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NONLINEAR HYPERBOLIC-PARABOLIC EQUATION
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Abstract: In this paper we study the global existence and uniqueness of regular
solutions to the mixed problem for the nonlinear hyperbolic-parabolic equation

K1(x, t)utt + K2(x, t)ut −∆u + f1(t) |u|
ρ u = f(x, t) in Q̂ ,

u = 0 at Σ̂t ,

u(x, 0) = u0(x), ut(x, 0) = u1(x) , x ∈ Ω0 ,

where Q̂ is a noncylindrical domain of IRn+1 with the lateral boundary Σ̂t and K1, K2,

f1 are functions which satisfy some appropriate conditions.

1 – Introduction

Hyperbolic-parabolic equations belong to a class of equations of a variable

type, see Lar’kin, Novikov and Yanenko [6]. These equations are interesting not

only from the point of view of the general theory of PDE but also due to various

applications in Mathematical Physics and Mechanics.

The most famous representative of this class is the transonic Karman equation

ut utt − uxx = 0 ,

which models flow of a compressible gas in the transonic region, where the velocity

of a gas changes from subsonic values to supersonic ones. Respectively, a type
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of the Karman equation changes from elliptic to hyperbolic, depending on the

sign of ut. In the supersonic region, including the sonic curve, where ut = 0, the

Karman equation is hyperbolic-parabolic, and the variable t can be considered

as the time variable.

As a rulle, domains in which this equation is considered, are noncylindrical.

For example, flow of a gas in supersonic part of a Laval Nozzle which expands

with x, can be simulated by hyperbolic-parabolic equations in noncylindrical

domains.

A great number of papers dealt with hyperbolic-parabolic equations in cylin-

drical domains, but very few of them are devoted to regular solutions in noncylin-

drical domains. It seemed for us worthwhile to study this problem in the present

paper.

Let Ω be a bounded domain of IRn with a sufficiently smooth boundary Γ,

Q = Ω× (0,∞), Σ = Γ× (0,∞) and K ∈ C4(0,∞).

Let us consider the subsets Ωt of IR
n given by

Ωt =
{
x ∈ IRn; x = K(t) y, y ∈ Ω

}
, 0 ≤ t ≤ T ≤ ∞ ,

whose boundaries are denoted by Γt, and the noncylindrical domain Q̂ ∈ IR
n+1:

(1) Q̂ =
{
(x, t) ∈ IRn × (0,∞); x ∈ Ωt

}
=

⋃

0≤t<∞

Ωt × {t}

with the lateral boundary

Σ̂t =
⋃

0≤t<∞

Γt × {t}

such that νt ≤ 0, K1ν
2
t −

∑n
i=1 ν

2
xi ≤ 0. Here νt, νxi are projections of an outer

normal vector to Σ̂t on the corresponding axis. The noncylindrical domain Q̂

defined by (1) is time like.

In Q̂ we consider for the hyperbolic-parabolic equation the following mixed

problem:

(2)

K1(x, t)utt +K2(x, t)ut −∆u+ f1(t) |u|
ρ u = f(x, t) in Q̂ ,

u = 0 on Σ̂t ,

u(x, 0) = u0(x), ut(x, 0) = u1(x) , x ∈ Ω0 ,

where f1 : [0,∞)→ IR, K1(x, t) and K2(x, t) are two real functions defined in Q̂,

∆ =
∑n

i=1
∂2

∂x2

i

.
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Linear and nonlinear wave equations in noncylindrical domains have been

treated by many authors. Lions [9] introduced the penalty method to solve the

existence problem. Using this method, Medeiros [10] proved the existence of weak

solutions to the problem

(3) utt −∆u+ β(u) = f

for a wide class of β(u) such that β(u)u ≥ 0. Cooper and Bardos [1] proved

the existence and uniqueness of weak solutions of (3), for the case β(u) = |u|α u

(α ≥ 0) and when Σ̂t is globally “time like”, without the increasing condition on

Q̂. Cooper and Medeiros [2] included the above results in a general model

utt −∆u+ f(u) = 0 ,

where f is continuous, sf(s) ≥ 0 and Σ̂t is globally “time like”. Inoue [4] suc-

ceeded in proving the existence of classical solutions to (3) for the case n = 3 and

β(u) = u3 when the body is “time like” at each point.

Ferreira [3] studied the existence of weak solutions to the mixed problem for

the equation

K1(x)utt +K2(x)ut +A(t)u+H(u) = f , K1 ≥ 0 .

Da Prato and Grisvard [11] established existence, uniqueness and regularity

results in our type of noncylindrical domains Q̂ for the following problem

(4)

utt −∆u− ρ∆ut = 0 in Q̂ ,

u+ ρ ut = 0 at Γt, 0 < t < T ,

u(x, 0) = u0(x), ut(x, 0) = u1(x) , x ∈ Ω0 .

Some paper dealt also with regular solutions in nondegenerate case [4, 11]. De-

generating of nonlinear hyperbolic equations brings essential difficulties in a case

of noncylindrical domains, because a geometry of a domain influences correctness

of problem (2). See Lar’kin [5], when a domain is characteristic.

The goal of this paper is to prove existence and uniqueness of regular solutions

to problem (2) for all t ∈ [0,∞) in noncylindrical domains (1).

Our approach consists of changing of variables, v(y, t) = u(K(t)y, t). Under

this transformation problem (2) in Q̂ is formulated in the cylindrical domain

Q = Ω× [0,∞) as follows:

K3(y, t) vtt +K4(y, t) vt −
n∑

i,j=1

∂

∂yi

(
aij(y, t)

∂v

∂yj

)
+
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+
n∑

i=1

bi(y, t)
∂vt

∂yi
+

n∑

i=1

ci(y, t)
∂v

∂yi
+ f1(t) |v(y, t)|

ρ v(y, t) = g(y, t) in Q ,

(5)

v = 0 on Σ = Γ× [0,∞) ,

v(0) = v0(y) = u0(K(0)y) , y ∈ Ω ,

vt(0) = u1(K(0)y) +
K ′(0)

K(0)

n∑

i=1

yi
∂v0

∂yi
= v1(y) , y ∈ Ω ,

where

(6)

K1(x, t) = K1(K(t)y, t) ≡ K3(y, t) ,

K2(x, t) = K2(K(t)y, t) ≡ K4(y, t) ,

f(x, t) = f(K(t)y, t) ≡ g(y, t) ,

and

aij(y, t) = (δij −K
′2K3 yi yj)K

−2 ,

bi(y, t) = −2K3K
′K−1 yi ,

ci(y, t) =
[
(1− n)K

′2K3 −K
′′2K3K −K ′KK4

]
K−2 yi

−K
′2K−2

n∑

j=1

yi yj
∂K3

∂yj
.

The paper is organized as follows:

2 – Notations and assumptions.

3 – Existence of regular solutions.

4 – Uniqueness.

5 – Proof of Theorem 3.1.

2 – Notations and assumptions

By D(Ω) we denote the space of infinitely differentiable functions with a

compact support contained in Ω. The inner products and norms in L2(Ω) and

H1
0 (Ω) will be represented by (·, ·)(t), | · |(t), ((·, ·))(t), ‖ · ‖(t) respectively. By

H−1(Ω) we denote the dual space of H1
0 (Ω). If X is a Banach space, then we
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denote by Lp(0,∞;X), 1 ≤ p ≤ ∞ the Banach space of vector valued functions

u : [0,∞)→ X, which are measurable and ‖u(t)‖X ∈ Lp(0,∞), with the norms:

‖u‖Lp(0,∞;X) =
[∫ ∞

0
‖u(t)‖pX dt

]1/p
, 1 ≤ p <∞ ,

‖u‖L∞(0,∞;X) = ess sup
0≤t<∞

‖u(t)‖X .

We define Lq(0,∞;Lp(Ωt)), the space of functions w ∈ Lq(0,∞;Lp(IRn)),

such that w = 0 in IRn\Ωt

‖w‖Lq(0,∞;Lp(Ωt)) =
[∫ ∞

0
‖w(t)‖qLp(Ωt)

dt
]1/q

and

‖w‖L∞(0,∞;Lp(Ωt)) = ess sup
0≤t<∞

‖w(t)‖Lp(Ωt) .

If w ∈ Lp(Ωt) ∩ H1
0 (Ωt), we continue it by 0 in IR

n\Ωt. Then we observe

that Lq(0,∞;Lp(Ωt)) is a closed subspace of L
q(0,∞;Lp(IRn)) for 1 ≤ q ≤ ∞.

In the same way we define Lq(0,∞;H1
0 (Ωt)) as the space of functions w ∈

Lq(0,∞;H1(IRn)) such that w = 0 in IRn\Ωt with the norm

‖w‖Lq(0,∞;H1

0
(Ωt)) =

[∫ ∞

0
‖w(t)‖q

H1

0
(Ωt)

dt
]1/q

for 1 ≤ q <∞, and

‖w‖L∞(0,∞;H1

0
(Ωt)) = ess sup

0≤t<∞
‖w(t)‖H1

0
(Ωt) .

Let us consider the following family of operatos in L(H1
0 (Ω), H

−1(Ω))

A(t) = −
n∑

i,j=1

∂

∂yi

(
aij(y, t)

∂

∂y

)
, t ≥ 0 ,

where

aij = aji and aij ∈W 3,∞(0,∞;C0(Ω))(7)

for all i, j = 1, ..., n.

We suppose that

(8)
n∑

i,j=1

aij(y, t) ξi ξj ≥ α |ξ|2 ,

where α is a positive constant.
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For u, v ∈ H1
0 (Ω) we denote a(t, u, v):

a(t, u, v) =
n∑

i,j=1

∫

Ω
aij(y, t)

∂u

∂yi

∂v

∂yj
dy .

From the hypothesis on aij , we obtain that a(t, u, v) is symmetric and

(9) a(t, u, u) ≥ α‖u‖2 for all u ∈ H1
0 (Ω) , t ∈ [0,∞) .

Suppose that functions K1, K2, K, f1, ρ satisfy the following conditions:

A.1:
K1(x, t) ≥ 0 in Q̂ ,

K1(x, 0) ≥ η0 > 0 in Ω0 ,

K1 ∈W 3,∞(0,∞;C0(Ωt)) ,

K2 ∈W 1,∞(0,∞;C0(Ωt)) ,

µ(x, t) = K2(x, t)−
1

2
|K1t(x, t)| ≥ δ0 > 0 in Q̂ ,

∣∣∣∣
∂K1

∂xi

∣∣∣∣ ≤ CK1 + η , i = 1, ..., n ,

where η is a sufficiently small positive number.

A.2:
K ∈ C4(0,∞) ,

min
0≤t<∞

K(t) = α0 > 0 , max
0≤t<∞

K(t) = α1 > 0 ,

sup
0≤t<∞

K ′(t) = γ <
1

M
, M = sup

IRn
{|y|, y ∈ Ω} ,

K ′(t) ≥ 0, |K ′′(t)|, |K ′′′(t)|, |K(iv)(t)| ≤ C , ∀ t ∈ [0,∞) ,

m1 =

∫ ∞

0
K ′(t) dt <∞ , m2 =

∫ ∞

0
|K ′′(t)| dt <∞ ,

m3 =

∫ ∞

0
|K ′′′(t)| dt <∞ , m4 =

∫ ∞

0
|K(iv)(t)| dt <∞ ,

m5 =

∫ ∞

0
(K ′(t))2 dt <∞ , m6 =

∫ ∞

0
(K ′′(t))2 dt <∞ ,

m7 =

∫ ∞

0
(K ′(t))3 dt <∞ , m8 =

∫ ∞

0
|K ′′(t)|3 dt <∞ .
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A.3:

{f1, f
′
1} ∈ (L

1(0,∞) ∩ L∞(0,∞))2 ,

f ′1(t) ≤ 0 , ∀ t ∈ [0,∞) ,

f1(t) ≥ 0 , ∀ t ∈ [0,∞) ,

0 < ρ ≤
2

n− 2
if n > 2 and 0 < ρ <∞ if n = 1 or n = 2 .

3 – Existence of regular solutions

Theorem 3.1. Let u0 ∈ H2
0 (Ω0), u1 ∈ H1

0 (Ω0) and f ∈ H1(0,∞;L2(Ωt)).

Assume that A.1–A.3 take a place. Then there exists a unique function u(x, t)

defined in Q̂ such that

(10)

u ∈ L∞(0,∞;H1
0 (Ωt) ∩H

2(Ωt)) ,

ut ∈ L∞(0,∞;H1(Ωt)) , utt ∈ L2(Q̂) ,

K1utt ∈ L∞(0,∞;L2(Ωt)) ;

for a.e. t ∈ (0,∞) the identity holds

(11)
({
K1 utt +K2 ut −∆u+ f1(t) |u|

ρu
}
, w

)
(t) = (f, w)(t) ,

where w is an arbitrary function from L2(IRn),

(12)

u(0) = u0 ,

ut(0) = u1 ,

u = 0 on Σ̂t .

Remark 3.1. Here and in the sequel we use notations of [8].

Proof of Theorem 3.1 will be given in section 5. At first we will study our

problem in a cylinder Q.

Domains Q and Q̂ are related by the diffeomorphism h : Q̂→ Q defined by

h(x, t) =

(
x

K(t)
, t

)
for (x, t) ∈ Q̂ ,
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and h−1 : Q→ Q̂ defined by

(13) h(y, t) = (K(t)y, t) .

For each u ∈ L2(Q̂); v(y, t) = u(K(t)y, t).

By change of variables x = K(t)y, we obtain v ∈ L2(Q).

Taking into account A.1–A.2, it is easy to verify that

B.1:

K3(y, t) ≥ 0 in Q ,

K3(y, 0) ≥ η0 > 0 in Ω ,

K3 ∈W 3,∞(0,∞;C0(Ω)) ,

K4 ∈W 1,∞(0,∞;C0(Ω)) ,

r(y, t) = K4 −
1

2

∣∣∣∣K
′
3 −

K ′(t)

K(t)

n∑

i=1

yi
∂K3

∂yi

∣∣∣∣ ≥ δ0 > 0 in Q ,

∣∣∣∣
∂K3

∂yi

∣∣∣∣ ≤ CK3 + η , η is a sufficiently small positive number .

B.2:

aij = aji and aij ∈W 3,∞(0,∞;C0(Ω)) ,

a(t, v, v) ≥ α ‖v‖2H1

0
(Ω) in Q (α > 0) .

Let f , u0, u1 be as in 3.1. By (13) we obtain

(14)
v0 ∈ H2

0 (Ω) ,

v1 ∈ H1
0 (Ω) .

Theorem 3.2. Under conditions of Theorem 3.1, for any f ∈H1(0,∞;L2(Ω))

there exists a unique function v(y, t) satisfying initial data (4),

(15)

v ∈ L∞(0,∞;H1
0 (Ω) ∩H

2(Ω)) ,

vt ∈ L∞(0,∞;H1
0 (Ω)) , vtt ∈ L2(Q) ,

K3vtt ∈ L∞(0,∞;L2(Ω)) ;
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for a.e. t ∈ (0,∞) the identity holds

(16)

({
K3 vtt +K4 vt −

n∑

i,j=1

∂

∂yi

(
aij(y, t)

∂v

∂yj

)
+

n∑

i=1

bi
∂vt

∂yi
+

+
n∑

i=1

ci
∂v

∂yi
+ f1(t) |v|

ρ v

}
, w

)
(t) = (g, w)(t) .

Here w is an arbitrary function from L2(Ω).

Proof: For small ε > 0 we consider in a cylinder Q the following mixed

problem

(17)

K3ε v
ε
tt +K4 v

ε
t −

n∑

i,j=1

∂

∂yi

(
aij(y, t)

∂vε

∂yj

)
+

n∑

i=1

bi(y, t)
∂vεt
∂yi

+

+
n∑

i=1

ci(y, t)
∂vε

∂yi
+ f1(t) |v

ε|ρ vε = g(y, t) in Q ,

vε = 0 on Σ = Γ× [0,∞) ,

vε(y, 0) = v0(0) = u0(K(0)y) , y ∈ Ω ,

vεt (y, 0) = u1(K(0)y) +
K ′(0)

K(0)

n∑

i=1

yi
∂v0

∂yi
= v1(y) , y ∈ Ω ,

where K3ε = K3 + ε.

Let (wν)ν∈IN be a basis in H
2
0 (Ω). For each m ∈ IN we define

um,ε(y, t) =
m∑

`=1

g`mε(t)w`(y) ,

where unknown functions g`mε(t) are solutions to the following Cauchy problem

for the system of ordinary differential equations

(K3ε v
m,ε
tt , w`) + (K4 v

m,ε
t , w`) + a(t, vm,ε, w`)−

− 2
K ′(t)

K(t)

n∑

i=1

(
K3 yi

∂v
m,ε
t

∂yi
, w`

)
+

n∑

i=1

(
ci(t)

∂vm,ε

∂yi
, w`

)
+

+
(
f1(t) |v

m,ε|ρ vm,ε, w`

)
= (g, w`) , 1 ≤ ` ≤ m ,(18)

g`mε(0) = (v0, w`) ,

g′`mε(0) = (v1, w`) .
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This problem has solutions g`mε ∈ C2([0, Tmε)), 0 < Tmε < T . The a priori

estimates, we shall obtain, will permit us to extend the approximate solutions

vm,ε to the interval [0,∞) and also pass to the limit as m→∞, ε→ 0.

A PRIORI ESTIMATE 1. In our calculations we wil omit indices m, ε. Mul-

tiplying (18) by 2g`t, summing over `, using the hypothesis B.1–B.2 and A.3, we

find

(19)
d

dt

[
|
√
K3ε vt|

2(t) + a(t, v(t), v(t)) + (f1(t),M(u))

]
+

+

(
2K4 −K ′

3 +
K ′(t)

K(t)

n∑

i=1

yi
∂k3

∂yi
, |vt|

2
)
− (f ′1(t),M(u))−

− a′(t, v(t), v(t))− 4
K ′(t)

K(t)

n∑

i=1

(
∂vt

∂yi
, K3 yi vt

)
+

+ 2
n∑

i=1

(
ci(t)

∂v

∂yi
, vt

)
= 2 (g(t), vt) ,

where M(u) =
∫ u
0 |s|

ρ s ds ≥ 0.

Integrating (19) from 0 to t, using the hypothesis B.1–B.2, A.2–A.3, and

observing that K3ε v
2
t ≥ K3 v

2
t ≥ 0, we obtain

(20) |
√
K3 vt|

2(t) + α‖v‖2H1

0
(Ω) ≤

≤ C +

∫ t

0
f2(τ)

(
|
√
K3 vτ |

2(τ) + ‖v‖2H1

0
(Ω)(τ)

)
dτ +

∫ t

0
|g|2(τ) dτ ,

where f2(t) ∈ L1(0,∞). Hence, by Gronwall’s Lemma

(21) |
√
K3 vt|

2(t) + α‖v‖2H1

0
(Ω) + δ0

∫ t

0
|vτ |

2(τ) dτ ≤ C ,

where C is a positive constant independent of m and t ∈ [0,∞).

A PRIORI ESTIMATE 2. Now we differentiate equation (17) with respect to

t, multiply the result by 2g`tt and summ over ` to obtain

(22)
d

dt

[
|
√
K3ε vtt|

2(t) + a(t, vt(t), vt(t)) + 2 a
′(t, v(t), vt(t))

]
+

+

(
2

(
K4 +

1

2

(
K ′
3 −

K ′(t)

K(t)

n∑

i=1

yi
∂K3

∂yi

))
, |vtt|

2
)
+ 2(K ′

4vt, vtt)−

− 2a′′(t, v(t), vt(t))− 3a
′(t, vt(t), vt(t)) + 2

n∑

i=1

((
bi
∂vt

∂yi

)′
, vtt

)
+

+ 2
n∑

i=1

((
ci
∂v

∂yi

)′
, vtt

)
+ 2((f1(t)|v|

ρv)′, vtt) = 2(g
′, vtt) .
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Integrating (22) from 0 to t, using the hypothesis A.2–A.3 and B.1–B.2 and

observing that K3ε v
2
tt ≥ K3 v

2
tt ≥ 0, we have

(23) |
√
K3 vtt|

2(t) + α‖vt‖
2 + δ0

∫ t

0
|vττ (τ)|

2 dτ ≤

≤ C1+|(K3vtt(0), vtt(0))|+

∫ t

0
f2(τ)

[
|
√
K3 vττ |

2(τ)+‖vτ (τ)‖
2
]
dτ+

∫ t

0
|gτ (τ)|

2 dτ .

Remark 3.2. We need an estimate for vtt(0). Putting t = 0 in (17) and

using hypothesis about the function K3, we obtain |vtt(0)| ≤ C, where a constant

C does not depend on m, t ∈ [0,∞).

Now, using Remark 3.2, observing that f2(t) ∈ L1(0,∞), by Gronwall’s

Lemma we get

(24) |
√
K3 vtt|

2(t) + α‖v‖2H1

0
(Ω) +

δ0

4

∫ t

0
|vττ (τ)|

2 dτ ≤ C ,

where C is a positive constant independent of m and t ∈ [0,∞).

Let us now study the nonlinear term.

Since f1(t) ∈ L1(0,∞) ∩ L∞(0,∞), we have from (21) and (24)

(25)
∥∥∥f1(t) |vm,ε|ρ+1

∥∥∥
L2(0,∞;L2(Ω))

≤ C .

By compactness arguments

(26) f1(t) |v
m,ε|ρ vm,ε → f1(t) |v

ε|ρ vε a.e. in Q , m→∞ .

From (25), (26) we conclude:

(27) f1(t) |v
m,ε|ρ vm,ε → f1(t) |v

ε|ρ vε weakly in L2(Q) .

From the a priori estimates obtained we can see that there exists a subsequence

of (vm,ε), which we still denote by (vm,ε)m∈IN, such that

vm,ε → vε weak∗ in L∞(0,∞;H1
0 (Ω)) ,

v
m,ε
t → vεt weak∗ in L∞(0,∞;H1

0 (Ω)) ,

v
m,ε
tt → vεtt weakly in L2(Q) ,

K3ε v
m,ε
tt → K3ε v

ε
tt weak∗ in L∞(0,∞;L2(Ω)) ,

f1(t) |v
m,ε|ρ vm,ε → f1(t) |v

ε|ρ vε weakly in L2(Q) .
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Letting m tend to ∞, we conclude

(K3ε v
ε
tt, w)(t) + (K4 v

ε
t , w)(t) +

( n∑

i,j=1

∂

∂yi

(
aij(y, t)

∂vε

∂yj

)
, w

)
(t) +

+

( n∑

i=1

bi
∂vεt
∂yi

, w

)
(t) +

( n∑

i=1

ei
∂vε

∂yi
, w

)
(t) +

(
f1(t) |v

ε|ρ vε, w
)
(t) =

= (g, w)(t) for a.e. t ∈ (0,∞) ,

where w is an arbitrary function from H1
0 (Ω).

Obviously, initial conditions (17) are satisfied. Observe that estimates ob-

tained are also independent of ε. Therefore, by the same argument we can pass

to the limit when ε goes to zero in {vε}. Thus we obtain a function

v ∈ L∞(0,∞;H1
0 (Ω)) ,

vt ∈ L∞(0,∞;H1
0 (Ω)) ,

vtt ∈ L2(Q) , K3 vtt ∈ L∞(0,∞;L2(Ω)) ,

satisfying the identity

n∑

i,j=1

(
∂

∂yi

(
aij

∂v

∂yj

)
, Z

)
(t) =

=

({
g −K3 vtt −K4 vt −

n∑

i=1

[
bi
∂vt

∂yi
+ ci

∂v

∂yi

]
− f1(t) |v|

ρ v

}
, Z

)
(t) ≡

≡ (P (y, t), Z)(t) for a.e. t ∈ (0,∞) ,

where Z is an arbitrary function from H1
0 (Ω) and P ∈ L2(Ω).

It follows from the properties of a function v(y,t) that P (y,t)∈L∞(0,∞;L2(Ω)).

The theory of elliptic equations gives us

v ∈ L∞(0,∞;H1
0 (Ω) ∩H

2(Ω)) .

This completes the existence part of Theorem 3.2.
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4 – Uniqueness

Let v1, v2 be two distinct solutions to (16). Putting w = 2(v1−v2), we obtain:

d

dt

[
|
√
K3wt|

2(t) + a(t, w(t), w(t))
]
+

+ (2K4 −K1t, w
2
t )− a′(t, w(t), w(t)) + 2

( n∑

i=1

bi
∂wt

∂yi
, wt

)
+

+ 2

( n∑

i=1

ci
∂w

∂yi
, wt

)
+ 2

(
f1(t) |v1|

ρ v1 − f1(t) |v2|
ρ v2, wt

)
= 0 ,(28)

w = 0 on Σ ,

w(0) = 0 , wt(0) = 0 .

Green’s formula gives

2
n∑

i=1

(
bi
∂wt

∂yi
, wt

)
= −

n∑

i=1

(
∂bi

∂yi
, w2t

)

and

(29) −
n∑

i=1

(
∂bi

∂yi
, w2t

)
=

n∑

i=1

(
2K3K

′K−1, w2t

)
+ 2

K ′(t)

K(t)

n∑

i=1

(
yi
∂K3

∂yi
, w2t

)
.

With regard to the nonlinear term, we obtain

(30) 2
∣∣∣
(
f1(t) |v1|

ρ v1 − f1(t) |v2|
ρ v2, wt

)∣∣∣ ≤

≤ 2 f1(t)

∫

Ω

∣∣∣
(
|v1|

ρv1 − |v2|
ρ, wt

)∣∣∣ dy

≤ 2 f1(t)Cρ

∫

Ω

[
|v1(t)|

ρ + |v2(t)|
ρ
]
|w(t)| |wt(t)| dy .

Since injection H1
0 (Ω) ↪→ Lq(Ω) is continuous, if 1n +

1
2 +

1
q = 1 and ρn ≤ q,

then |u|ρLp , |v|
ρ
Lρ ∈ Ln(Ω). From (30) we find

(31) 2
∣∣∣
(
f1(t) |v1|

ρ v1 − f2(t) |v2|
ρ v2, wt

)∣∣∣ ≤ Cρ f1(t) ‖w‖ |wt| .

Integrating (28) from 0 to t < ∞, using the hypothesis A.2–A.3, B.1–B.2,

(28), (29), (31) and the inequality of Schwartz, we have
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|
√
K3wt|

2(t) + α

∫

Ω
|∇w|2(t) dy +

+

∫ t

0

(
2K4 −

1

2
K ′
3 +

K ′(τ)

K(τ)

n∑

i=1

yi
∂K3

∂yi

)
|wτ |

2(τ) dτ +

+

∫ t

0

∫

Ω
2nK3K

′K−1 |wτ |
2(τ) dy dτ ≤

≤ Cε

∫ t

0
f2(τ) |

√
K3wτ |

2(τ) dτ + Cε

∫ t

0
f2(τ) |∇w|

2(τ) dτ + ε

∫ t

0
|wτ |

2(τ) dτ .

From here

|
√
K3wt|

2(t) + α

∫

Ω
|∇w|2(t) dy ≤ C

∫ t

0
f3(τ)

(
|∇w|2(τ) + |

√
K3wτ |

2(τ)
)
dτ ,

where f3(t) = max{f1(t), f2(t)}, ∀ t ∈ [0,∞).

Since f3(t) ∈ L1(0,∞), we have by Gronwall’s lemma ∇w(t) ≡ 0 a.e. t ∈

[0,∞). With w|Σ = 0 we conclude that w(t) ≡ 0 in Q, hence v1 = v2. The proof

of Theorem 3.2 is completed.

5 – Proof of Theorem 3.1

Let v be the solution from Theorem 3.2 and u defined by (13). Then

u ∈ L∞(0,∞;H1
0 (Ωt) ∩ H2(Ωt)); ut ∈ L∞(0,∞;H1(Ωt)), utt ∈ L2(Q̂);

K1 utt ∈ L∞(0,∞;L2(Ωt)), u(0) = u0 and ut(0) = u1.

If w ∈ L2(0,∞;H1
0 (Ωt)), let φ(y, t) = w(K(t)y, t) for (y, t) ∈ Q. We note that

(16) is valid. Changing the variable x = K(t) y, we obtain (11) from (16).

Let u1, u2 be two solutions to (11), and v1, v2 be the functions obtained

through the isomorphism h. Then v1, v2 are the solutions to (16).

By the uniqueness result of Theorem 3.2, we have v1 = v2, so u1 = u2.

Thus the proof of Theorem 3.1 is completed.

Remark 5.1. Results of Theorem 3.1 can be easily generalized for more

general equations

K1(x, t)utt +K2(x, t)ut +A(t)u+ f1(t)H(u) = f ,

where A(t) is a strictly elliptic operator and a smooth function H(u) satisfies the

condition H(u)u ≥ 0.
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