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CHEBYSHEV POLYNOMIALS AND
SOME METHODS OF APPROXIMATION

GHEORGHE UDREA

1 — Chebyshev polynomials (T},(x))n>0 and (Uy(2))n>0 of the first and the
second kind, respectively, are defined by the recurrence relations:

(1.1) Thii(x) =22 -Tp(x) — Th-1(z), =x€C, neN",
with To(z) = 1, Ti(x) = x;
(1.2) Upt1(x) =2z - Up(z) = Up-1(z), 2€C, neN*",

where Up(z) =1, Ui(x) = 2z.

On the other hand there are the sequences (T},(z))p>0 and (Up(z))ns0 —
“associated” of the Chebyshev polynomials (7}, (z))n>0 and (Up(z))n>0, respec-
tively — defined by

(1.3) Toi1(z) =22 - Tp(2) + Tpya(z), xe€C, neN*,

with Tp(z) = 1 and T} (z) =

(1.4) Upp1(z) =22 - Up(x) + Up_1(z), 2€C, neN*,
where Up(x) = 1, Uy (z) = 2z.

There is a simple connection between the sequences (73,)n>0, (Un)n>0 and the
sequences (T,)n>0 and (Uy,)n>0, respectively:

Ty = 02
(1.5) o)
Ti(x) = ’“,ka, reC, keN,
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~ Ui(i-x
figay - i)
(16) -

Uk(x):%, reC, keN,
where 2 = —1.

Also, there is an interesting connection between the sequence (F},),>o of
Fibonacci numbers

(17) Fopn=F,+ Fhoq, TZGN*, Fp=0, F1=1,
the sequence (L )n>0 of Lucas numbers

(18) Lyvi=Lp+Ln_1, n€ N*, Lo=2, L1 =1,

and, on the other hand, the sequences (T},)n>0, (Tn)n>0, (Un)n>0, (Un)n>0:

i 1,
~ /1y 1
/ il N
(1.9') Tn<2) 5 Lu. meN,
(1.10) Un(%>=z‘”.Fn+1, neN,
_ 1
(110/) Un(§>:Fn+1, n €N, i2=—1.

One has, also, the remarkable formulas:

(1.11) Ti(cosp) =cosky, @eC, keN,
(1.11) Ti(i-cosp) =i -cosky, ¢eC, keN,
and
in k
. x—1(cos ¢ :SH,I , ¢€eC, sinp#0, keN*,
1.12) U 1 C, sinp#0, keN*
sin
k-1 Sinke

(1.12")  Up_1(i-cosp) =i , ¢€C, sinp#0, keN*,

sin

(see (1.5)—(1.6)).
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2 — Let us consider the sequence (A, (a))m>1 defined by

- U, _
(2.1) Am(a) = M, m e N*
Upm—l(a

where a € R* and p € N*,

We wish now to find a quadratic equation to be satisfied by the limit of the
sequence (Ap(a))m>1. In order to obtain this equation we need to prove the
following

Lemma. If (T),(x))n>0 and (U,(z))n>0 are the sequences of Chebyshev
polynomials of the first kind and the second kind, respectively, then one has

(2:2) Un+p-1(a) =2-Tp(a) - Un-1(a) = Un—p-1(a) ,
Ym>p+1, m,pe N VaeC.

Proof: Indeed, let a be an element of C; then 3¢ € C such that a = cos .
We have

Untp-1(0) + Upn—p-1(8) = Uppsp1(c056) + Up—p1(cos ) =

_ sin(m +p) N sin(m —p) e sin(m +p) ¢ +sin(m —p) ¢

sin ¢ sin ¢ sin ¢
2. gi : i
= Smm,(p il 4 4 =2-cospp- sn?mgo =2-Tpy(cosp) - Up—1(cos p)
sin ¢ sin g

=2-Ty(a) - Up-1(a), qed..

Now, from (2.2) and (1.5)—(1.6) we obtain

(2.3) ﬁmﬂo*l(a) =2 Tp(a) ) ﬁmfl(a) = (=1)" - Un—p-1(a),

Vm>p+1, m,pe N* VaeC.
Dividing equation (2.3) through by U,,—1(a) and replacing m by mp, we find

(2.4) Am(a) =2 Ty(a) — X(%ll):;) m>2.

The limit j\oo(a) = lim,,—oo Xm(a), a € R*, therefore satisfies the quadratic
equation

(2.5) (Ao(@)? =2 Tp(a) - Aoola) + (=1)P =0 . u
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Remarks.
a) The limit Aoo(a) = limy .00 Am (@) can be obtained from (2.1) and
(a+vaZ+1)" = (a—VaZ+1)"

(2.6) Up(a) = T ., a€R.

One obtains
(a— a2+1)p, a<0,
(a+\/a2+1)p, a>0.

(2.7) Aoola) =

b) From (2.5), (1.11") and (1.12’), we have the same result:

Noo(a@) = Tyla) £ Va2 +1-Upr(a) = Tpli - b) £ /(- 0)2 + 1-Tpr(i-b) =
=P Ty(b) % i - Vb2 —1.P7L. Up—1(b) =P - (Tp(b) + Vb2 —1- U,,_l(b))
= 7 (Ty(cos 9) £ \feos? o — 1-Upa(cos)) = i - (cos pep + isinp b ?)

sin ¢

=" (cosp tising)l = (i- (b= V02 —1))" = (i-bx/(i-0)2+1)"

— (a + Va2 + 1)p, qg.ed. .

Hence
(2.7) Aoo(a) = {ij(a) — Va2 +1- (:]p,l(a), a<0,
Ty(a) + Va2 +1-Up_1(a), a>0.

Clearly we utilized, in b), the identity
(2.8)  (Tm(x)? = (®+1)- (Upn_1(2))?=(-1)", VzeC, VmeN*.

From (2.5), we obtain, for @ = 3, that the number 6” = % - (L, + /5 - F},)
(0= 1+T\/5 — the “golden ratio”) satisfies the quadratic equation

(2.9) 2 —Ly,-xz+ (-1 =0,

(see [1]).
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3 — The Aitken sequence (x}),>2 is the sequence defined by

2
Int+l  Tp—1— T
(3.1) gf = n_ on>2,
Tpgl — 2Ty + T

where (x,,)n>1 1S a convergent sequence.
In this section we establish the result

N)‘n—&-r(a) : )\n—j(a) - (EA“))Q
Antr(a) =2+ Ap(a) + An-r(a)

(3.2) = dan(a) |

1 <r < n, where (A,(a))n>1 is the sequence defined by (2.1) and a € R*.

Proof: Let a be an element of C; then d¢ € C such that a = i - cos,
i> = —1. One has

a) XnJrr(a)'anr(a)_(xn(a))2 = XnJrr(i'COS ‘P)'anr(i'cos go)—(xn(i'cos 90))2 =

_ Upnr+1)-1(i - c059)  Upnry1)—1(i - cOSp) (ﬁp(n—i-l)—l(i © COS @))2
Up(n-i—r)—l(i - COS (P) Up(n—r)—l(i - COS (P) Upn—l(i - COS (/7)
'y sinp(n+7+1)¢ P sinp(n —r+1)p (ip sinp(n + 1)@)2
B sinp(n+71) ¢ sinp(n —r) ¢ sinpnp
sinpy-sinpro- sinp(2n+1) ¢
sin?pnp-sinp(n+1)p-sinp(n —r) @’

— = (=1

b) )\n+r<a) - /\n(a) = Xn—f—r(i - COS 90) - Xn(z + COS W)

_ i, sinpp -sinpre
sinpne-sinp(n+r)p’

¢) Anr(@) = 2 An(@) + A r(@) = (Augr(@) = An(@)) = (Anla) = Anr(a))
2-sinpy-sin’pre-cospne

=..=14. .
sinpne-sinp(n —r)p-sinp(n+r) e

Finally, on combining a), b) and c), we derive the required result:

(*) X”‘Fr(a) ) Xn—?"(a) — (;‘”(a))2 = X2n(a) > 1<r<n.

Xn—&-r(a) -2 Xn(“) + Xn—r(a)

For 7 = 1 in (%) one obtains that the Aitken sequence (X% (a))n>o verifies the
relation

(3.3) Xo(a) = don(a), n>2 acR*.u
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4 — We began with a sequence (Xn(a))nzl, a € R* and applied Aitken ac-
celeration to give a sequence (X:ﬁb(a))nzg. We now investigate the application of
Aitken acceleration to (X*(a))n>2, @ € R*, and so on, repeatedly. It is helpful to
use a different notation. Let us write
- 3 (@) AW, (@) ~ (AP ()’

(4.1) A (a) = S0 = SO
)‘n+1(a) —2- M (a> + )‘n—l(a)

for k=0,1,2,3,..., where X%O)(a) = Xn(a), a € R*, n e N*

Thus (X,(lo) (a))n>1 is our original sequence and (Xg)(a))nzg is the sequence
which we have hitherto called (X;:(a))nzg. For k > 0, the (k + 1) sequence
(Xgﬂﬂ)(a))nzkﬂ is obtained by using Aitken acceleration on the sequence

(@)
We have already seen from (3.3) that

(4.2) A (a) = Xon(a), n>2, acR*.

n

It follows from this and (4.1) that

5y — (@) N1 (@) = @) Ranga(@) - Aana(a) = (Ran(a))?
X&Zl(a) —2. 3 () + AL (@) Donga(a) — 2 Xan(a) + Aon—a(a)

Using (3.2) with n replaced by 2n and with r = 2, we deduce that
(4.3) A2 (a) = Agn(a), n>3.

Finally, it follows by induction that

(14) A0 (a) = Xp00(a) — Aocla) .
which holds for each k¥ > 0 and all n > k + 1.

5 — Let us consider now Newton’s method: given an initial approximation ag
to the number Ao (a) = (a++Va? + 1), a € R*, we compute the Newton sequence
(an)n>0 from

a2 —2-Ty(a) - an + (—1)?
2. (an - Tp(a)>
az — (=1)P

n

Gp41 = Qp —

(5.1)
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If a,, = Ar(a) for some values of k € N*, we find that

s = an = (1P _ (th(a))2 S G VA
2 (an = Tpla)) 2+ (M(a) = T(a))
_ (Up(r1)-1(a)? = (=1)P - (Up1(a))?
2 Upk1(0) * (Uptis1y-1(@) = Tyl@) U1 (@)
B ﬁp-(2k+1)71(a) — Youla
= —ﬁp.zk_1(a) Aak(a) ,
(5.2) ani1 = dop(a), aeR*,

1) (ﬁp-(k+1)fl(a))2 —(=1)P- (ﬁpkfl(a))Q = ﬁp—l(@) Up.2k+1)-1(a),
VaeC,VpeN* Vk e N

2) Uy (ars1)-1(a) — Tp(a) - Upe—1(a) = Up_1(a) - Tpi(a),
VaeC,Vpe N Vk e N

3) Usm—1(a) =2 - Tpp(a) - Up—1(a), Ya € C,Vm € N*.

Thus, if we choose as the initial approximant ag = A, (a) = %2”;1(@)) = 2-Ty(a),
p—1(a
a € R*, we see by induction that

(5.2') a1 = apr1 = Ma1(a) = Ao(a) |
a; = Xo(a) ;
(5.2") az = a141 = X2~2(G) )
as = Ag2(a) ;
(5.2 az = a241 = X2-22(61) )
az = Ags(a) .
Hence

(5.3) an = Aan(a) — Aso(a) .
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6 — Finally, we consider the secant method, in which we approximate to a
root of the equation f(z) = 0 as follows: we choose two initials approximants aq
and az and compute the sequence (ay,)n>2 from

f(an)'(an_an—l) n>9 .

flan) = flan-1) -

(6.1) pt1 = Qp —

In our case f(z) = 2 -2 fp(a) -z 4 (—1)? and, if we choose a; = A(a) and
az = Ap(a), a € R*, for some m, k € N*, m # k, we find that

_ar-flaz) —az- fla) = arraa— (=1
a5 = — = .. =

f(ag) = f(a) a1 +az — 2 - Ty(a)

Up(mr1)-1(a) - Upes1)-1(@) = (=17 - Upm—1(a) - Upi_1(a)

Upt—1(0): (Tpms1)-1(@) = Tp(@)- Tpmn1(@)) + Upm1.(@)- (Op 1)1 (@) = Ty (@) - U1 ()

Up(m+k)—1 (a)

since:

1) Upimt1)-1(a) - Upgry-1(a) = (=1)7 - Upm—1(a) - Upk-1(a) = Up-1(a) -

Up(m+k+1)*1(a)) Vae (C7 vP7m, ke N*a
2') Up(n+1)_1(a) —Tp(a) - Upn_1(a) = Up_1(a) - Tyn(a), Va € C, Vp,n e N*;
8) Upe—1(a) Tpm (@) +Upm—1(a) Tp(a) = Upmyr)—1(a), Va€C, Vp,m, ke N*.
Hence
(6.2) as :X,,Hk(a), m,k e N*, m#k.
An induction argument shows that, if we choose as initial values a; = Xl(a) =
2-Tp(a) and ag = Aa(a) =2-Tp(a) — % (see (2.4)), a € R*, the secant method
1(a

gives:
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i.e.,
(6.3) an = Ay (@) — Aoola)

as the n® approximant to the number Ay (a) = (a£va2 + 1)? = Tp(a)+ a2 + 1-
U,_1(a), a € R*, where (F},),>0 is the sequence of Fibonacci numbers.

In conclusion, we see that for a = % and p € N*  one obtains the Jamieson’s
results (see (1)) and for @ = 2 and p = 1, we derive the Phillips’s results (see

(2))-
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