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ENTROPY DIMENSION OF DYNAMICAL SYSTEMS

Maria de Carvalho

Abstract: The key idea here is borrowed from dimension theory. The starting point

is a new concept which behaves like a dimension and is devoted to distinguish zero

topological entropy systems. It is a dynamical invariant but also reflects geometrical

features.

1 – Introduction

Among all labels used in dynamical systems, topological entropy, Hausdorff

dimension and Lyapounov exponents seem to gather the majority of the prefer-

ences. Complex systems or complicated geometrical structures may be guessed

through positive entropy, nonzero Lyapounov exponents or big Hausdorff dimen-

sion of invariant subsets. Each of these methods is linked to a specific approach

and depends, in general, on hard calculations. The alternative is to look for

sharp estimates of them and, for that purpose, one appeals to connections among

topological, metrical and geometrical information. These allow us to overcome

inadequacies of each one as a good label; for example, neither the definition of

Hausdorff dimension is aware of the dynamics nor the topological entropy pro-

vides by itself a geometrical inkling.

Simple systems with respect to these devices need deeper analysis and an

acute differentiation between them is expectedly difficult. The notion we will

discuss here, in spite of not being a complete invariant, may turn into a useful

and suggestive tool to distinguish simple systems — the ones with zero topological

entropy — which however are likely to have inner complexity which traditional

procedures do not spot.
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Let X be a compact metric space and f : X → X a continuous endomorphism

of X. Zero topological entropy essentially means a small growth rate of the num-

ber of elements of coverings of X when submitted to the effect of the dynamics.

That is, a slow increase with n of the sequence

logN
(n−1∨

0

f−i α
)
,

where

N
(n−1∨

0

f−i α
)
= smallest cardinal of the finite subcoverings of

n−1∨

0

f−i α

and

n−1∨

0

f−i α=
{
A0∩f

−1A1∩...∩f
−n+1An−1 | Ai is an element of the covering α of X

}
.

The concept we will study intends to estimate this speed more accurately, com-

paring the sequence above not only with n, as usually to calculate the topological

entropy, but also with other powers of n. Roughly speaking, it corresponds to

topological entropies at different speeds, taking advantage from the canonical re-

lationship between the functions log(x) and xs, s > 0. More precisely, we will

consider open finite coverings ofX, take into account, for each s > 0, the sequence

1

ns
logN

(n−1∨

0

f−i α
)
,

calculate its upper limit

lim
n→+∞

sup
1

ns
logN

(n−1∨

0

f−i α
)
,

evaluate the least upper bound of these limits when the covering α varies

sup
α

lim
n→+∞

sup
1

ns
logN

(n−1∨

0

f−i α
)
,

and finally find the greatest lower bound of the set

{
s > 0: sup

α
lim

n→+∞
sup

1

ns
logN

(n−1∨

0

f−i α
)
= 0

}
.
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The resemblance with the calculation of the Hausdorff dimension and the engage-

ment of the dynamics justify the choice of “entropy dimension” to nominate this

number.

Naturally we could extend these comparisons to other choices of test functions

instead of xs, but we might lose contact with the entropy. For example, if we

consider the family of quadratic maps given, for each parameter λ in ]0, 1], by

x ∈ [0, 1] 7→ fλ(x) = 4λx(1− x)

when restricted to the parameters such that htop(fλ) = 0 (which correspond to

]0, λF ], where λF is the first accumulation point of a cascade of period doubling),

then

inf

{
s > 0: lim

n→+∞

log θ(n)

(log(n))s
= 0

}
= 1 ⇐⇒ λ = λF ,

where θ(n) denotes the fixed points of (fλ)
n; this seems to suggest that log(n)

and θ(n) are more suitable selections to distinguish the elements of this family.

Best approximations however may be, in general, goals beyond reach: indeed,

they would enhance a complete knowledge of the topological entropy and this is

ultimately not manageable.

As we will prove, and examples will show, this dimension, say D, ranges in

the interval [0, 1] and positive topological entropy yields D = 1. So, as we wished,

the remaining interval is wholly devoted to characterize the misterious domain of

zero entropy dynamics.

A different approach to this subject was given by Katok in [K].

2 – Main definitions

Let X be a compact metric space and f : X → X a continuous endomorphism

of X.

Definition 1. Denoting by α any open finite covering of X, the entropy

dimension of f in X is given by

df (X) = inf

{
s > 0: sup

α
lim

n→+∞
sup

1

ns
logN

(n−1∨

0

f−i α
)
= 0

}
.

It is worthwile pointing out a simple property of this concept which we shall

use several times.
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Proposition 1.

(a) ([W]) The sequence an(α) = logN(
∨n−1
0 f−i α) satisfies the recurrence

relation

an+k(α) ≤ an(α) + ak(α) , ∀ k, n ∈ N .

(b) ([W]) The limn→+∞
1
n
an(α) exists and is the greatest lower bound of the

set { 1
n
an(α)}n∈N.

(c) Denote by df (s,X) the number supα limn→+∞ sup
1
ns
logN(

∨n−1
0 f−iα).

If s = 1, then

df (s,X) = htop(f) = sup
α

lim
n→+∞

1

n
an(α) .

Definition 2. If Y is an f -invariant subset of X (this means f(Y ) = Y )

and Y is closed and α denotes any open finite covering of X, then the entropy

dimension of f restricted to Y is given by

df (Y ) = inf

{
s > 0: sup

α
lim

n→+∞
sup

1

ns
logN

(n−1∨

0

f−i(α ∩ Y )
)
= 0

}
.

Remark. Notice that if α is an open covering ofX, then α∩Y = {A∩Y | A ∈

α} is an open covering of Y ; reciprocally, if β is an open covering of Y (with the

induced topology), then α = β ∪ {X − Y } is an open covering of X.

The next definition is a probabilistic version of former one.

Definition 3. Given an f -invariant probability µ, a finite measurable parti-

tion α of X and the sequence

Hµ

(n−1∨

0

f−i α
)
= −

∑

A∈
∨n−1

0
f−iα

µ(A) log µ(A)

the metric entropy dimension of f in X is given by

df (µ,X) = inf

{
s > 0: sup

α
lim

n→+∞
sup

1

ns
logHµ

(n−1∨

0

f−iα
)
= 0

}
.
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3 – Examples

One proceeds checking the technical preliminaries above on some examples.

I. Let X be any compact space and f the identity map; as N(
∨n−1
0 f−iα) =

N(α) for all α, we easily conclude that

1

ns
logN

(n−1∨

0

f−i α
)
=
1

ns
logN(α)

and therefore df (X) = 0.

II. Let X be the interval [0, 1] and f(x) = 2x (modulo 1); as htop(f) = log 2,

sup
α

lim
n→+∞

sup
1

ns
logN

(n−1∨

0

f−i α
)
= sup

α
lim

n→+∞
sup

(
1

n
logN

(n−1∨

0

f−i α
))
(n1−s)

=





+∞ if s < 1,
log 2 if s = 1,
0 if s > 1 .

Therefore df (X) = 1.

III. Let X be the interval [0, 1], f(x) = 1
2 x and α an open finite covering of

[0, 1] with δ > 0 as its Lebesgue number. Then

N
(n−1∨

0

f−i α
)
≤ rn

(δ
2
, [0, 1]

)
=minimum cardinal of (n, ε)− spanning subsets of X.

As f diminishes distances, we have rn(ε,X) ≤ rn−1(ε,X) ≤ ... ≤ r1(ε,X) and so

0 ≤
1

ns
logN

(n−1∨

0

f−i α
)
≤
1

ns
log r1

(δ
2
, X
)

which approaches zero as n goes to +∞. Thus df (X) = 0.

IV. Generalizing last example, all isometries or contractions of X have en-

tropy dimension zero.

V. [Sch] Consider a positive integer d, a finite set (alphabet) A = {1, 2, ..., k},

where k ≥ 2, and

AZd =
{
a : Zd → A

}
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which is compact with the product topology. Given a subset F of Zd, define

πF :A
Zd → AF

x 7→ πF (x) = x|F

and take, for each n in Zd the transformations σn : A
Zd → AZd given by

σn

(
(xm)m∈Zd

)
= (σn(x))m = (xn+m)m .

A subset X of AZd is a subshift of finite type if it is closed, shift-invariant (i.e.

σn(X) = X for all n in Zd) and there exists a finite subset F of Zd such that

X =
{
x ∈ AZd : πF (σn(x)) ∈ πF (X) for all n in Zd

}
.

When d = 1, AZd = {1, 2, ..., k}Z is the full shift of k symbols, that is the set

of all doubly infinite sequences of symbols taken from {1, 2, ..., k}, together with

the shift map which moves each sequence one step to the left

σ((xn)n) = (xn+1)n .

This space has a natural product topology using the discrete metrics on

{1, 2, ..., k}. If we let M be a matrix with entries (ai,j)i,j=1,...,k of zeros and

ones such that the entry ai,j is zero precisely when we prohibite “ij” as a word of

lenght two, then a subshift of finite type is given by

XM =
{
(xn)n∈Z : xn ∈ {1, 2, ..., k} and axn,xn+1

= 1 for all n in Z
}
.

XM is a compact and σ-invariant subset of the full shift and its metrical and

dynamical properties depend essencially on the matrix M. This concept corre-

sponds to the above definition when d = 1 and F = {0, 1}.

Claim [Sch]: For each positive integer N , denote by Q(N) the subset of Zd

given by {−N, ..., N}d, by ∂Q(N) the difference Q(N)−Q(N −1) and by |S| the

cardinal of S. Then we have

|πQ(N)(X)| ≤ |A|
|Q(N)|

and

htop(σ|X ) = lim
N→+∞

1

|Q(N)|
log |πQ(N)(X)|

where σ = (σn). Therefore, as when d = 1, htop(σ|X ) ≤ log(|A|).
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Assume now that F = {0, 1}d, |πQ(N)(X)| = |A||∂Q(N)| for all N and that

π∂Q(N)(X) determines πQ(N)(X), which means that each x in X depends only

on its coordinates along ∂Q(N). This property ensures that

|πQ(N)(X)| = |π∂Q(N)(X)| .

Since |Q(N)|=(2N+1)d, |∂Q(N)|= d!
2! (d−2)! .4.2.N

d−1 if d>1 and |∂Q(N)|=2

if d = 1, we have

(i) lim
N→+∞

1

|Q(N)|
log |πQ(N)(X)| = lim

N→+∞

1

|Q(N)|
log |A||∂Q(N)| =

= lim
N→+∞

|∂Q(N)|

|Q(N)|
log |A| = 0 ;

(ii) lim
N→+∞

1

(|Q(N)|)s
log |πQ(N)(X)| = lim

N→+∞

1

(2N + 1)ds
log |πQ(N)(X)| =

= lim
N→+∞

1

(2N + 1)ds
log |A||∂Q(N)| = lim

N→+∞

1

(2N + 1)ds
log |A|γ ,

where

γ =

{
constant ∗Nd−1 if d > 1,

2 if d = 1 .

Therefore

lim
N→+∞

1

(2N + 1)ds
log |A|γ =





+∞ if s < 1− 1
d
,

finite if s = 1− 1
d
,

0 if s > 1− 1
d

and so dσ(X) = 1−
1
d
for all d ≥ 1.

Notice that, in this example, dσ is ultimately only topological; the dynamics

is essentially the same while d varies, but acts on increasing spaces with d and

this is enough to alter the entropy dimension.

VI. Consider X = [0, 1], f(x) = 3x (modulo 1) andKα =
∨+∞
0 f−i(α), where

α is any choice of compact intervals of [0, 1]. Kα is closed, f -invariant and

• if α = {[0, 13 ]}, then Kα = {0} and df (Kα) = 0;

• in case α={[0, 13 ], [
2
3 , 1]}, then N(

∨n−1
0 f−iα)=2n so 1

ns
logN(

∨n−1
0 f−iα)=

n
ns
log 2 which approaches





+∞ if s < 1,

log 2 if s = 1,

0 if s > 1 .



26 M. DE CARVALHO

Thus df (Kα) = 1 and df (1,Kα) = htop(f|Kα
) = log 2 (α is a generator of

the entropy of f restricted to Kα).

• if α = {[0, 13 ], [
1
3 ,

2
3 ], [

2
3 , 1]} (a Markov partition for f), then Kα is the canon-

ical Cantor set and N(
∨n−1
0 f−iα) = 3n, so df (Kα) = 1 and df (1,Kα) =

log 3 = htop(f).

VII. We will use the standard notation X = {1, ..., k}Z, σ, (pi,j)i,j=1,...,k,

(pi)i=1,...,k for the space, map, stochastic matrix and corresponding eigenvector

of eigenvalue one of a Markov shift of finite type. Easy calculations lead, if α is

the generator covering made up by cilinders, to

1

ns
logN

(n−1∨

0

f−i α
)
= −

n

ns

∑

i,j

pi pi,j log(pi,j)

which yields for s = 1, htop(σ) = −
∑

i,j pi pi,j log(pi,j). Therefore dσ(X) = 1,

unless
∑

i,j

pi pi,j log(pi,j) = 0 ,

in which case dσ(X) = 0. Meanwhile the only Markov shifts with zero topological

entropy are the ones with finite support.

To state explicitely examples of smooth dynamical systems with 0 < df < 1 is

an arduous task, as was most likely anticipated from the equally odd difficulties

this number inherits from zero topological entropy systems.

4 – Preliminaries

We start with a brief account on expected properties of the entropy dimension,

in the following precise sense.

Proposition 2. Fix s > 0 and consider the set S = {closed f -invariant

subsets}. Then

(a.1) df (s, Y ) = 0 if Y is empty or finite;

(a.2) If Y and Z are in S and Y ⊆ Z, then df (s, Y ) ≤ df (s, Z);

(a.3) If Y =
⋃
k Yk, where Y , Yk belong to S, then df (s, Y ) ≥ supk df (s, Yk);

(a.4) If Y =
⋃N
k=1 Yk, where Y , Yk belong to S, then df (s, Y ) = maxk df (s, Yk).
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Proof:

(a.1) This is immediate from

N
(n−1∨

0

f|Y
−i α

)
=

{
1, if Y is empty,

cardinal of Y , otherwise,
for all α .

(a.2) Given β an open covering of Y , αβ = β ∪ {CY } is an open covering of

Z and

N
(n−1∨

0

f|Z
−i αβ

)
= N

(n−1∨

0

f|Y
−i β

)
+ 1 ,

hence

df (s, Y ) ≤ sup
β

lim
n→+∞

sup
1

ns
logN

(n−1∨

0

f|Z
−i αβ

)
≤ df (s, Z) .

(a.3) This results from the application of (a.2) to the inclusion Yk ⊆ Y for

each k.

(a.4) Given a covering α of Y , αi = α ∩ Yi is a covering of Yi and

N
(n−1∨

0

f|Y
−i α

)
≤ N

(n−1∨

0

f|Y1

−i α1

)
+N

(n−1∨

0

f|Y2

−i α2

)
+ ...+N

(n−1∨

0

f|Yk
−i αk

)

≤ k max
1≤j≤k

{
N
(n−1∨

0

f|Yj
−i αj

)}
,

so

logN
(n−1∨

0

f|Y
−i α

)
≤ log k + log max

1≤j≤k

{
N
(n−1∨

0

f|Yj
−i αj

)}

≤ log k + max
1≤j≤k

{
logN

(n−1∨

0

f|Yj
−i αj

)}

since log is an increasing function; hence

lim
n→+∞

sup
1

ns
logN

(n−1∨

0

f|Y
−i α

)
≤ lim

n→+∞
sup max

1≤j≤k

1

ns
logN

(n−1∨

0

f|Yj
−i αj

)

= max
1≤j≤k

lim
n→+∞

sup
1

ns
logN

(n−1∨

0

f|Yj
−i αj

)
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and

sup
α

lim
n→+∞

sup
1

ns
logN

(n−1∨

0

f|Y
−i α

)
≤

≤ max
1≤j≤k

sup
α

lim
n→+∞

sup
1

ns
logN

(n−1∨

0

f|Yj
−i αj

)
.

Therefore

df (s, Y ) ≤ max
1≤j≤k

df (s, Yj) .

With (a.3) we complete the other inequality.

These properties induce on df similar ones:

Proposition 3.

(b.1) If Y and Z are in S and Y ⊆ Z, then df (Y ) ≤ df (Z);

(b.2) If Y =
⋃k
1 Yi, where Yi is an element of S, then df (Y )=max1≤j≤k df (Yj);

(b.3) If Y =
⋃+∞
1 Yi, where (Yi) is an increasing union of elements of S, then

df (Y ) = supj df (Yj).

Proof:

(b.1) If s is bigger than df (Z), then df (s, Z) = 0 and so df (s, Y ) = 0, which

implies that df (Y ) ≤ s. Since this holds for all s > df (Z), we must have df (Y ) ≤

df (Z).

(b.2) For all s > 0, df (s, Y ) = maxj df (s, Yj). If we take s bigger than

maxj df (s, Yj), then df (s, Yj) vanishes for all j and so df (s, Y ) = 0. This implies

that df (Y ) ≤ s for all such s and therefore

df (Y ) ≤ max
j

df (s, Yj) .

Reciprocally, if we pick s bigger than df (Y ), then df (s, Y )=0 and df (s, Yj)=0

for all j, and therefore df (Yj) ≤ s for such s, which yields

max
1≤j≤k

df (Yj) ≤ s ,

max
1≤j≤k

df (Yj) ≤ df (Y ) .

(b.3) We already know that (df (Yj))j forms an increasing sequence whose

limit, supj df (Yj), is less or equal to df (Y ). If supj df (Yj) were strictly smaller
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than df (Y ), then we could take s in the interval ] supj df (Yj), df (Y )[ for which

df (s, Y ) = +∞ but df (s, Yj) = 0 for all j. However, since Yj is approaching Y

as j increases, given a covering α of Y ,

lim
j
N
(n−1∨

0

f|Yj
−i α

)
= N

(n−1∨

0

f|Y
−i α

)

hence

lim
n→+∞

sup
1

ns
logN

(n−1∨

0

f|Y
−i α

)

is close to the corresponding limit of 1
ns
logN(

∨n−1
0 f|Yj

−i α), for j big enough,

and so

df (s, Yj) = df (s, Y ) .

Proposition 4.

(a) X finite ⇒ df (X) = 0.

(b) If Ωf (X) denotes the nonwandering set of f in X, then, for all closed

subset Y of X,

df (1, Y ) ≤ df (1, X) = df (1,Ωf (X)) .

Proof:

(a) IfX is finite, N(
∨n−1
0 f−iα)≤cardinal ofX for all n in N and so df (X)=0.

Besides, if X is countable and may be written as an increasing union of finite

f -invariant subsets (Xi)i, then, by Proposition 3 (b.3), we get

df (X) = sup
i
df (Xi) = 0 .

(b) df (1, X) = htop(f) = htop(f|Ωf (X)
).

As previously mentioned, the variable s on the definition of df (X) makes this

invariant remindful of a fractional dimension.

Proposition 5.

[1] The map s > 0 7→ df (s,X) is positive and decreasing with s.

[2] There exists s0 ∈ [0,+∞] such that

df (s,X) =

{
+∞ if 0 < s < s0,

0 if s > s0 .
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Proof:

I. For all covering α,

0 < s ≤ t

n ∈ N



 ⇒ ns ≥ nt ⇒

1

ns
≤
1

nt

⇒
1

ns
logN

(n−1∨

0

f−iα
)
≤
1

nt
logN

(n−1∨

0

f−iα
)
.

This inequality is preserved by the action of lim
n→+∞

sup and sup
α
.

II.

(1i) If for all positive s we have df (s,X) = +∞, then df (X) = +∞;

(2i) If for all positive s we have df (s,X) = 0, then df (X) = 0;

(3i) If there exists a positive s such that 0 6= df (s,X) ≤ +∞, let s0 be the

biggest one of them (s0 belongs to ]0,+∞]); then

(3i.1) in case 0 6= df (s,X) < +∞ and s0 is in ]0,+∞[, we have

lim
n→+∞

sup
1

ns
logN

(n−1∨

0

f−iα
)
= lim

n→+∞
sup

1

ns−s0

1

ns0
logN

(n−1∨

0

f−iα
)

=





+∞ if s < s0,

df (s0, X) if s = s0,

0 if s > s0 .

(3i.2) in case df (s,X) = +∞ and s0 is in ]0,+∞[, we have

lim
n→+∞

sup
1

ns
logN

(n−1∨

0

f−iα
)
= lim

n→+∞
sup

1

ns−s0

1

ns0
logN

(n−1∨

0

f−iα
)

=

{
+∞ if s ≤ s0,

0 if s > s0 .

In fact, if s > s0 and df (s,X) > 0, then df (t,X) = +∞ for all

s0 < t < s which contradicts the definition of s0.

(3i.3) the case s0 = +∞ was already considered in (1i).

The metric on X suggests an alternative method to estimate df (X), using the

special coverings with balls. The notion of (n, ε)-spanning subset we shall evoke

can be interpreted as the number of orbits of length n up to an error ε.
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Proposition 6. Denote by K any closed subset of X, by rn(ε,K) the

minimum cardinal among all (n, ε)-spanning subsets of K and by sn(ε,K) the

maximum cardinal among all (n, ε)-separated subsets of K. Then

(a) df (s,X) = sup
K
lim
ε→0

lim
n→+∞

sup
1

ns
log rn(ε,K);

(b) df (s,X) = lim
ε→0

lim
n→+∞

sup
1

ns
log rn(ε,X);

(c) df (s,X) = sup
K
lim
ε→0

lim
n→+∞

sup
1

ns
log sn(ε,K);

(d) df (s,X) = lim
ε→0

lim
n→+∞

sup
1

ns
log sn(ε,X).

Proof: This is immediate from

Lemma. ([W])

(1) If α is an open covering of X with Lebesgue number δ, then

N
(n−1∨

0

f−iα
)
≤ rn

(δ
2
, X
)
≤ sn

(δ
2
, X
)
;

(2) Given ε > 0 and an open covering α of X with diameter less or equal to

ε, then

rn(ε,X) ≤ sn(ε,X) ≤ N
(n−1∨

0

f−iα
)
;

(3) If αε is an open covering of X made up by balls of radius ε, then

N
(n−1∨

0

f−iαε

)
≤ rn(ε,X) ≤ sn(ε,X) ≤ N

(n−1∨

0

f−iα ε
2

)
.

5 – Main results

The above examples suggest that the entropy dimension is a device shaped

to distinguish zero topological entropy systems. The next theorem states more

precisely that the whole interval ]0, 1[ is assigned by df to these systems, being

df (X) an unnecessary label where the topological entropy already provides a

good catalogue.
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Theorem 1.

(a) htop(f) < +∞ ⇒ df (X) ≤ 1.

(b) htop(f) = +∞ ⇒ df (X) ≥ 1.

(c) 0 < htop(f) < +∞ ⇒ df (X) = 1.

Proof:

(a) If htop(f) < +∞, then

lim
n→+∞

sup
1

n
logN

(n−1∨

0

f−iα
)
= lim

n→+∞

1

n
logN

(n−1∨

0

f−iα
)
< +∞ ,

therefore, for all s bigger than 1 and all covering α, we have

lim
n→+∞

sup
1

ns
logN

(n−1∨

0

f−iα
)
= lim

n→+∞
sup

1

ns−1
·
1

n
logN

(n−1∨

0

f−iα
)

= lim
n→+∞

1

ns−1
lim

n→+∞

1

n
logN

(n−1∨

0

f−iα
)

= 0.htop(f) = 0 .

So df (X) ≤ 1.

(b) If htop(f) = +∞, for each s less than 1, we have

lim
n→+∞

sup
1

ns
logN

(n−1∨

0

f−iα
)
= lim

n→+∞
supns−1 ·

1

n
logN

(n−1∨

0

f−iα
)
= +∞

and so df (X) ≥ 1. Equivalently, df (X) < 1 yields htop(f) < +∞.

(c) Under the hypothesis htop(f) < +∞, we get from (a) that df (X) ≤ 1. As

htop(f) > 0 it is at s equal to 1 that the map s 7→ df (s,X) changes its value:

df (s,X) = +∞ if s < 1 ;

df (1, X) = htop(f) ;

df (s,X) = 0 if s > 1 .

This means that df (X) = 1.

Theorem 2. If f is a continuous endomorphism of a compact set X, then

df (X) ≤ 1.
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Proof: Let α be an open covering of X, s be a real number greater than one

and an(α) denote the sequence (logN(
∨n−1
0 f−iα))n. By Proposition 1, for all n

and k in N,
an+k(α) ≤ an(α) + ak(α)

and therefore, if n is written as n = p k+ r, p a fixed integer and r the remainder

from the integer division by p (0 ≤ r < p), we have

0 ≤
an(α)

ns
=

ar+kp(α)

(r + kp)s
≤

ar(α)

(r + kp)s
+

akp(α)

(r + kp)s
≤

ar(α)

(r + kp)s
+

k ap(α)

(r + kp)s
.

Therefore

0 ≤
ar(α)

ns
≤
max

{
ai(α) | i ∈ {0, ..., p}

}

ns

and, as n approaches +∞, the sequence ( ar(α)
ns
) converges towards zero. Besides,

since
k ap(α)

(r + k p)s
=

ap(α)

ks−1( r
k
+ p)s

and, as n goes to +∞, k also approaches +∞ and (p + r
k
)s converges to ps, we

get

lim
k→+∞

k ap(α)

(r + k p)s
= 0 ,

lim
k→+∞

1

ks−1
= 0

and

lim
n→+∞

an(α)

ns
= 0 .

Therefore df (X) ≤ 1. In particular, since this limit exists, we may replace, in

Definition 1, df (X) by

inf
{
s > 0: sup

α
lim

n→+∞

1

ns
an(α) = 0

}

|α an open finite covering of X
.

If s = 1, the inequality

an(α)

n
≤

ar(α)

n
+
ap(α)

p+ r
k

yields

lim
n→+∞

sup
an(α)

n
≤ inf

p

ap(α)

p
≤ lim

n→+∞
inf

an(α)

n

and
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lim
n→+∞

an(α)

n
= inf

n

an(α)

n
.

Question: Does df (X) = 1 imply that 0 < df (1, X) = htop(f)?

This question has a known answer if we are considering the Hausdorff dimen-

sion: if an invariant subset of a manifold X has maximum Hausdorff dimension

(whose value equals the topological dimension of X), then the Lebesgue measure

of Y must be positive. See [H] for details. Notice however that there are functions

L(n) such that

lim
n→+∞

L(n)

n
= 0

and

∀ 0 < s < 1 lim
n→+∞

L(n)

ns
= +∞ .

For instance, if

L(n) =

∫ n

2

1

log(t)
dt ,

then

lim
n→+∞

L(n)

n
= lim

n→+∞

1

log(n)
= 0

but, for all s in ]0, 1[,

lim
n→+∞

L(n)

ns
= lim

n→+∞

1

s ns−1 log(n)
= +∞ .

Unfortunately, it is less immediate to find a dynamical system f whose se-

quence (logN(
∨n−1
0 f−iα))n equals L(n).

The next step is to extend to the entropy dimension the basic methods for

calculating the topological entropy.

Proposition 7. If (X, f) has a generator covering α of the entropy, then

df (s,X) = df (s, α,X).

Proof: We have just to repeat the proof of the analogue property for s = 1.

See, for instance, [W].

Proposition 8. df (s,X) and df (X) are invariant under conjugacy.

Proof: Let X and Y be compact metric spaces and f : X → X, g : Y → Y

be continuous dynamical systems supported on them and such that there is a
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homeomorphism h satisfying h ◦ f = g ◦ h. Take α a finite covering of X. Then

h(α) is a finite open covering of Y and

N
(n−1∨

0

g−i h(α)
)
= N

(n−1∨

0

h f−iα
)
= N

(
h
(n−1∨

0

f−iα
))
≤ N

(n−1∨

0

f−iα
)

since a subcovering of
∨n−1
0 f−iα is taken by h bijectively onto a subcovering of∨n−1

0 g−i h(α). Therefore

lim
n→+∞

sup
1

ns
logN

(n−1∨

0

g−i h(α)
)
≤ lim

n→+∞
sup

1

ns
logN

(n−1∨

0

f−iα
)

and

dg(s, Y ) ≤ df (s,X) for all positive s .

Taking the least upper bound over all coverings α and into account that

(h(α))α ranges among all covers of Y , we obtain dg(Y ) ≤ df (X). Analogously,

using h−1, we conclude that dg(s, Y ) ≥ df (s,X) and dg(Y ) ≥ df (X).

Proposition 9 ([N], [Ym]). df (X) is upper semicontinuous within families

of C∞ endomorphisms of a compact smooth manifold X. That is, if g converges

to f in the C∞ topology, then

lim sup dg(X) ≤ df (X) .

Proof: This is an interesting property the topological entropy shares. Since

the main component in the definition of df (X) that depends on f is given by

1

ns−1
1

n
logN

(n−1∨

0

f−iα
)

and its second factor (the unique involved in the entropy) varies nicely with f

among C∞ families, according to [N] and [Ym], the same may be expected for

df (X). And in fact, the estimates and the arguments of [N] and [Ym] may be

pursued in our context with the extra exponent s.

Proposition 10.

(a) ∀ s > 0, ∀m ∈ N, dfm(s,X) ≤ ms df (s,X);

(b) ∀ 0 < s ≤ 1, ∀m ∈ N, dfm(s,X) ≤ mdf (s,X);

(c) ∀m ∈ N, dfm(X) = df (X).
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Proof:

(a) Given s > 0 and m ∈ N,

1

ns
log rn(ε,K, fm) ≤

1

ns
log rnm(ε,K, f) =

ms

(nm)s
log rnm(ε,K, f) .

Hence dfm(s,X) ≤ ms df (s,X).

(b) This is straightforward from the inequality

ms ≤ m ∀ 0 < s ≤ 1 ∀m ∈ N .

(c) By Theorem 2, to estimate df (X) we only need to consider s ∈ ]0, 1[;

(b) then implies that dfm(X) ≤ df (X).

Denote by D any metric inducing the topology in X. Taking into account

that, fixing m in N, the powers of f

f, f2, ..., fm

are uniformly continuous on X, given ε > 0, there exists δ > 0 such that

[
D(x, y) < δ ⇒ sup

0≤i≤m−1
D(f i(x), f i(y)) < ε

]
.

Then we get [mr(ε,K, f) ≤ r(δ,K, fm)] and, using Proposition 6, we conclude

that

df (X) ≤ dfm(X) .

6 – Variational principle

Let us now turn to the probabilistic version of the entropy dimension. Through-

out this section, we will keep the notation

f : X → X is a continuous endomorphism of the compact metric space X;

µ is an f -invariant measure.

The next theorems assemble properties of the metric entropy dimension sim-

ilar to the ones formulated in previous sections for df (X).
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Theorem 3.

(a) ∀ f,X, µ, df (X,µ) ≤ 1.

(b) 0 < htop(f) < +∞ ⇒
I
∃µ : 0 < hµ(f) < +∞ ⇒

II
df (X,µ) = 1 ⇒

III

df (X,µ) = supν df (X, ν).

(c) ∀ s>1, ∀µ, df (s,X)≥df (s,X, µ) and so ∀ s>1, df (s,X)≥supµ df (s,X, µ).

(d) ∀ 0 < s < 1, df (s,X) ≤ supµ df (s,X, µ).

(e) For s = 1, df (1, X) = supµ df (1, X, µ).

(f) ∀ f : X → X, df (X) ≤ supµ df (X,µ).

Proof:

(a) This is the analogue to Theorem 2, using an(α) = logHµ(
∨n−1
0 f−iα).

(b) (I) This first implication is a consequence of the Variational Principle,

see [W].

(II) Since

df (s,X, µ) = sup
α

lim
n→+∞

sup
1

ns
logHµ

(n−1∨

0

f−iα
)

= sup
α

lim
n→+∞

sup
1

ns−1
1

n
logHµ

(n−1∨

0

f−iα
)
,

we have, taking into account that htop(f) > 0,

df (s,X, µ) =

{
+∞ if s < 1,

0 if s > 1 .

Hence df (X,µ) = 1.

(III) Since, by (a), df (X, ν) ≤ 1 for all f -invariant probability ν, if

df (X,µ) is equal to 1, then it has reached the maximum.

(c),(d) These are analogous to the corresponding result for s = 1 (the Vari-

ational Principle). We have only to check a few estimates and how they change

with the intervention of the exponent s, which we summarize as follows:

(c) Given a covering ξ of X, there is a refinement α of ξ such that, for each n

in N,

Hµ

(n−1∨

0

f−iα
)
≤ log

(
N
(n−1∨

0

f−iα
)
2n
)
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and this yields

1

ns
logHµ

(n−1∨

0

f−iα
)
≤

n

ns
log 2 +

1

ns
logN

(n−1∨

0

f−iα
)

and so

1

ns
logHµ

(n−1∨

0

f−1 ξ
)
≤

n

ns
log 2 +

1

ns
logN

(n−1∨

0

f−iα
)
;

since s > 1, as n goes to +∞, n
ns
converges towards zero, thus

df (s,X, µ) ≤ df (s,X) ∀µ .

This yields

sup
µ

df (s,X, µ) ≤ df (s,X) .

(d) Given ε > 0, the argument follows by exhibiting an f -invariant probability

µ which is an accumulation point of iterates by f of Dirac measures µn
supported on (n, ε)-separated sets, satisfying

[1] ∀ covering ξ
n

qs
log sq(ε,X)≤Hµq

(n−1∨

0

f−iξ
)
+
2n2

qs
log(cardinal of ξ) ;

[2] n lim
q→+∞

1

qs
log sq(ε,X) ≤ Hµ

(n−1∨

0

f−iξ
)
.

Therefore

[3] lim
q→+∞

1

qs
log sq(ε,X) ≤

1

n
Hµ

(n−1∨

0

f−iξ
)
≤
1

ns
Hµ

(n−1∨

0

f−iξ
)

since

0 < s < 1 ⇒ ns ≤ n ⇒
1

ns
≥
1

n
.

Hence, letting n go to +∞, we obtain

df (s,X) ≤ df (s,X, µ) ≤ sup
µ

df (s,X, µ) .

(e) This is precisely the contents of the Variational Principle.

(f) If supµ df (s0, X, µ) vanishes for some s0 in ]0, 1], then df (s0, X, µ) = 0 for

all µ; besides, (d) and (e) above yield

df (s0, X) = 0 .



ENTROPY DIMENSION OF DYNAMICAL SYSTEMS 39

Therefore

df (X) ≤ s0

and so

df (X) ≤ inf
{
s > 0: sup

µ
df (s,X, µ) = 0

}
.

Notice that s bigger than one is irrelevant for df (X) and was already discarded.

The missing step is the prove that inf{s > 0 : supµ df (s,X, µ) = 0} =

supµ{inf{s > 0: df (s,X, µ) = 0}}. This is the contents of coming Lemma.

Lemma. Let S and S̃ be defined as

S = inf
{
s > 0: sup

µ
df (s,X, µ) = 0

}

and

S̃ = sup
µ

{
inf{s > 0: df (s,X, µ) = 0}

}
.

Then S = S̃.

Proof:

I. S ≥ S̃.

If S were less than S̃, we might take t in ]S, S̃[ and then, as t > S,

sup
µ

df (t,X, µ) = 0

or, equivalently, for all µ, df (t,X, µ) = 0. But since t < S̃, there would be an

f -invariant measure µt such that

{
inf{s > 0: df (s,X, µt) = 0}

}
> t

which implies that df (t,X, µt) 6= 0 and this is a contradiction.

II. S ≤ S̃.

Assume S is bigger than S̃. As, for all µ,

S̃ ≥ inf
{
s > 0: df (s,X, µ) = 0

}

we have, for instance,

df

(
S̃ +

S − S̃

3
, X, µ

)
= 0 ∀µ .
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This implies that

[1] sup
µ

df

(
S̃ +

S − S̃

3
, X, µ

)
= 0

and

[2] S > inf
{
s > 0: sup

µ
df (s,X, µ) = 0

}

which is not consistent with the definition of S since S̃+ S−S̃
3 is smaller than S.

To end the proof of the Theorem, notice that

df (X) ≤ inf
{
s > 0: sup

µ
df (s,X, µ) = 0

}

= sup
µ

{
inf{s > 0: df (s,X, µ) = 0}

}

= sup
µ

df (X,µ) .

Question: If 0 < htop(f) < +∞, then df (X) = 1 = supµ df (X,µ).

Is df (X) = supµ df (X,µ) always valid?
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