ≡ ±16

(mod 48) imply Lm ≡ −1 (mod 23), so that
(

24Ln + 1

Lm

)

=

(

−23

Lm

)

=

(

Lm

23

)

=

(

−1

23

)

= −1 .

Hence 24Ln + 1 is not a perfect square.

Lemma 3. If n ≡ ±4 (mod 224) and n 6= ±4, then 24Ln +1 is not a perfect

square.

Proof: Put n = ±4 + 2km such that 26 | k and m = 7 · 2r with r ≥ 4, then it

is easy to check m ≡ ±112 (mod 336). By (4) we get

24Ln + 1 ≡ −24L±4 + 1 ≡ −167 (modLm) ,

and
(

24Ln + 1

Lm

)

=

(

−167

Lm

)

=

(

Lm

167

)

.

The residue sequence of {Ln}modulo 167 has period 336 and m ≡ ±112 (mod 336)

imply Lm ≡ −1 (mod 167). Thus
(

24Ln + 1

Lm

)

=

(

−1

167

)

= −1 ,

so that 24Ln + 1 is not a perfect square.

Corollary. If n ≡ 0, 1,±4 (mod 672) then 24Ln + 1 is a perfect square only

for n = 0, 1,±4.

Proof: Note that the least common multiple of the moduli in the above three

lemmas is 672, then the necessary for n = 0, 1,±4 follows immediately. In fact,

24L0 + 1 = 72, 24L1 + 1 = 52, 24L±4 + 1 = 132, which complete the proof.

3 – Cases n 6≡ 0, 1,±4 (mod 672)

Lemma 4. If n 6≡ 0, 1,±4 (mod 672), then 24Ln +1 is not a perfect square.

Proof: We prove this lemma by showing that 24Ln + 1 is a quadratic

nonresidue modulo some prime for each residue class of n modulo 672 except for

n ≡ 0, 1,±4 (mod 672). For brevity, we let Hn = 24Ln + 1 and the calculations

will be carried out directly to the sequence {Hn}, which satisfies recurrent relation

Hn+2 = Hn+1 +Hn − 1, H0 = 49, H1 = 25.
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i) Modulo 29. The sequence of residues of {Hn} has period 14. We can ex-

clude n ≡ ±2, 3,±6, 9, 11 (mod 14) since they imply respectively Hn ≡ 15, 10, 27,

27, 21 (mod 29), all of which are quadratic nonresidues modulo 29. Hence there

remain n ≡ 0, 1,±4, 5, 7, 13 (mod 14).

To obtain the desired period 4k, we usually take a prime factor of Lk or Fk

as the modulo.

ii) Modulo 13. We get the residue sequence of {Hn} with period 28. Since

n ≡ 5, 7,±10, 14, 21 (mod 28) imply respectively Hn ≡ 5, 8, 2, 5, 7 (mod 13), which

are quadratic nonresidues modulo 13, then may be excluded. Thus there remain

n ≡ 0, 1,±4, 13, 15, 19, 27 (mod 28), which are equivalent to n ≡ 0, 1,±4, 13, 15,

19,±24, 27,±28, 29, 41, 43, 47,±32, 55, 57, 69, 71, 75, 83 (mod 84).

iii) Modulo 421. The period of the residue sequence of {Hn} is 84. When

n ≡ ±24,±28, 43, 47, 55, 71, 83 (mod 84), Hn ≡ 259, 398, 398, 158, 127, 127, 398

(mod 421) respectively, all of which are quadratic nonresidues modulo 421, so

that these values of n may be excluded.

Modulo 211. The period is 42, and n ≡ 15, 27, 29,±32 (mod 42) imply respec-

tively Hn ≡ 32, 181, 157, 210 (mod 211), all of which are quadratic nonresidues

modulo 211, so that n ≡ 15, 27, 29,±32, 57, 69 (mod 84) may be excluded.

Thus there remain n ≡ 0, 1,±4, 13, 19, 41, 75 (mod 84), which are equivalent

to n ≡ 0, 1,±4, 13, 19, 41, 75,±80, 84, 85, 97, 103, 125, 159 (mod 168).

iv) Modulo 281. The residue sequence of {Hn} has period 56. Since

n ≡ 19, 28, 29, 41 (mod 56) imply respectively Hn ≡ 139, 234, 258, 142 (mod 281),

which are quadratic nonresidues modulo 281, then may be excluded. Hence we

can exclude n ≡ 19, 41, 75, 84, 85, 97 (mod 168).

Modulo 83. The residue sequence of {Hn} has period 168. We can exclude

n ≡ 13,±80, 103, 125 (mod 168) since they imply Hn ≡ 55, 82, 57, 79 (mod 83)

respectively, all of which are quadratic nonresidues modulo 83.

Modulo 1427. The period is also 168, and n ≡ 159 (mod 168) implies

Hn ≡ 1031 (mod 1427), which is a quadratic nonresidue modulo 1427. Therefore

n ≡ 159 (mod 168) may be excluded.

Thus there remain n ≡ 0, 1,±4 (mod 168), i.e., n ≡ 0, 1,±4,±164, 168, 169

(mod 336).

v) Modulo 7. The residue sequence of {Hn} has period 16. We can exclude

n ≡ 9 (mod 16) since it implies Hn ≡ 5 (mod 7), a quadratic non residue modulo

7. Hence n ≡ 169 (mod 336) may be excluded.

Modulo 23. We get the period 48, and n ≡ ±20, 24 (mod 48) imply



PENTAGONAL NUMBERS IN THE LUCAS SEQUENCE 329

Hn ≡ 17, 22 (mod 23) respectively, both of which are quadratic nonresidues mod-

ulo 23. Hence we can exclude n ≡ ±164, 168 (mod 336).

Now there remain n ≡ 0, 1,±4 (mod 336), i.e., n ≡ 0, 1,±4,±332, 336, 337

(mod 672).

Modulo 1103. The period of the residue sequence of {Hn} is 96. If n ≡ ±44,

48, 49 (mod 96), then Hn ≡ 936, 1056, 1080 (mod 1103) respectively, all of which

are quadratic nonresidues modulo 1103. Hence n ≡ ±332, 336, 337 (mod 672)

may be excluded.

Finally there remain n ≡ 0, 1,±4 (mod 672). The proof is complete.

4 – Result

Theorem. The Lucas number Ln is a generalized pentagonal number only

for n = 0, 1, or ±4; a pentagonal number only for n = 1.

Proof: Since Ln is a generalized pentagonal number, i.e., of the form
1
2
m(3m − 1) with m integral, if and only if 24Ln + 1 = (6m − 1)2, then the

first part of the theorem follows from Lemma 4 and the corollary in section 2.

Moreover, a pentagonal number 1
2
m(3m−1) means m positive, so that, obviously,

only L1 = 1 is in this case. Then the second part of the theorem follows.
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