PORTUGALIAE MATHEMATICA
Vol. 54 Fasc. 1 — 1997

SPACE CURVES AND THEIR DUALS

F.J. CRAVEIRO DE CARVALHO and S.A. ROBERTSON

In the real projective plane P2, the duality between lines and points induces
a map J from the set of smooth (C*) immersions f: R — P? to the set of all
smooth maps g: R — P2, Thus 6(f) = g, where for all s € R, g(s) is the polar
of the tangent line to f at f(s). In order that g itself be an immersion, it is
necessary to restrict f to have nowhere zero geodesic curvature. The map 9 is
then an involution on the set of such immersions.

In this paper, we examine these ideas in the slightly broader setting of smooth
immersions f: R — E? in Euclidean 3-space. In particular, suppose that M and
N are smooth surfaces in E? such that, for any immersion f: R — E3, f(R) C M
implies f.«(R) C N, and vice-versa, where f, is defined in §1. Then M and N are
either both spheres with centre 0 or both cones with apex 0. If M is the unit
sphere S? or is the circular cone of apex angle 7/2 then M = N. Accordingly,
we concentrate attention on these cases.

1 — The dual of a space curve

Let f: R — E3 be a smooth immersion. Then we can define a unit tangent

vector field ¢ along f(R) by t(s) = f'(s)/[|f'(s)|l, s € R. The dual 6(f) = fu:
R — E3 of f is then given by

fe=fAt.
Of course, although f,, is smooth, it need not be an immersion. Thus f. =

f'At+ fAY = f AL, so fiis an immersion iff, for all s € R, f(s) and t/(s) are
linearly independent.
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For such an f,

For = (fi)s = fu A (E/IISID

1 !/
= m(f/\t-t/)f—(f/\tf)t,
= —cosf f,

where 6 is the angle between f At and ¢, 0 < § < 7. This shows that for at least
some immersions f, d has an involutory character.
We now examine the case of immersions f: R — S? where § =0 or 7.

2 — Curves on S2

Let f: R — S? be a smooth immersion into the unit sphere. Then f, is a
smooth immersion iff the geodesic curvature k,4(s) of f at s is nonzero, for all
s € R, since v(s) ky(s) = f(s).(t(s) At'(s)) # 0 iff ¢/(s) is not perpendicular to S?
at f(s), with v(s) = ||(s)]|.

Suppose, then, that G denotes the set of all smooth immersions f: R — S2
for which 4 is nowhere zero. Then G is the disjoint union of G and G_ where
f € G4 or G_ according as k4 > 0 or k4 < 0. Trivially, the antipodal involution
a: G — G, given by a(f)(s) = —f(s), interchanges G4 and G_.

Proposition 1. Forall fe G, fiu=fif fe Gy and fou =—fif feG_.

Proof: We have shown in §1 above that f.. = (—cosf) f, where 6 is the angle
between f At and t. Since kg =1 f.(t At) = —L(f At)).t and |kg| = L | f AT,
where v = || f|| is the velocity function as above, the result follows. u

From f, = fAt and |k, = L || fAY]], it follows immediately that || f| = v|k|.
Corollary 1. There is a well-defined map 6: G — G given by §(f) = f.

Proof: We want to show that f, € G for all f € G. Since f € G implies f At/
is nowhere zero, we know that f, is a smooth immersion. Also || f|| = || fAt|| = 1,
since f.t =0 and || f|| = ||t|| = 1. By Proposition 1, f.. = £f, so f. is a smooth
immersion. Hence f, € G. n

Corollary 2. 0(G) =G4.
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Proof: If f € G4, then —f € G_ and if f € G_, —f € G4. Also, for
any f € G, (—f)« = f«. Suppose that for some f € G, f. € G_. Then
(fi)sx = —f« € G4, by Proposition 1. But (fi)w = (fux)x = fx € G_, by
hypothesis. So f. = —f., which is a contradiction. It follows that f, € G4, if
f € G4. Likewise, if f € G_, then —f € G4 and f, = (—f)« € G4. n

Corollary 3. 0|G is a fixed-point free involution.

Although §|G; has no fixed elements, it does map each circle of radius v/2/2
to itself, and each circle of radius 71, 0 < r1 < 1 to the parallel circle of radius 7o
in the same hemisphere, where r} + r3 = 1.

3 — Multiple points and homotopy

Let us now concentrate on smooth closed curves on S2. Thus we confine
attention to smooth immersions f: R — S2 that are periodic. Denote by C' the
set of all such curves that are nondegenerate in the sense of Little [1]. That is
to say, f € C iff it is periodic and f € G. Denote by C; and C_ the sets of
periodic elements of G+ and G_. Now regard C as a subset of the space S of
C? periodic nondegenerate immersions f: R — S2, with the C? topology. Then
Little showed that, with obvious notation, each of S; and S_ has exactly three
path components. Equivalently, there are exactly three nondegenerate regular
homotopy classes on Sy and S_. These six classes are represented by curves of
the form indicated in Figure 1 for plane projection from a hemisphere of S2.

Let Cﬂr denote the subsets of C+ consisting of curves in the class of types i,
i=1,2,3.

Proposition 2. If f € Ci, then f, € Ci, 1=1,2,3.

Proof: This follows from work of Little [1], as we now explain. Let f € C
and suppose that s,u € R with s # u. Then f.(s) = fi(u) iff f(s) At(s) =
f(u) At(u). Thus fi(s) = f«(u) iff the great circle that is tangent to f at f(s)
and oriented in the direction of ¢(s) is also tangent to f at f(u) in the direction
of t(u).

We may suppose without loss of generality that f is self-transverse (modulo
periodicity) and that it has only doubly tangent great circles of the above type.
That is, we may suppose that both f and f, are self-transverse.
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If f has 0, 1 or 2 double points, then f, has 0, 1 or 4 such double points, as
indicated in Figure 2. A procedure explained by Little then shows that f, € C}r,
C’_% or C’i’_, respectively and the proposition follows, since ¢ is a homeomorphism
of Cy C S to itself.

e

Fig. 1 — Nondegenerate regular homotopy classes of closed curves on S2.

Fig. 2 — Multiple points and oriented double tangents.

Similar arguments apply to C?, where we find that f € C? implies that
f+ € C’j_. "
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4 — Duality on a cone

The results obtained above depend to some extent on the fact that the origin
O has a privileged position in relation to S?. Another surface where O is a centre
of symmetry is a right circular cone C with apex O. For convenience, let the axis
of C be the z-axis in E3. To make things work better, we also suppose that the
apex angle of C is %7‘1’. The surface C is given, therefore, by the equation

2 +yP =22, 2#40.

Let f: R — C be a smooth immersion. Then there are smooth functions z and
# such that, for all s € R,

f(s) = (z(s) cosf(s), z(s)sinb(s), z(s)) ,
z(s) # 0. It follows that
"= (2" cosf — 26 sin0, 2'sinf + 260 cos b, 2
f ( ) Y 9y
S0
IF/IP =222 + 2207,

and
1

171

is well-defined as a smooth map f,: R — C, provided that " is nowhere zero.
Moreover, f, = f At implies that f, = 0 at s € R iff f(s) and /(s) are
linearly dependent. Since we shall require that 6’ is nowhere zero, f is transverse

fe=fANAt= z29’(—0089,—sin9, 1)

to the generators of C and hence the normal curvature of f is nowhere zero. We
conclude that t'(s) is nowhere zero, so fi(s) # 0 for all s € R. Hence f, is a
smooth immersion, transverse to the generators of C.

We have now shown that there is a well-defined map v: K — K of the set K
of smooth immersions of R into C, transverse to its generators, into itself, given
by v(f) = f-

Now C has two components or sheets C and C_ given by z > 0 and z < 0
respectively. So K may be partitioned into four disjoint subsets K,,, where
p = *+1 according as z > 0 or z < 0 and ¢ = +1 according as #’ > 0 or §’ < 0, for
any f € Kp,.

The following proposition is easy to establish.

Proposition 3. (K UK _)C K44, andy(K__ UK, )C K__.
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We do not know whether either inclusion is strict.
The map v cannot be an involution, even on, say K, as we now show.

Proposition 4. Forall f € K and all s € R, || f«(s)|| < || f(s)|| with equality
iff 2/(s) = 0.

Proof: Since f.(s) = f(s) At(s),

[£()l = [[f () [E(s)] sin @ (s) = [|f (s)[| sin §(s) ,
where ¢(s) is the angle between ¢(s) and f(s). m

Proposition 4 shows that if f € K is such that z has a critical point at s € R,
then with the obvious notation, z.(s) = z(s). If s is not a critical point of z,
however, then |z.(s)| < |z(s)].

So if 7 is a closed curve on C; then the range of values of z(s), s € R, is a
compact interval [a, b], where a < b except when 7 is a ‘circle of latitude’. For such
7, the range of z(s) for the n-th iteration v" of v, is [ay, b], where ap4+1 < a,, < a,
for sufficiently large n. We do not know whether o = lim,,_,~, a,, must be 0 or
whether it can be positive.
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