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SPLINE APPROXIMATION AND
GENERALIZED TURÁN QUADRATURES

M.A. Kovačević and G.V. Milovanović

Abstract: In this paper, which is connected with our previous work [16], we consider

the problem of approximating a function f on the half-line by a spline function of degree

m with n (variable) knots (multiplicities of the knots are greater or equal than one).

In the approximation procedure we use the moments of the function r 7→ f(r) and

its derivatives at the origin r = 0. If the approximation exists, we show that it can be

represented in terms of the generalized Turán quadrature relative to a measure depending

on f . Also the error in the spline approximation formula is expressed by the error term

in the corresponding quadrature formula. A numerical example is included.

1 – Introduction

A spline function of degree m ≥ 1 on the interval 0 ≤ r < +∞, vanishing

at r = +∞, with the variable positive knots rν , ν = 1, ..., n, and multiplicity kν
(≤ m), ν = 1, ..., n (n > 1), respectively, can be represented in the form

(1.1) Sn,m(r) =
n
∑

ν=1

kν−1
∑

i=0

αν,i(rν − r)m−i+ , 0 ≤ r < +∞ ,

where αν,i are real numbers and the plus sign on the right is the cutoff symbol,

t+ = t if t > 0 and t+ = 0 if t ≤ 0.
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Using the following conditions

(1.2)

+∞
∫

0

rj+d−1 Sn,m(r) dr =

+∞
∫

0

rj+d−1 f(r) dr , j = 0, 1, ..., 2(s+1)n−1 ,

we [16] considered the problem of approximating a function f(r) of the radial

distance r = ‖x‖, 0 ≤ r < +∞ in IRd, d ≥ 1, by the spline function (1.1),

where kν = 2s + 1, ν = 1, ..., n, s ∈ IN0. The work on this subject was initiated

in computational plasma physics ([1], [13]) and continued in mathematics (see

[4–10], [12], [14], [16–17]).

In this paper we discuss two similar problems of approximating a function

f(r), 0 ≤ r < +∞, by the spline function (1.1). (Let N denote the sum of the

variable knots rν , ν = 1, ..., n, of the spline function (1.1), counting multiplicities,

i.e., N = k1 + · · ·+ kn.)

Problem 1. Determine Sn,m in (1.1) such that

(1.3) S(k)
n,m(0) = f (k)(0) , k = 0, 1, ..., N + n− 1, m ≥ N + n− 1 .

Problem 2. Determine Sn,m in (1.1) such that

(1.4) S(k)
n,m(0) = f (k)(0) , k = 0, 1, ..., l (l ≤ m)

and

(1.5)

+∞
∫

0

rj Sn,m(r) dr =

+∞
∫

0

rj f(r) dr , j = 0, 1, ..., N + n− l − 2 .

In Section 2 we give solutions of these problems as well as the approximation

errors. Some remarks on the generalized Gauss–Turán quadratures are given in

Section 3. Finally, a numerical example is analyzed in Section 4. An analogous

problem to Problem 2 for approximation of a function f by defective spline func-

tions on the finite interval [0, 1] has been studied by Gori and Santi [9] and solved

by means of monosplines.

2 – Spline approximation

We first consider the Problem 2.
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Theorem 2.1. Let f ∈ Cm+1[0,+∞) and

(2.1)

+∞
∫

0

rN+n−l+m |f (m+1)(r)| dr < +∞ .

Then a spline function Sn,m of the form (1.1) with positive knots rν , that satisfies

(1.4) and (1.5), exists and is unique if and only if the measure

(2.2) dλ(r) =
(−1)m+1

m!
rm−l f (m+1)(r) dr

admits a generalized Gauss–Turán quadrature

(2.3)

+∞
∫

0

g(r) dλ(r) =
n
∑

ν=1

kν−1
∑

k=0

A
(n)
ν,k g

(k)(r(n)
ν ) +Rn(g; dλ) ,

with n distinct positive nodes r
(n)
ν , where Rn(g; dλ) = 0 for all g ∈ PN+n−1. The

knots in (1.1) are given by rν = r
(n)
ν , and the coefficients αν,i by the following

triangular system:

(2.4) A
(n)
ν,k =

kν−i
∑

i=k

(m−i)!

m!

(

i

k

)

[

Di−krm−l
]

r=rν
αν,i (k = 0, 1, ..., kν−1) ,

where D is the standard differentiation operator.

Proof: Let j ≤ N + n− l − 2. Because of (2.1), the integral

+∞
∫

0

rj+m+2 f (m+1)(r) dr

exists and lim
r→+∞

rj+m+2f (m+1)(r) = 0. Then, L’Hospital’s rule implies

lim
r→+∞

rj+m+1 f (m)(r) = 0 .

Continuing in this manner, we find that

(2.5) lim
r→+∞

rj+µ+1 f (µ)(r) = 0 , µ = m,m−1, ..., 1, 0 .

By Taylor’s formula, one has for any b > 0,

f (k)(r) = f (k)(b) + f (k+1)(b)
(r − b)

1!
+ · · ·+ f (m)(b)

(r − b)m−k

(m− k)!

+
1

(m− k)!

r
∫

b

(r − t)m−k f (m+1)(t) dt ,
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for k = 0, 1, ...,m. Letting b→ +∞ and noting (2.5), we obtain

(2.6) f (k)(r) =
(−1)m−k+1

(m− k)!

+∞
∫

r

(t− r)m−k f (m+1)(t) dt , k = 0, 1, ...,m ,

and, for r = 0,

(2.7) f (k)(0) =
(−1)m−k+1

(m− k)!

+∞
∫

0

tm−k f (m+1)(t) dt , k = 0, 1, ...,m .

On the other hand, differentiating (1.1), we obtain

(2.8) S(k)
n,m(0) = (−1)k

n
∑

ν=1

sν
∑

i=0

(m− i)!

(m− i− k)!
rm−i−kν αν,i , k = 0, 1, ...,m ,

where sν = min(m− k, kν − 1), ν = 1, ..., n.

Substituting (2.7) and (2.8) in (1.4), we find

n
∑

ν=1

sν
∑

i=0

(m− i)!

m!
αν,i

(m− k)!

(m− i− k)!
rm−i−kν =

+∞
∫

0

(−1)m+1

m!
rm−k f (m+1)(r) dr

or

(2.9)
n
∑

ν=1

kν−1
∑

i=0

(m− i)!

m!
αν,i

[

Dirm−k
]

r=rν
=

+∞
∫

0

(−1)m+1

m!
rm−k f (m+1)(r) dr ,

for k = 0, 1, ..., l, where D is the standard differentiation operator.

The conditions (2.9) can be represented in the form

n
∑

ν=1

kν−1
∑

i=0

(m− i)!

m!
αν,i

[

Di(rm−lrj)
]

r=rν
=

+∞
∫

0

(−1)m+1

m!
rm−l f (m+1)(r) rj dr,

j = 0, 1, ..., l ,

or, after the application of Leibniz’s formula to the i-th derivative,

(2.10)
n
∑

ν=1

kν−1
∑

k=0

A
(n)
ν,k

[

Dkrj
]

r=rν
=

+∞
∫

0

rj dλ(r) , j = 0, 1, ..., l ,

where A
(n)
ν,k and dλ(r) are given by (2.4) and (2.2).
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Now, we consider the conditions (1.5).

Using (1.1) and observing that rν > 0, we have

+∞
∫

0

rj Sn,m(r) dr =
n
∑

ν=1

kν−1
∑

i=0

αν,i

rν
∫

0

rj(rν − r)m−i dr .

Changing variables, r = trν , in the integral on the right, we obtain the well-known

beta integral, which can be expressed in terms of factorials. So we find

+∞
∫

0

rj Sn,m(r) dr =
n
∑

ν=1

kν−1
∑

i=0

j!(m− i)!

(j +m− i+ 1)!
αν,i r

j+m−i+1
ν

or

(2.11)

+∞
∫

0

rj Sn,m(r) dr =
j!

(j +m+ 1)!

n
∑

ν=1

kν−1
∑

i=0

(m− i)!αν,i
[

Dirj+m+1
]

r=rν
.

Through m + 1 integrations by parts and noting (2.5), the integral on the

right of (1.5) can be transformed to

+∞
∫

0

rj f(r) dr =
(−1)m+1

(j+1) (j+2) · · · (j+m+1)

+∞
∫

0

rj+m+1 f (m+1)(r) dr(2.12)

=
(−1)m+1j!

(j +m+ 1)!

+∞
∫

0

rj+m+1 f (m+1)(r) dr .

The conditions (1.5) now become

n
∑

ν=1

kν−1
∑

i=0

(m− i)!

m!
αν,i

[

Dirm+j+1
]

r=rν
=

+∞
∫

0

(−1)m+1

m!
rm+j+1 f (m+1)(r) dr ,

i.e.,

n
∑

ν=1

kν−1
∑

i=0

(m−i)!

m!
αν,i

[

Dirm−lrj+l+1
]

r=rν
=

+∞
∫

0

(−1)m+1

m!
rm−l f (m+1)(r) rj+l+1 dr ,

where j = 0, 1, ..., N +n− l− 2. After the application of Leibniz’s formula to the

i-th derivative on the left side of the above equation, we get

(2.13)
n
∑

ν=1

kν−1
∑

k=0

A
(n)
ν,k

[

Dkrj+l+1
]

r=rν
=

+∞
∫

0

rj+l+1 dλ(r) ,
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where j = 0, 1, ..., N +n− l− 2, and A
(n)
ν,k and dλ(r) are given by (2.4) and (2.2),

respectively.

Finally, (2.10) and (2.13) yield

(2.14)
n
∑

ν=1

kν−1
∑

k=0

A
(n)
ν,k

[

Dkrj
]

r=rν
=

+∞
∫

0

rj dλ(r) , j = 0, 1, ..., N+n−1 .

Hence, we conclude that Eqs. (1.4) and (1.5) are equivalent to Eqs. (2.14). These

are precisely the conditions for rν to be the nodes of the generalized Gauss–

Turán quadrature formula (2.3) (rν = r
(n)
ν ) and A

(n)
ν,k , determined by (2.14), their

coefficients.

Remark 2.1. If we let l = N + n − 1, the Theorem 2.1 gives the solution

of Problem 1. Namely, equating (2.7) and (2.8), for k = 0, 1, ..., N + n − 1

(m ≥ N + n− 1), we obtain (2.14), where l = N + n− 1.

Remark 2.2. The case k1 = k2 = · · · = kn = 1, l = −1, of Theorem 2.1 has

been obtained in [8].

Similarly as in [16], we can prove the following result regarding the approxi-

mating error.

Theorem 2.2. Let f be given as in Theorem 2.1 and such that the measure

dλ in (2.2) admits a generalized Gauss–Turán quadrature formula (2.3) with

distinct positive nodes rν = r
(n)
ν . Define

σr(t) = t−(m−l)(t− r)m+ .

Then the error of the spline approximation (1.1), (1.3) (l = N + n− 1) or (1.1),

(1.4), (1.5), is given by

(2.15) f(r)− Sn.m(r) = R(σr(t); dλ(t)) , r > 0 ,

where R(σr(t); dλ(t)) is the remainder term in the formula (2.2)–(2.3)

(2.16)

+∞
∫

0

g(t) dλ(t) =
n
∑

ν=1

kν−1
∑

k=0

A
(n)
ν,k g

(k)(r(n)
ν ) +R(g(t); dλ(t)) .

Proof: Using (2.6) for k = 0, we find

f(r) =
(−1)m+1

m!

+∞
∫

r

(t− r)m f (m+1)(t) dt =
(−1)m+1

m!

+∞
∫

0

(t− r)m+ f (m+1)(t) dt ,
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i.e.,

(2.17) f(r) =

+∞
∫

0

σr(t) dλ(t) .

On the other hand, we consider the sum

Fν(r) =
kν−1
∑

k=0

A
(n)
ν,k

[

Dkσr(t)
]

t=rν
,

where A
(n)
ν,k are the coefficientes of the generalized Gauss–Turán quadrature (2.16).

By (2.4) and Leibniz’s formula, we obtain

Fν(r) =
kν−1
∑

k=0

[

Dkσr(t)
]

t=rν

kν−1
∑

i=k

(m− i)!

m!

(

i

k

)

[

Di−ktm−l
]

t=rν
αν,i

=
kν−1
∑

i=0

(m− i)!

m!
αν,i

i
∑

k=0

(

i

k

)

{

[Dkσr(t)][D
i−ktm−l]

}

t=rν

=
kν−1
∑

i=0

(m− i)!

m!
αν,i

[

Di(tm−lσr(t))
]

t=rν

=
kν−1
∑

i=0

(m− i)!

m!
αν,i

[

Di(t− r)m+

]

t=rν

=
kν−1
∑

i=0

αν,i(rν − r)m−i+ ,

i.e.,

(2.18)
n
∑

ν=1

Fν(r) = Sn,m(r) .

Finally, using (2.17) and (2.18), we obtain (2.15).

3 – On the generalized Gauss-Turán quadratures

The generalized Gauss–Turán quadratures with a given nonnegative measure

dλ(r) on the real line IR (with compact or infinite support for which all moments

µi =
∫

IR ri dλ(r), i = 0, 1, ..., exist and are finite, and µ0 > 0),

(3.1)

∫

IR
g(r) dλ(r) =

n
∑

ν=1

m−1
∑

k=0

Aν,k g
(k)(rν) +Rn(g; dλ)
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is exact for all polynomials of degree at most (m + 1)n − 1, if m is odd, i.e.,

m = 2s + 1 (see [19]). The nodes rν , ν = 1, ..., n, are the zeros of the (monic)

polynomial πn minimizing

(3.2)

∫

IR
[πn(r)]

2s+2 dλ(r) .

Such polynomials are known as power-orthogonal (s-orthogonal or s-self associ-

ated) polynomials with respect to the measure dλ(r). For a given n and s, the

minimization of the integral (3.2) leads to the “orthogonality conditions”

(3.3)

∫

IR
πn(r)

2s+1 ri dλ(r) , i = 0, 1, ..., n−1 ,

which can be interpreted as (see [15])

(3.4)

∫

IR
πs,nν (r) ri dµ(r) = 0 , i = 0, 1, ..., ν−1 ,

where {πs,nν } is a sequences of monic orthogonal polynomials with respect to the

new measure dµ(r) = dµs,n(r) = (πs,nn (r))2sdλ(r). As we can see, the polynomials

πs,nν , ν = 0, 1, ..., are implicitly defined because the measure dµ(r) depends on

πs,nn (= πn(r)). Of course, we are interested only in πs,nn (r). A stable procedure

of constructing such polynomials (s-orthogonal) is given in [15].

A generalization of the formula (3.1) to rules having nodes with arbitrary

multiplicities was given, independently, by Chakalov [2–3] and Popoviciu [18].

Let σ = (s1, s2, ..., sn) be a sequence of nonegative integers. In this case, it is

important to assume that the nodes rν are ordered, say

a ≤ r1 < r2 < · · · < rn ≤ b ,

with odd multiplicities 2s1 +1, ..., 2sn+1, respectively. Here [a, b] is the support

of the measure dλ(r). Then the coresponding quadrature formula

(3.5)

∫

IR
g(r) dλ(r) =

n
∑

ν=1

2sν
∑

k=0

Aν,k g
(k)(rν) +Rn(g; dλ)

has the maximum degree of exactness dmax = 2
n
∑

ν=1
sν + 2n− 1, if and only if

(3.6)

∫

IR

n
∏

ν=1

(r − rν)
2sν+1 ri dλ(r) = 0 , i = 0, 1, ..., n−1 .

The last “orthogonality conditions” correspond to (3.3).
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If we put

π
(n)
k,σ(r) =

k
∏

ν=1

(r − r(k)
ν ) , a ≤ r

(k)
1 < · · · < r

(k)
k ≤ b ,

and

dµ(r) =
n
∏

ν=1

(r − r(n)
ν )2sν dλ(r) (r(n)

ν ≡ rν , ν = 1, ..., n) ,

then the “orthogonality conditions’’ (3.6) can be interpreted as
∫

IR
π

(n)
k,σ(r) r

i dµ(r) = 0 , i = 0, 1, ..., k−1 .

So we conclude that {π
(n)
k,σ} is a sequence of (standard) orthogonal polynomials

with respect to the measure dµ(r). The polynomials π
(n)
n,σ are called σ-orthogonal

polynomials. An algorithm for constructing them is given in [11].

If we have sν = s, ν = 1, ..., n, the above polynomials reduce to the

s-orthogonal polynomials.

If we find the nodes (rν , ν = 1, ..., n) of the generalized Gauss–Turán quadra-

ture formula (3.1) or (3.5) (the zeros of the s-orthogonal polynomial πs,nn or σ-

orthogonal polynomial π
(n)
n,σ, respectively), then their coefficients are determined

from the linear system equations (3.1) or (3.5), for g(r) = ri (Rn(r
i, dλ) = 0),

where i = 0, 1, ..., 2(s+ 1)n− 1 or i = 0, 1, ..., dmax, respectively.

4 – Numerical example

If in the spline function (1.1) we take kν = 2s+ 1, ν = 1, ..., n, s ∈ IN0, i.e.,

(4.1) Sn,m(r) =
n
∑

ν=1

2s
∑

i=0

αν,i(rν − r)m−i+ , 0 ≤ r < +∞ ,

and l is formally replaced by −d in Theorem (2.1), in view of the approximative

requirement (1.2), then we get the identical statement as in [16, Theorem 2.1].

Therefore, this fact enables us in this case to use the previously developed software

for the problem (1.2). Now, for solving problems (1.3) or (1.4)–(1.5), one can take

d := −l.

Let f(r) = e−r on [0,+∞). For this function the measure (2.2) becomes the

generalized Laguerre measure

dλ(r) =
1

m!
rm−l e−r dr , 0 ≤ r < +∞ .
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First, for a given (n, s,m, l), we determine rnν (the zeros of the polynomial πs,nn )

and the weight coefficients of the Turán quadrature (2.3). Then, the knots in

(3.1) are given by rν = r
(n)
ν , ν = 1, ..., n, and we find the coefficients of the spline

function (4.1) using the triangular system of equations (2.4).

In Tables 3.1 and 3.2 we can see the behavior of approximate values of the

resulting maximum absolute errors e
(l)
n,m = max

0≤r≤rn
|Sn,m(r) − f(r)|, for differ-

ent values of (n, s,m, l). (Numbers in parenthesis indicate decimal exponents.)

Clearly, for r ≥ rn, the absolute error is equal to f(r).

Table 3.1 – Accuracy of the spline approximation for s = 1.

l = 0 l = 1 l = 2
n m = 2 m = 3 m = 4 m = 2 m = 3 m = 4 m = 3 m = 4

2 1.5(−1) 1.8(−2) 4.9(−3) 1.5(−1) 2.6(−2) 6.4(−3) 3.0(−2) 6.5(−3)

3 8.4(−2) 1.3(−2) 2.5(−3) 6.7(−2) 1.3(−2) 2.3(−3) 1.1(−2) 1.9(−3)

4 5.1(−2) 8.1(−3) 1.2(−3) 4.1(−2) 7.1(−3) 9.2(−4) 4.8(−3) 8.6(−4)

5 3.3(−2) 5.1(−3) 6.2(−4) 3.0(−2) 4.0(−3) 5.2(−4) 4.0(−3) 6.1(−4)

Table 3.2 – Accuracy of the spline approximation for m = 8.

l = 0 l = 4
n s = 1 s = 2 s = 1 s = 2

6 2.37(−6) 1.24(−6) 2.10(−6) 1.24(−6)

7 1.08(−6) 5.31(−7) 1.00(−6) 6.73(−7)

8 5.62(−7) 2.62(−7) 5.13(−7) 3.59(−7)

9 3.20(−7) 1.88(−7) 2.85(−7) 1.93(−7)

10 2.01(−7) 1.31(−7) 1.80(−7) 1.07(−7)
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