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Abstract: We give a very simplified version of the L2-regularity theorem for solu-

tions of a nonhomogeneous system of the Stokes type (see (1.3)λ) which coincides with

the Stokes system when λ = 0 (see Theorem 1.1). We also give a corresponding approx-

imation theorem (see Theorem 1.2).

1 – Introduction

Let Ω be an open, bounded, connected subset of Rn, n ≥ 2, locally located on

one side of its boundary Γ, a manifold of class Ck,1. ν denotes the unit external

vector normal to Γ. In this paper we consider, in particular, the Stokes system

(1.1)





−µ∆u+∇p = f in Ω,

∇ · u = g in Ω,

u = ϕ on Γ ,

where u and f are n-vector fields and p and g scalar fields, over Ω. ϕ is a vector

field defined on Γ. f , g and ϕ are given. We assume that the compatibility

condition

(1.2)

∫

Ω
g dx =

∫

Γ
ϕ · ν dΓ

holds. We denote by Hk ≡ Hk(Ω), k integer, the Sobolev space consisting of

(vector or scalar) functions that belong to L2 ≡ L2(Ω) together with the partial
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derivatives of order less or equal to k. H−1 ≡ H−1(Ω) denotes the dual space of

H1
0 (Ω), the closure of C

∞
0 (Ω) in H

1(Ω). For convenience we set
◦

H2 ≡ H2 ∩H1
0 .

We define

L2# ≡
{
g ∈ L2 : m(g) = 0

}
, m(g) ≡

∫

Ω
g dx ,

and also Hk
# ≡ Hk ∩L2#. The canonical norm in H

k is denoted by ‖ · ‖k and that

in L2 simply by ‖ · ‖.

In the sequel we also consider the system

(1.3)λ





−µ∆u+∇p = f in Ω,

λp+∇ · u = g in Ω,

u = ϕ on Γ ,

where λ ≥ 0 is a real parameter. When λ = 0 this system is just the usual

(nonhomogeneous) Stokes system (1.1). We give here a very simple proof of the

following result.

Theorem 1.1. Let k be a nonnegative integer and λ be a nonnegative real

parameter. Assume that Γ is a manifold of class Ck,1, that f ∈ Hk−1, g ∈ Hk,

ϕ ∈ Hk+1/2(Γ), and that (1.2) holds. Then, there is a unique solution (uλ, pλ) in

the space Hk+1 ×Hk
# of problem (l.3)λ. Moreover

(1.4)λ µ‖uλ‖k+1 + (1 + µλ) ‖pλ‖k ≤ c
(
‖f‖k−1 + µ‖g‖k + µ‖ϕ‖k+1/2,Γ

)
.

Here, and in the sequel, we denote by c constants that depend at most on

Ω and k. The same symbol c is used to indicate distinct constants, even in the

same formula.

We remark that one easily reduces the nonhomogeneous boundary condition

u = ϕ on Γ to the homogeneous one u = 0 on Γ. In fact it is well known that

there is a linear continuous map γ−1 from Hk+1/2(Γ) into Hk+1(Ω) such that

(γ ◦ γ−1)ϕ = ϕ (see [Pr], [Ne2]). Here γ denotes the usual trace operator. In

view of this fact we assume in the sequel that ϕ = 0. The term “homogeneous”

means here that g = 0. Note, by the way, that for the Stokes system (1.1) under

the canonical assumption g = 0 the construction of the map γ−1 is quite involved

(even in the case n = 3) due to the constraint on the divergence of u.

Let us now made some comments on our results. If k = 0 and λ > 0 the

system (1.3)λ is well known in numerical analysis. In this context, the main

point is the approximation of the solution (u0, p0) of the Stokes system with the

solution (uλ, pλ) of (1.3)λ as λ goes to zero (penalty method). It is well known
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that ‖uλ − u0‖1 ≤ cλ‖f‖−1 (for details see [G.R.], Ch. II, §2.4. See also [T],

Ch. I, §6). Theorem 1.1 provides an easy proof of this estimate in the general

case. More precisely one has the following result.

Theorem 1.2. Under the assumptions of Theorem 1.1 one has

(1.5) µ‖uλ−u0‖k+1+(1+µλ) ‖pλ−p0‖k ≤ cµλ
(
‖f‖k−1+µ‖g‖k+µ‖ϕ‖k+1/2,Γ

)
.

In particular

(1.6) ‖∇ · uλ − g‖k ≤ cλ
(
‖f‖k−1 + µ‖g‖k + µ‖ϕ‖k+1/2,Γ

)
.

Proof: By applying the estimate (1.4)λ to the system −µ∆(uλ−u0)+∇(pλ−

p0) = 0 in Ω, λ(pλ − p0) +∇ · (uλ − u0) = λ p0 in Ω, uλ − u0 = 0 on Γ, it follows

that the left hand side of (1.5) is bounded by cµλ‖p0‖k. This last quantity is

bounded by the right hand side of (1.5), by Theorem 1.1 for λ = 0. This proves

(1.5).

When λ = 0 many distinct proofs of Theorem 1.1 are available in the litera-

ture. However our very elementary proof turns out to be simpler than the current

ones (and, in any case, interesting by itself). Let us made some comments on

this point.

It is well known that L2-regularity theorems for elliptic equations present

special features with respect to the general Lp-case, p 6= 2. Usually, the proofs of

the regularity of the solution for the Stokes system follow the potential theoretical

approach (see [Ca], [So], [La]), as for general elliptic systems (see, for instance

[ADN]). However, in the particular (but central) case p = 2 it is sometimes

possible to apply the elementary method of the differential quotients, introduced

in reference [Ni]. For the homogeneous (g = 0) Stokes system (1.1) this gap

was filled up in [C.F.]. See theorem 3.11 in this last reference. A previous proof,

independent of potential theory, is given in reference [SS], where n = 3. Below we

give a proof of the L2-regularity for the system (1.3)λ without resort to potential

theory as well. However, we do not apply the differential quotients method to the

Stokes system. The following are some of the advantages of this choice. If the

differential quotients method is applied directly to the Stokes system one has to

prove the H2-estimate in the framework of the integral (variational) formulation

of the problem. In our proof this formulation is used only for establishing the

existence of the weak solution (Theorem 2.1 below). On the other hand (see

[C.F.]) the differential quotients method is applied to a system of equations more

involved than the original Stokes system. In our approach, the central part
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of the proof of the H2-estimate is done by working directly with the original

system (l.3)λ (moreover, part of these estimates are just obtained as an immediate

consequence of the H1-estimates).

It is worth noting that our proof do not entirely avoid the differential quotients

method since we will assume the estimate (1.9) below, concerning the solution of

the scalar Poisson equation, a result obtained (not necessarily, however) by the

differential quotients method. But for this elementary problem the (very familiar)

proof is particularly simple. Moreover this result is not used in order to prove the

main estimate (1.8)λ (i.e., the Theorem 4.1 below) but only in order to prove the

effective existence of the solution (a point, sometimes, more or less passed over).

In fact, we show that the existence of a regular solution to the above Poisson’s

equation together with the a priori estimate for the system (1.3)λ allow an elegant

and simple proof of the existence of the regular solution to this last problem (see

section 4).

Finally we recall that the common approaches to the Stokes problem require

(with respect to the theory of second order elliptic scalar equations) an additional

set of non trivial results, connected to particular functional spaces, which are spe-

cific to that problem. This fact leaves the Stokes system outside the elementary

theory of elliptic partial differential equations. Our proof does not require any

of these particular results. In this same regard, note that the non-homogeneous

Stokes system (1.1) can be reduced, as well, to the homogeneous one (h = 0).

Also this reduction, however, requires further specific technical devices due to the

constraint ∇ · u = 0.

Lastly, we note the little regularity assumed here for the boundary Γ.

For convenience we concentrate our attention in the H2-regularity (k = 1)

since Hk+1-regularity for k ≥ 2 follows then by more or less standard devices.

Summarizing, in the sequel we give a simple proof of the following result.

Theorem 1.3. Let Ω be an open bounded set of class C1,1 and assume that

f ∈ L2 and g ∈ H1
#. Then, there is a unique solution (u, p) ∈ H2 × H1

# of the

problem

(1.7)λ





−µ∆u+∇p = f in Ω,

λp+∇ · u = g in Ω,

u = 0 on Γ ,

for each λ ≥ 0. Moreover,

(1.8)λ µ‖u‖2 + (1 + µλ) ‖p‖1 ≤ c
(
‖f‖+ µ‖g‖1

)
.
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Note that the system (1.7)λ admits a unique solution for each g ∈ L2(Ω).

However the solution blows up as λ goes to zero, if m(g) 6= 0.

Below, we give a self-contained proof of Theorem 1.3. We assume just the

classical theorem establishing that if Ω is as in that theorem and if f ∈ L2 then

the (unique) solution u ∈ H1
0 of the scalar Poisson’s equation −∆u = f belongs

to H2 and satisfies the estimate

(1.9) ‖u‖2 ≤ c0 ‖f‖ .

2 – Existence of the variational solution

It is advisable to begin by proving the existence theorem in the space H1
0×L

2
#

for the solution (u, p) of problem (1.7)λ. We begin by assuming that λ > 0. For

convenience we set

Y ≡ H−1 × L2# , X1 ≡ H1
0 × L

2
# .

We denote by (·, ·) the scalar product in L2 (for scalar and for vector fields). Set

U = (u, p), V = (ϕ,ψ) and consider the bilinear continuous form over X1

(2.1) aλ(U, V ) ≡ µ(∇u,∇ϕ)− (p,∇ · ϕ) + λ(p, ψ) + (∇ · u, ψ) .

This form is coercive over X1 since

aλ(U,U) ≥ µ‖u‖21 + λ‖p‖
2 .

On the other hand, by setting

〈L, V 〉 ≡ 〈f, ϕ〉H−1,H1

0

+ (g, ψ) ,

the element L ≡ (f, g) ∈ Y defines a linear continuous functional over X1. Hence,

the Lax–Milgram lemma shows the existence of a (unique) solution U = (u, p) ∈

X1 of the problem

(2.2) aλ(U, V ) = 〈L, V 〉 , ∀V ∈ X1 .

By choosing V = U (2.2) yields

(2.3) µ‖∇u‖2 + λ‖p‖2 ≤ ‖f‖−1 ‖u‖1 + ‖g‖ ‖p‖ .
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In particular,

(2.4) µ‖u‖21 + λ‖p‖
2 ≤

c

µ
‖f‖2−1 +

1

λ
‖g‖2 .

By setting ψ = 0, equation (2.2) shows that the first equation (l.7)λ holds in

H−1. On the other hand, by setting ϕ = 0, it follows that (λp+∇·u, ψ) = (g, ψ)

for each ψ ∈ L2#. Since the functions p, ∇ · u, and g belong to L
2
# it follows

that the second equation (l.7)λ is satisfied. This shows that (2.2) is a variational

formulation of problem (l.4)λ.

The estimate (2.4) is not useful for passing to the limit as λ goes to zero.

Note, in particular, that the right hand side tends to +∞ if g 6≡ 0. However,

having in hand the existence of the solution in the space X1, it is not difficult to

get the sharp estimate. In fact, we have shown that ∇p = µ∆u + f belongs to

H−1. Hence ‖∇p‖−1 ≤ µ‖u‖1 + ‖f‖−1. On the other hand, since p ∈ L2# and

∇p ∈ H−1, one has ‖p‖ ≤ c‖∇p‖−1 (see Lemma 2.1 below). Consequently

‖p‖ ≤ c
(
µ‖u‖1 + ‖f‖−1

)
.

Next, by replacing in the right hand side of equation (2.3) ‖p‖ by the right hand

side of the above inequality it readily follows

µ‖u‖21 ≤ c

(
1

µ
‖f‖2−1 + µ‖g‖

2

)
.

Hence for each λ > 0, µ‖u‖1 ≤ c(‖f‖−1 + µ‖g‖). By using the above estimate

for ‖p‖ one gets (see remark below)

(2.5) µ‖u‖1 + ‖p‖ ≤ c
(
‖f‖−1 + µ‖g‖

)
.

If λ = 0 the proof follows from the estimate (2.5) since this estimate shows that

the solution (uλ, pλ) of problem (l.7)λ, λ > 0, is weakly convergent in H
1
0 ×L

2
# to

some (u, p), as λ→ 0. Note that the problem (1.7)λ, for each λ ≥ 0, has a unique

solution in H1
0 × L2#, in the sense of distributions, since if f = 0 and g = 0 the

solution must vanish. The proof is trivial. Thus we have proved the following

result.

Theorem 2.1. Let (f, g) ∈ H−1 × L2#. Then, the problem (1.7)λ, λ ≥ 0,

has a unique solution (u, p) in the space H1
0 × L

2
#. Moreover, (2.5) holds.

Remark. By using (in particular) the estimate (2.3) one easily shows that

‖p‖ can be replaced by (1 + µλ)‖p‖ in the estimate (2.5).
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Lemma 2.1. There exists a positive constant c such that ‖p‖ ≤ c‖∇p‖−1
for each p ∈ L2# verifying ∇p ∈ H−1.

Proof: Assume that Γ ∈ C1,1. By defining

X(Ω) =
{
p ∈ H−1 : ∇p ∈ H−1

}

one has X = L2 as sets. A very elementary, self contained, proof of this result is

given in reference [D.L.] Chap. 3, Theorem 3.2. Here n = 3, however the proof

does not depend on this assumption as remarked in the footnote (9); see also [T],

page 28, Lemma 5. Let us show further the equivalence of the norms in X and

in L2.

It is obvious that |‖p‖| ≡ ‖p‖−1 + ‖∇p‖−1 ≤ c‖p‖ for each p ∈ L2. Moreover

|‖ · ‖| is a norm in L2. Hence the norms |‖ · ‖| and ‖ · ‖ are equivalent in L2

if {L2, |‖ · ‖|} is complete. Let {un} be a Cauchy sequence in this space. Then

un → u in H−1 and ∇un → ∇u in H−1, for some u ∈ X = L2. Hence {L2, |‖ · ‖|}

is complete. In particular

(2.6) ‖p‖ ≤ c
(
‖p‖−1 + ‖∇p‖−1

)
, ∀ p ∈ L2# .

In order to prove the estimate claimed in the lemma it is sufficient to show

that to each ε > 0 there corresponds a cε > 0 such that ‖p‖−1 ≤ ε‖p‖+cε‖∇p‖−1,

for each p ∈ L2#. If this were false, it would follow that there exist some ε0 > 0

and a sequence pn in L
2
# for which

‖pn‖−1 ≥ ε0‖pn‖+ n‖∇p‖−1 , ∀n ∈ N ,

where ‖pn‖−1 = 1. It readily follows that (for a subsequence) pn converges to

some p in H−1 (since H−1 ↪→ L2 is compact) and weakly in L2 (hence p ∈ L2#).

Moreover ∇pn converges to 0 in H
−1, hence ∇p = 0. Consequently p = 0, which

contradicts ‖p‖−1 = 1.

Finally, we note that the above lemma holds even if Γ belongs only to the

class C1,1. For a proof see [Nel].

3 – The local a priori estimate

In this section we prove (1.8)λ as an a priori estimate in the “half space” (see

(3.2)) when λ > 0. The simplicity of the proof seems remarkable. For convenience
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we set x = (x′, xn), where x
′ = (x1, ..., xn−1). Moreover

Q ≡
{
x : |x′| < 1, |xn| < 1

}
,

Q+ ≡
{
x ∈ Q : 0 < xn

}
,

Λ ≡
{
x : |x′| < 1, xn = 0

}
.

Theorem 3.1. Let be Ω = Q+, and assume that u ∈
◦

H2, p ∈ H1, f ∈ L2,

and g ∈ H1 are functions with compact support in Q+ ∪ Λ. Moreover, assume

that these functions solve the system of equations (1.7)λ, i.e.,

(3.1)





−µ∆u+∇p = f in Q+,

λp+∇ · u = g in Q+,

u = 0 on Λ .

Then, the following estimate holds

(3.2) µ‖u‖2 + (1 + µλ)‖∇p‖ ≤ c
(
‖f‖+ µ‖∇g‖

)
.

Proof: By differentiation with respect to xj , j = 1, ..., n− 1, one gets

(3.3)





−µ∆
∂u

∂xj
+∇

∂p

∂xj
= ∂f

∂xj
in Q+,

λ
∂p

∂xj
+∇ ·

∂u

∂xj
=

∂g

∂xj
in Q+,

∂u

∂xj
= 0 on Γ .

Moreover ∂u/∂xj ∈ H1
0 and ∂p/∂xj ∈ L2#, since p vanishes near the lateral

boundary of the cylinder Q+. Similarly, ∂g/∂xj ∈ L
2
#. Clearly, ∂f/∂xj ∈ H

−1.

Hence, by the uniqueness of the solution of problem (1.7)λ in the above class and

by (2.5), the solution (∂u/∂xj , ∂p/∂xj) of (3.3) satisfies the estimate

(3.4) µ‖D2∗u‖+ ‖∇∗p‖ ≤ c
(
‖f‖+ µ‖∇g‖

)
.

Here, D2∗ denotes second order partial derivatives except for ∂
2/∂x2n, and ∇∗

denotes first order derivatives except for ∂/∂xn. Next, consider the linear system
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consisting of the nth equation (3.1) and of the equation obtained by differentiation

of the (n+ 1)th equation (3.1) with respect to xn namely

(3.5)





− µ
∂2un
∂x2n

+
∂p

∂xn
= fn + µ∆∗un ,

∂2u

∂x2n
+ λ

∂p

∂xn
=

∂g

∂xn
−

∂

∂xn
(∇∗ · u∗) ,

where ∇∗ ·u∗ = (∂u1/∂x1)+ ...+(∂un−1/∂xn−1) and ∆∗ is the Laplace operator

with respect to x′. By solving this algebraic system for ∂2un/∂x
2
n and ∂p/∂xn,

and by using (3.4), it readily follows that

(3.6) µ

∥∥∥∥
∂2u

∂x2n

∥∥∥∥+ (1 + µλ)
∥∥∥∥
∂p

∂xn

∥∥∥∥ ≤ c
(
‖f‖+ µ‖∇g‖

)
.

Finally, from the first n− 1 equations (3.1) one gets

(3.7) µ
∂2uj
∂x2n

= fj − µ∆∗uj −
∂p

∂xj
,

for each j 6= n. The estimates (3.4) and (3.6) show that the L2-norm of each

term in the right hand side of (3.7) is bounded by the right hand side of (3.6). It

readily follows (3.2).

Note that ‖∇2u‖ can be replaced by ‖u‖2, and similarly for ‖∇p‖ and ‖∇g‖,

since these functions vanish near the lateral boundary (and the top) of the cylin-

der Q+.

Obviously, the above estimate holds, in particular, if the functions u, p, f and

g have compact support contained in Q+. In this case (3.3) also holds for j = n,

and this ends the proof. This last case corresponds to the “interior regularity”.

4 – Proof of Theorem 1.3

In the sequel Ω ⊂ Rn is an open bounded set of class C1,1. This means here

that the open bounded set Ω is connected and locally situated on one side of its

boundary Γ, a manifold of class C1,1. More precisely, given a point P ∈ Γ there

are positive numbers a and b, an orthonormalized system of cartesian coordinates

(x1, ..., xn) = (x
′, xn) with origin at P , and a function ψ(x

′) defined and Lipschitz

continuous on the sphere {x′ : |x′| ≤ b} together with its first order derivatives,

such that: the points x for which xn = ψ(x′) belong to Γ; the points x for which

ψ(x′) < xn < a + ψ(x′) belong to Ω; the points x for which −a + ψ(x′) < xn <
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ψ(x′) belong to Rn/Ω. Moreover, the tangent plane to Γ at P coincides with the

x′-plane. Without loss of generality, we assume that a ≤ 1 and b ≤ 1.

We define here the sets

σ ≡
{
x : |x′| < b, −a+ ψ(x′) < xn < a+ ψ(x′)

}
,

σ+ ≡
{
x ∈ σ : xn > ψ(x′)

}
, σ̇ =

{
x ∈ σ : xn = ψ(x′)

}
.

These sets will be used only in the appendix.

One has the following a priori estimate.

Theorem 4.1. Let Ω be an open, bounded set of class C1,1 and let (f, g) ∈

L2 × H1
#. Assume that the variational solution (u, p) ∈ H1

0 × L2# of problem

(1.7)λ, λ > 0, belongs to H2 ×H1
#. Then

(4.1) µ‖u‖2 + (1 + µλ)‖p‖1 ≤ c
(
‖f‖+ µ‖g‖1

)
,

where c depends only on Ω.

Note that this result does not include the existence of the regular solution.

The proof of Theorem 4.1 is done by the standard method of localization followed

by flattening the boundary. These devices reduce the global problem to a finite

number of problems like that treated in section 3, for which estimates similar to

(3.2) apply. By mapping back, we get the desired a priori estimate (4.1). For the

reader’s convenience we present a detailed proof of Theorem 4.1 in the appendix.

Next we prove the Theorem 1.3, for λ > 0, by using the a priori estimate

(4.1). Let t ∈ [0, 1] and consider the problem

(4.2)t





−µ∆u+ t∇p = f in Ω,

λp+ t∇ · u = g in Ω,

u = 0 on Γ ,

where (f, g) ∈ L2 ×H1
#. Assume that (u, p) ∈

◦

H2 ×H1
#. For t > 0, by dividing

the equations (4.2)t by t and by applying the estimate (4.1) one obtains

(4.3) µ‖u‖2 +

(
t+

µλ

t

)
‖p‖1 ≤ c

(
‖f‖+

µ

t
‖g‖1

)
.

It is worth noting that this estimate is not sufficient to our aim, since it is not

uniform near t = 0. We overcome this obstacle as follows. The limit problem
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(4.2)t for t = 0 splits into two independent problems

(4.4)





−µ∆u = f in Ω,

λp = g in Ω,

u = 0 on Γ .

Note the crucial rôle of the positive parameter λ. Clearly, the problem (4.4) has

a unique solution u ∈
◦

H2, p ∈ H1
#. Moreover, µ‖u‖2 ≤ c0‖f‖ and λ‖p‖1 ≤ ‖g‖1.

Next we show that there is a δ0 > 0 such that the problem (4.2)t admits a unique

solution (u, p) ∈
◦

H2 ×H1
#, for each t ∈ [0, δ0]. Moreover,

(4.5) ‖u‖2 + ‖p‖1 ≤
c0
µ
‖f‖+

1

λ
‖g‖1 .

This result follows by considering the problem

(4.6)





−µ∆u = f − t∇q in Ω,

λp = g − t∇ · v in Ω,

u = 0 on Γ ,

where (v, q) ∈
◦

H2 × H1
#. Note that ∇ · v = H1

#. This problem admits (by the

above result for the system (4.4)) a unique solution (u, p) ∈
◦

H2 ×H1
#. Let (u, p)

be the solution corresponding to a datum (q, v). By taking the difference, side by

side, between the equations (4.6) and the corresponding equations for the labelled

variables, one shows at once that

‖u− u‖2 + ‖p− p‖1 ≤ δ0

(
1

λ
‖v − v‖2 +

c0
µ
‖q − q‖1

)
.

In particular, by choosing δ0 =
1
2
min{λ, µ/c0}, the map (v, q)→ (u, p) is a strict

contraction. Hence, for each t ∈ [0, δ0], there is a unique solution of problem

(4.2)t in the space
◦

H2 ×H1
#. Moreover, from (4.2)t and (1.9) it readily follows

that
1

2

(
‖u‖2 + ‖p‖1

)
≤
c0
µ
‖f‖+

1

λ
‖g‖1

(note that this estimate blows up if λ→ 0). In particular, the problem (4.2)t has

a unique solution (u, p) ∈
◦

H2 ×H1
#, for t = δ0. Next, we show that this problem

has a unique solution in the desired functional space, for each t ∈ [δ0, 1]. Since

this result holds for t = δ0, it is sufficient to show that there is a fixed δ1 > 0 such
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that if our thesis holds for some t0 ∈ [δ0, 1] then it also holds for each t = t0+∆t,

where 0 ≤ ∆t ≤ δ1. Let us prove this last assertion. Consider the system




−µ∆u+ t0∇p = f − (∆t)∇q in Ω,

λp+ t0∇ · u = g − (∆t)∇ · v in Ω,

u = 0 on Γ ,

where (v, q) ∈
◦

H 2 × H1
#. By the assumption on t0 there is a unique solu-

tion (u, p) ∈
◦

H 2 × H1
#. Let (u, p) be a second solution, corresponding to a

datum (v, q), and take the difference between the above equations and the cor-

responding equations for the labelled variables (in the system obtained in that

way it is convenient to consider t0(p − q) as the “pressure” and to divide the

second equation by t0). By applying (4.1) to this system it readily follows that

µ‖u − u‖2 + (t0 + µλ)‖p − p‖1 ≤ c∆t(‖q − q‖1 + (µ/t0)‖v − v‖2). By choosing

∆t ≤ δ1 ≡ δ0/2c one gets

µ‖u− u‖2 + δ0‖p− p‖1 ≤
1

2

(
µ‖v − v‖2 + δ0‖q − q‖1

)
.

Hence the map (q, v) → (p, u) has a (unique) fixed point, the solution of (4.2)t.

Step by step we arrive to the value t = 1. Consequently (l.7)λ has a unique

solution in the space
◦

H2 ×H1
#. Since this solution satisfies (4.1), it also satisfies

(1.8)λ. As this last estimate is uniform with respect to λ, the solution (uλ, pλ) of

(l.7)λ is weakly convergent in
◦

H2 ×H1
# to the solution (u, p) of (l.7)λ for λ = 0.

Clearly, the limit (u, p) satisfies (1.8)λ for λ = 0.

5 – Appendix

Here, we prove the Theorem 4.1. The proof follows the well known tech-

nique of localization and flattening the boundary. Let P ∈ Γ and consider the

neighbourhood σ of P and the set σ+ introduced at the beginning of section 4.

Eventually by choosing a smaller σ, we assume that the size parameters a and b

are less or equal to 1. Let ϑ be a fixed C∞0 (Rn) function, 0 ≤ ϑ ≤ 1, with compact

support contained in the set σ. In the sequel we will use the cartesian coordi-

nates with origin at P , introduced in section 4 (note that the equations (1.7)λ
are invariant to orthonormal changes of coordinates, since so are the Laplacian,

the gradient and the divergence). Localization is done by multiplication by ϑ.

We define

(5.1) v = ϑu , q = ϑp .
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For convenience, in the sequel vectors u = (u1, ..., un) are regarded as column

vectors. ∆u = (∆u1, ...,∆un). Moreover, ∇u ≡ [∇u1, ...,∇un] is the square

matrix whose ith row is ∇ui. A dot denotes the usual matrix multiplication. One

has ∆(ϑu) = ϑ(∆u) + 2∇u · ∇ϑ+ (∆ϑ)u. It readily follows from equations (l.4)λ
that

(5.2)





−µ∆v +∇q = ϑf − 2µ∇u · ∇ϑ− µ(∆ϑ)u+ p∇ϑ, in σ+,

λq +∇ · v = ϑg +∇ϑ · u, in σ+,
v = 0, on σ̇ .

Note that the functions v and q, as well as each single term in the above equations,

have compact support in σ+ ∪ σ̇. The above equations hold almost everywhere

(and in the L2 sense) due to the regularity assumptions on u and p.

Next, we make a change of independent variables y = Ψ(x), in order to get a

flat boundary. Consider the function ψ(x′), section 4, concerning the Cartesian

equation of the boundary Γ near the new origin P . We define a map y = Ψ(x)

given by yj = ψj(x) = xj if j = 1, ..., n− 1, yn = ψn(x) = xn − ψ(x
′). Note that

the inverse map x = Ψ−1(y) is simply given by xj = yj if j 6= n, xn = yn+ψ(y
′).

Also note that ∂yj/∂xi = δij − δnj(∂ψ(x
′)/∂xi). One has

Ψ(σ+) = Q̂+ ≡
{
x : |x′| < a, 0 < xn < b

}
,

Ψ(σ̇) = Λ̂ ≡
{
x : |x′| < a, xn = 0

}
.

In the sequel, if h is a function defined on σ+ we denote by h̃, or by (h)∼, the

function h(x) written with respect to the y-coordinates, i.e. h̃(y) ≡ h(Ψ−1(y)).

Now, we write the equations (5.2) with respect to the yi variables, y ∈ Q̂+.

Since each term in equations (5.2) has compact support in Q̂+ ∪ Λ̂ we assume

that they are defined on Q+, by setting them equal to zero outside Q̂+.

From now on the symbols ∆ and ∇ concern the y variables. Otherwise, we

use symbols ∆x and ∇x. One has (summation with respect to repeated indices

is assumed)

(5.3) ∆̃xv = ak`
∂2ṽ

∂yk
∂y`

− (∆̃x′ψ)
∂ṽ

∂yn
,

where ∆x′ denotes the Laplacian with respect to the variables x1, ..., xn−1 and

ak` ≡

(
∂ψk
∂xj

∂ψ`
∂xj

)∼
= δk` + bk` ,

where bk` = b`k is given by bk` = 0 if k, ` ≤ n − 1; bkn = bnk = −∂ψ(x
′)/∂xk if

k ≤ n− 1; bnn = |∇x′ψ(x
′)|2.
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By using this notation, the equation (5.3) becomes

∆̃xv = ∆ṽ + bk`
∂2ṽ

∂yk ∂y`

− (∆̃x′ψ)
∂ṽ

∂yn
.

Similarly, (∇̃xq) = ∇q̃−(∇̃x′ψ) (∂q̃/∂yn) and (∇̃x · v) = ∇· ṽ−(∇̃x′ψ) ·(∂ṽ/∂yn).

By convention, the nth component of the vector field∇x′ψ(x
′) vanishes identically.

Hence, the equations (5.2) became

(5.4)



−µ∆ṽ +∇q̃ = µ bk`
∂2ṽ

∂yk ∂y`

− µ(∆̃x′ψ)
∂ṽ

∂yn
+ (∇̃x′ψ)

∂q̃

∂yn
+∇F̃ , in Q+,

λq̃ +∇ · ṽ = (∇̃x′ψ) ·
∂ṽ

∂yn
+ (ϑg +∇ϑ · u)∼, in Q+,

ṽ = 0, on Λ ,

where F ≡ ϑf − 2µ∇u · ∇ϑ− µ(∆ϑ)u+ p∇ϑ.

Next, note that in the above argument we can choose the size parameters a

and b as small as we want. Since ∇x′ψ(0) = 0 it follows that, given L > 0 there

is a b > 0 (the radius of the cylinder σ) such that |∇x′ψ(x
′)| ≤ L for |x′| ≤ b. By

the regularity C1,1 of ψ, there is also a real positive M such that |(D2
x′ψ)

∼| ≤M

for |x′| ≤ b. L will be fixed below. However, for convenience, we assume from now

on that b is such that L ≤ 1. Also note that an upper bound for M depends only

on Γ, hence on Ω. In other words, L ≤ 1 and M can be replaced by constants c

that depend only on Ω.

Now, note that the solutions ṽ and q̃ of the problem (5.4) are just in the

situation described in section 3. They belong to the spaces
◦

H 2 and H1 (since

y = Ψ(x) and x = Ψ−1(y) preserveH2-regularity) and they have compact support

on Q+ ∪ Λ (note that in section 3 this last assumption replaces the requirement

m(q̃) = 0). Hence, the estimate (3.2) together with the above remarks about L

and M show that

(5.5)

µ‖ṽ‖2 + (1 + µλ)‖∇q̃‖ ≤ c
[
µ(L+ L2) ‖ṽ‖2 + µ‖ṽ‖1 + L‖∇q̃‖

]

+ ĉ‖f̃‖+ ĉµ‖ũ‖1 + ĉ‖p‖+ cµL‖ṽ‖2 + ĉµ
[
‖g̃‖1 + ‖ũ‖1

]
,

where norms concern the domain Q+. The constants ĉ depend on ϑ. We are

careful about this point just to avoid misunderstandings. Next, we choose b “so

small” that 2cµ(L + L2) ≤ µ/2 and cL ≤ 1/2. Hence, we drop from the right

hand side of (5.5) the terms with L and take one half of the left hand side. We

denote the equation obtained by this way by (5.5bis).
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The above construction is done in correspondence to each point P ∈ Γ. Next,

we fix a finite covering {σα} of Γ by sets of the above type. We add to this covering

of Γ a finite family {σβ} of cylinders, σβ ⊂ Ω, such that (
⋃
σα)∪ (

⋃
σβ) covers Ω.

Next, we fix a partition of unity {ϑα} ∪ {ϑβ} subordinate to the above covering

of Ω. Now, each ϑα (or ϑβ) is fixed, hence the corresponding ĉ that appear in

equation (5.5bis) are fixed (and, in fact, depend only on Ω). Clearly, we are

using here the fact that estimates like (5.5bis) also hold in correspondence to

the cylinders σβ (interior regularity). By taking into account that (with obvious

notations)

u = Σϑαu+Σϑβu ≡ Σ vα +Σ vβ ,

and that

p = Σϑαp+Σϑβp = Σ qα +Σ qβ ,

by using the local estimates (5.5bis) in order to bound ‖ṽα‖2, ‖∇q̃α‖, ‖ṽβ‖2,

‖∇q̃β‖, by mapping back from Q+ to each σ+α (or σβ) and by collecting all these

estimates, one gets

µ‖u‖2 + (1 + λµ)‖∇p‖ ≤ c
(
‖f‖+ µ‖g‖1

)
+ c

(
µ‖u‖1 + ‖p‖

)
.

This estimate together with (2.5) yields (4.1).
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