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LOCAL AND GLOBAL EXISTENCE FOR MILD SOLUTIONS
OF STOCHASTIC DIFFERENTIAL EQUATIONS

D. Barbu

Abstract: In the present paper we shall investigate the local and global existence of

mild solutions for a class of Ito type stochastic differential equations under the condition

that the coefficients satisfy more general conditions than Lipschitz and linear growth.

1 – Introduction

In the present paper, we shall consider a stochastic differential equation of Ito

type,

(1)







dX(t) =
(

AX(t) + F (t,X(t))
)

dt+B(t,X(t)) dW (t),

X(0) = ξ .

We will assume that a probability space (Ω,F , P ) together with a normal

filtration Ft, t ≥ 0 are given. We denote by P and PT the predictable σ-fields on

Ω∞ = [0,+∞)× Ω and on ΩT = [0, T )× Ω respectively.

We assume also that U and H are separable Hilbert spaces and that W is

a Wiener process on U with covariance operator Q. We will assume that Q is

a symmetric, positive, linear and bounded operator on U with TrQ < ∞. Let

U0 = Q
1

2 (U) with the induced norm ‖u‖0 = ‖Q−
1

2 u‖. The spaces U , H and

L02 = L2(U0, H) (L02 is the space of all Hilbert–Schmidt operators from U0 into

H) are equipped with Borel σ-fields B(U), B(H) and B(L02). The space L02 is

also a separable Hilbert space equipped with the norm ‖Ψ‖L0
2
= ‖ΨQ

1

2 ‖L2(U,H).

Moreover, ξ is a H-valued random variable, F0-measurable.
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We fix T > 0 and impose first the following conditions on coefficients A, F

and B of the equation (1):

i) A is the infinitesimal generator of a strongly continuous semigroup S(t),

t ≥ 0 in H.

ii) The mapping F : [0, T ]×Ω×H → H, (t, ω, x)→ F (t, ω, x) is measurable

from (ΩT ×H, PT × B(H)) into (H,B(H)).

iii) The mapping B : [0, T ]×Ω×H → L02, (t, ω, x)→ B(t, ω, x) is measurable

from (ΩT ×H, PT × B(H)) into (L02,B(L
0
2)).

A mapping X : [0, T ] × Ω → H which is measurable from (ΩT ,PT ) into

(H,B(H)), is said to be a mild solution of (1) if

P

(
∫ T

0

(

∥

∥

∥S(t− s)F (s,X(s))
∥

∥

∥+
∥

∥

∥S(t− s)B(s,X(s))
∥

∥

∥

L0
2

)

ds < +∞

)

= 1

and, for arbitrary t ∈ [0, T ], we have

X(t) = S(t) ξ +

∫ t

0
S(t− s)F (s,X(s)) ds+

∫ t

0
S(t− s)B(s,X(s)) dW (s) P a.s..

Existence and uniqueness theorem for solutions of the equation (1) under

Lipschitz conditions on the coefficients are studied in [4], Th. 7.4.

Stochastic evolution equations in infinite dimensions are natural generaliza-

tions of stochastic ordinary differential equations and their theory has motivations

coming both from mathematics and the natural sciences: physics, chemistry and

biology, cf. [4].

In the present paper we shall present existence (local and global) and unique-

ness results for solutions of the above mentioned equation under more general

conditions. Similar results in finite dimensional case can be found in [1], [3], [6],

[7].

A fundamental role in the proof of our theorems will play the following propo-

sition ([4], P. 7.7.3).

Proposition 1.1. Let p > 2, T > 0 and let Φ be a L02-valued, predictable

process, such that E(
∫ T
0 ‖Φ(s)‖

p

L0
2

) < +∞. Then there exists a constant CT such

that

E

(

sup
t∈[0,T ]

∥

∥

∥

∫ t

0
S(t− s) Φ(s) dW (s)

∥

∥

∥

p
)

≤ CT E
(

∫ T

0
‖Φ(s)‖p

L0
2

ds
)

.

Moreover WΦ
A (t) =

∫ t
0 S(t− s) Φ(s) dW (s) has a continuous modification.
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2 – The local existence of solutions

In the following we shall fix a real number p, p > 2. We shall denote by BT

the space of all H-valued predictable processes X(t, ω) defined on [0, T ]×Ω which

are continuous in t for a.e. fixed ω ∈ Ω and for which

‖X(·, ·)‖BT

def
=
{

E
(

sup
0≤t≤T

‖X(t, ω)‖p
)}

1

p
<∞ .

The next lemma is proved in [1]:

Lemma 2.1. The space BT is a Banach space with the norm ‖ · ‖BT
.

In the following we denote by Θ(X0, r)
def
= {X ∈ BT : ‖X −X0‖BT

≤ r} the

closed ball of center X0 with radius r in BT .

Theorem 2.1. For the stochastic dzfferential equation (1), let the functions

F (t, ω, x) and B(t, ω, x) be continuous in x for each fixed (t, ω) ∈ ΩT , and let the

following conditions be satisfied:

(1a) There exists a function H : [0,∞) × [0,∞) → [0,∞), (t, u) → H(t, u)

such that

E
(

‖F (t,X)‖p
)

+ E
(

‖B(t,X)‖p
L0

2

)

≤ H
(

t, E(‖X‖)p
)

for all t ∈ [0, T ] and all X ∈ Lp(Ω,F , H).

(1b) H(t, u) is locally integrable in t for each fixed u ∈ [0,∞) and is continu-

ous, monotone nondecreasing in u for each fixed t ∈ [0,∞).

Then there exists τ ∈ [0, T ] such that the operator G : Bτ → Bτ

GX(t) = S(t) ξ+

∫ t

0
S(t−s)F (s,X(s)) ds+

∫ t

0
S(t−s)B(s,X(s)) dW (s), t∈ [0, τ ]

is well defined and has the property:

G
(

Θ(S(·) ξ, r)
)

⊂ Θ(S(·) ξ, r) .



414 D. BARBU

Proof. From Proposition 1.1 it follows that the operator G is well defined

for all τ ∈ [0, T ]. Now we have:

E
(

sup
0≤s≤τ

∥

∥

∥(GX)(s)− S(s) ξ
∥

∥

∥

p)

≤

≤ 2pE

(

∥

∥

∥

∫ τ

0
S(τ − s)F (s,X(s)) ds

∥

∥

∥

p
)

+ 2pE

(

sup
0≤s≤τ

∥

∥

∥

∫ s

0
S(s− θ)B(θ,X(θ)) dW (θ)

∥

∥

∥

p
)

≤ 2pMp τp−1
∫ τ

0
E
(

‖F (s,X(s))‖p
)

ds+ 2pCT

∫ τ

0
E
(

‖B(s,X(s))‖p
L0

2

)

ds

≤ C ′T

∫ τ

0
H

(

s,E
(

‖X(s)‖p
)

)

ds .

We have denoted M = supt∈[0,T ] ‖S(t)‖L(H), C
′
T = 2pMp T p−1 + 2pCT and

we applied the Hölder inequality for the first integral and used Proposition 1.1

for the second integral. If X ∈ Θ(S(·) ξ, r) ⊂ Bτ then E(‖X(s)− S(s) ξ‖p) ≤ rp

for every s ∈ [0, τ ] and therefore

E
(

‖X(s)‖p
)

≤ E
(

‖X(s)− S(s) ξ‖+ ‖S(s) ξ‖
)p

≤ 2p rp + 2pE
(

‖S(s) ξ‖p
)

≤ C ′′T ,

where C ′′T = 2p rp + 2pMpE(‖ξ‖p). The function H(s, u) being monotone non-

decreasing in u, we have

E

(

sup
0≤s≤τ

∥

∥

∥(GX)(s)− S(s) ξ
∥

∥

∥

p
)

≤ C ′T

∫ τ

0
H(s, C ′′T ) ds

for all X ∈ Θ(S(·) ξ, r) ⊂ Bτ . But H(·, u0) is locally integrable and therefore

there exists τ ′ such that

C ′T

∫ τ ′

0
H(s, u0) ds ≤ rp .

In the following we consider the basic notions connected with measures of

noncompactness and condensing operators (see [1]).

Definition 2.1. A function Ψ, defined on the family of all subsets of a

Banach space E with values in some partially ordered set (Q,≤), is called a

measure of noncompactness (MNC for brevity) if Ψ(coO) = Ψ(O) for all O ⊂ E,

where coO is the closure of the convex hull of O.
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Definition 2.2. Let E1 and E2 be Banach spaces and let Φ and Ψ be MNC

in E1 and E2, respectively, with values in some partially ordered set (Q,≤).

A continuous operator f : D(f) ⊂ E1 → E2 is said to be (Φ,Ψ)-condensing if

O ⊂ D(f), Ψ[f(O)] ≥ Φ(O) implies O is relatively compact.

Definition 2.3. The Hausdorff measure of noncompactness χ(O) of the set

O in a Banach space E is the infimum of the numbers ε > 0 such that O has a

finite ε-net in E.

Recall that a set C ⊂ E is called an ε-net of O if O ⊂ C+εB(0, 1) = {s+ε b :

s ∈ C, b ∈ B(0, 1)} where B(0, 1) is the closed ball of center 0 and radius 1 in E.

The MNC χ enjoy the following properties:

a) regularity : χ(O) = 0 if and only if O is totally bounded;

b) nonsingularity : χ is equal to zero on every one-element set;

c) monotonicity : O1 ⊂ O2 implies χ(O1) ≤ χ(O2);

d) semi-additivity : χ(O1 ∪O2) = max{χ(O1), χ(O2)};

e) semi-homogeneity : χ(tO) = |t|χ(O) for any number t;

f) algebraic semi-additivity : χ(O1 +O2) ≤ χ(O1) + χ(O2);

g) invariance under translations: χ(O + x0) = χ(O) for any x0 ∈ E;

h) invariance under passage to closure and to the convex hull: χ(O) = χ(O) =

χ(coO).

The following result ([1], Th. 1.5.11 and generalisation 1.5.12) is fundamental

for our considerations.

Theorem 2.2. Let Ψ a MNC on a Banach space E which is additively-

nonsingular (i.e. such that Ψ(O ∪ {x}) = Ψ(O) for all O ⊂ E and x ∈ E) and a

(Ψ,Ψ) condensing operator f which maps a nonempty, convex, closed subset M

of the Banach space E into itself. Then f has at least one fixed point in M .

Let M[0, T ] denote the partially ordered linear space of all real monotone

nondecreasing functions defined on [0, T ] and let us consider the following MNC

on the space BT defined above:

Ψ: BT →M[0, T ] ,

[Ψ(O)](t) = χt[Ot] ,

where χt is the Hausdorff MNC on the space Bt and Ot = {x|[0,t] : x ∈ O} ⊂ Bt.
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Theorem 2.3. For the stochastic differential equation (1), suppose that the

following conditions are satisfied:

(3a) The functions F (t, ω, x) and B(t, ω, x) satisfy conditions (la), (lb) of

Theorem 2.1 and are continuous in x for fixed (t, ω) ∈ ΩT .

(3b) There exists a function K : [0,∞) × [0,∞) → [0,∞) that is locally

integrable in t for each fixed u ∈ [0,∞) and is continuous, monotone

nondecreasing in u for each fixed t ∈ [0,∞), K(t, 0) ≡ 0 and

E
(
∥

∥

∥F (t,X)− F (t, Y )
∥

∥

∥

p)

+ E
(
∥

∥

∥B(t,X)−B(t, Y )
∥

∥

∥

p

L0
2

)

≤ K
(

t, E
(

‖X − Y ‖p
))

for all t ∈ [0, T ] and X,Y ∈ Lp(Ω,F , H).

(3c) If a nonnegative, continuous function z(t) satisfies














z(t) ≤ α

∫ t

t0

K(s, z(s)) ds , t ∈ [0, T1] ,

z(0) = 0 ,

where α > 0, T1 ∈ (0, T ], then z(t) = 0 for all t ∈ [0, T1].

Then the operator G′ : BT → BT ,

(G′X)(t) =

∫ t

0
S(t− s)F (s,X(s)) ds+

∫ t

0
S(t− s)B(s,X(s)) dW (s), t ∈ [0, T ] ,

is condensing with respect to the MNC Ψ on any bounded subset of the space

BT .

Proof. We follow similar results for finite dimensional case ([1], Lemma 4.2.6).

Suppose Ψ(O) ≤ Ψ(G′O) for some bounded set O ⊂ BT . We show that in this

case Ψ(O) = 0 from which results that O is relatively compact in BT . In fact

χT (O) = 0 and from this follow that O is totaly bounded in BT , that is O is

relatively compact. Let us notice that the function t → [Ψ(O)](t) is monotone

nondecreasing and bounded and therefore for a fixed ε > 0 there exists only a

finite number of jumps of magnitude greather than ε. Remove the points corre-

sponding to these jumps together with their disjoint δ1-neighborhoods from the

segment [0, T ], and using points βj , j = 1, ...,m, divide the remaining part into

intervals on which the oscillation of the function Ψ(O) is smaller than ε. Now

surround the points βj by disjoint δ2-neighborhoods and consider the family of

all functions Z = {zk : k = 1, ..., l} continuous with probability one, constructed

as follows: zk coincides with an arbitrary element of a [(Ψ(O))(βj)+ ε]-net of the
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set Oβj on the segment σj = [βj−1+ δ2, βj − δ2], j = 1, ...,m and is linear on the

complementar segments.

Let u ∈ (G′O). Then u = (G′z) for some z ∈ O and

‖z − z
βj
r ‖

p
Bβj

≤
[

(Ψ(O))(βj) + ε
]p
,

where z
βj
r is some element of the [(Ψ(O))(βj)+ ε]-net of Oβj . Since z

βj
r |σj = zk |σj

for some element zk of the set Z, it follows that for s ∈ σj we have

E
(

‖z(s)− zk(s)‖
p
)

≤ E
(

sup
βj−1+δ2≤s≤βj−δ2

‖z(s)− zk(s)‖
p
)

≤ ‖z − z
βj
r ‖

p
Bβj

≤
[

(Ψ(O))(βj) + ε
]p
≤
[

(Ψ(O))(s) + 2 ε
]p
.

Then

E

(

sup
0≤s≤t

∥

∥

∥(G′z)(s)− (G′zk)(s)
∥

∥

∥

p
)

≤

≤ 2pMp tp−1
∫ t

0
E

(

∥

∥

∥F (s, z(s))− F (s, zk(s))
∥

∥

∥

p
)

ds

+ 2pCT

∫ t

0
E

(

∥

∥

∥B(s, z(s))−B(s, zk(s))
∥

∥

∥

p

L0
2

)

ds

≤ C ′T

∫ t

0
K

(

s,E
(

‖z(s)− zk(s)‖
p
)

)

ds

= C ′T

m
∑

j=1

∫

σj

K

(

s,E
(

‖z(s)− zk(s)‖
p
)

)

ds

+ C ′T

∫

[0,t]−
⋃m

j=1
σj

K

(

s,E
(

‖z(s)− zk(s)‖
p
)

)

ds ,

where C ′T = 2pMp T p−1 + 2pCT , M = supt∈[0,T ] ‖S(t)‖L(H) and CT is the con-

stant from Proposition 1.1. The set O is bounded and Z is finite and therefore

exists u0 > 0 such that

E
(

‖z(s)− zk(s)‖
p
)

< u0 for all z ∈ O, zk ∈ Z, s ∈ [0, T ] .

Using (2b) we can find δ1 > 0 and δ2 > 0 sufficiently small that can ensure that

[

(Ψ(O))(t)
]p
≤
[

(Ψ(G′O))(t)
]p
≤ ε+ C ′T

∫ t

0
K
(

s,
[

(Ψ(O))(s) + 2 ε
]p)

ds .
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From the arbitraryness of ε and the continuity of K in the second argument it

follows that
[

(Ψ(O))(t)
]p
≤ C ′T

∫ t

0
K
(

s,
[

(Ψ(O))(s)
]p)

ds .

By the last inequality, Lemma 2.2 and (2c) we deduce that Ψ(O) = 0.

The continuity of the operator G′ follows easily. In fact, for X,X1, ... in BT

we have

‖G′X −G′Xn‖
p
BT

= E

(

sup
t∈[0,T ]

‖G′X(t)−G′Xn(t)‖
p

)

≤ 2pMp T p−1
∫ T

0
E

(

∥

∥

∥F (s,X(s))− F (s,Xn(s))
∥

∥

∥

p
)

ds

+ 2pCT

∫ T

0
E

(

∥

∥

∥B(s,X(s))−B(s,Xn(s))
∥

∥

∥

p

L0
2

)

ds

≤ C ′T

∫ T

0
K

(

s,E
(∥

∥

∥X(s)−Xn(s)
∥

∥

∥

p)
)

ds

≤ C ′T

∫ T

0
K
(

s, ‖X −Xn‖
p
BT

)

ds

from which we get ‖G′X −G′Xn‖
p
BT
→ 0 as ‖X −Xn‖BT

→ 0.

Remark 2.1.

i) Evidently, under the in conditions of Theorem 3.3 the operator G : BT →

BT defined by

(GX)(t) = S(t) ξ + (G′X)(t) , t ∈ [0, T ] ,

where ξ ∈ Lp(Ω,F0, H) is also Ψ-condensing.

ii) The inequality in (3b) of Theorem 2.3 is satisfied if the function K is

concave with respect to u for each fixed t ≥ 0 and

∥

∥

∥F (t, x)− F (t, y)
∥

∥

∥

p
+
∥

∥

∥B(t, x)−B(t, y)
∥

∥

∥

p

L0
2

≤ K
(

t, ‖x− y‖p
)

for all x, y ∈ H and t ≥ 0. This follows immediately from Jensen’s

inequality.

iii) The function K(t, u) = λ(t)α(u), t ≥ 0, u ≥ 0, where λ(t) ≥ 0 is locally

integrable and α : R+ → R+ is a continuous, monotone nondecreasing

function with α(0) = 0, α(u) > 0 for u > 0 and
∫

0+
1

α(u) du = ∞ is an

example for Theorem 2.3 (3c) (see [7]).
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Lemma 2.2. Let K : [0,∞)2 → [0,∞), (t, u)→ K(t, u) be a function which

is locally integrable in t for each fixed u ∈ [0,∞) and continuous, monotone

nondecreasing in u for each fixed t ∈ [0,∞), K(t, 0) ≡ 0 and for which if there

exists a continuous function z : [0, T ]→ [0,∞), z(0) = 0 which satisfies

z(t) ≤

∫ t

0
K(s, z(s)) ds , t ∈ [0, T ] ,

then z(t) = 0 for all t ∈ [0, T ].

Then if a nonnegative monotone nondecreasing function u : [0, T ] → [0,∞),

u(0) = 0, satisfies

u(t) ≤

∫ t

0
K(s, u(s)) ds , t ∈ [0, T ] ,

it follows u(t) = 0 for all t ∈ [0, T ].

Proof. Let u as above and denote by U the class of functions v : [0, T ] →

[0,∞) which satisfy v(0) = 0, v(T ) = u(T ), v(t) ≥ u(t) for all t ∈ [0, T ], they are

monotone nondecreasing and

v(t) ≤

∫ t

0
K(s, v(s)) ds , t ∈ [0, T ] .

Evidently u ∈ U and U is partially ordered if we let v1 ≤ v2 if v1(t) ≤ v2(t) for

all t ∈ [0, T ].

We shall prove that U has maximal elements. For this it will be sufficient, in

accordance with Zorn’s Lemma to prove that a totally ordered subset of U has a

majorant.

Let U ′ = {vi}i∈I ⊂ U be a totally ordered subset of U . We shall prove that

supi∈I vi ∈ U and then supi∈I vi will be a majorant for U ′. We have

∫ t

0
K
(

s, sup
i∈I

vi(s)
)

ds ≥

∫ t

0
K(s, vi(s)) ds ≥ vi(t) for all t ∈ [0, T ], i ∈ I .

Therefore
∫ t

0
K
(

s, sup
i∈I

vi(s)
)

ds ≥ sup
i∈I

vi(t) , t ∈ [0, T ] .

Obviously supi∈I vi is monotone nondecreasing (supi∈I vi)(0) = 0 and

(supi∈I vi)(T ) = u(T ) that is supi∈I vi ∈ U .
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Let v be a maximal element of U . We shall prove that v is continuous. Sup-

pose v has a discontinuity point t0 ∈ (0, T ] (t = 0 is a continuity point) and

v(t0 + 0) = v(t0) > v(t0 − 0). For other cases the proof will be the same. Let

ε = 1
2(v(t0 + 0) − v(t0 − 0)). We shall “raise up” v on the left (but close) of t0.

Let δ > 0 such that
∫

J K(s, u(T )) ds < ε, for all J ∈ B([0, T ]), m(J) < δ.

We define w : [0, T ]→ [0,∞)

w(t) =

{

v(t), t ∈ [0, T ]− [t0 − δ, t0),

v(t0 − 0) + ε, t ∈ [t0 − δ, t0) .

Evidently w > v. We shall prove that w ∈ U . For this it is sufficient to prove

that

(2) w(t) ≤

∫ t

0
K(s, w(s)) ds .

If t < t0 − δ, (2) is obviously satisfied. If t ≥ t0, then

∫ t

0
K(s, w(s)) ds ≥

∫ t

0
K(s, v(s)) ds ≥ v(t) = w(t) .

If t ∈ [t0 − δ, t0), then

∫ t

0
K(s, w(s)) ds ≥

∫ t0

0
K(s, v(s)) ds−

∫ t0

t0−δ
K(s, v(s)) ds

≥ v(t0)−

∫ t0

t0−δ
K(s, u(T )) ds ≥ v(t0)− ε = w(t) .

We have proved that w ∈ U . But w ≥ v, w 6= v which is a contradiction with the

maximality of v. Therefore v is continuous on [0, T ] and from the hypothesis of

lemma it follows v(t) = 0, for all t ∈ [0, T ]. But v(t) ≥ u(t) ≥ 0, that is u(t) = 0

for all t ∈ [0, T ].

Theorem 2.4. Suppose the conditions of Theorem 2.3 are satisfied. Then

there exists T ′ ∈ (0, T ] for which equation (1) has a unique solution in BT ′ .

Proof. In accordance with Theorem 2.1 there exists T ′ for which the operator

G defined above has the property that

G
(

Θ(S(·) ξ, r)
)

⊂ Θ(S(·) ξ, r) ⊂ BT ′ .

But Θ(S(·) ξ, r) is a nonempty, closed, convex subset of BT ′ , G is a Ψ-condensing

and then, from Theorem 2.2, it follows that G has at least one fixed point in
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Θ(S(·) ξ, r) ⊂ BT ′ . The fixed point is unique. Indeed, let X,Y ∈ BT ′ be two

fixed points of G. Then we would have

E
(

sup
0≤s≤t

‖X(s)−Y (s)‖p
)

≤ 2pMp tp−1E

(
∫ t

0

∥

∥

∥F (s,X(s))−F (s, Y (s))
∥

∥

∥

p
ds

)

+ 2pCT E

(
∫ t

0

∥

∥

∥B(s,X(s))−B(s, Y (s))
∥

∥

∥

p

L0
2

ds

)

≤ (2pMp tp−1+ 2pCT )

∫ t

0
K

(

s,E
(

‖X(s)−Y (s)‖p
)

)

ds .

Therefore

‖X − Y ‖pBt
≤ (2pMp T p−1 + 2pCT )

∫ t

0
K
(

s, ‖X − Y ‖pBt

)

ds .

From condition (2c) it follows that ‖X − Y ‖pBt
≡ 0, that is X ≡ Y .

3 – The global existence of solutions

In this section we shall discuss the existence of global solutions of equation (1).

We suppose that the infinitesimal generator A generates a compact C0-semigroup

(see [5]). Similar results in finite dimensional case can be found in [7].

Theorem 3.1. For the stochastic differential equation (1), suppose that the

following conditions are satisfied:

(5a) F and B satisfy conditions of Theorem 2.3 with T =∞.

(5b) for all T > 0, α > 0, equation

du(t)

dt
= αH(t, u(t))

has a global solution on (t0,∞) for any initial value (t0, u0), t0 > 0,

u0 ≥ 0.

Then equation (1) with initial value ξ ∈ Lp(Ω,F0, H) has a global solution on

[0,∞).

Proof. Let U the set of times s for which equation (1) has a mild solution

on [0, s] and let s1 = sups∈U s. From Theorem 2.4 we have that s1 > 0. Suppose

s1 < ∞ and let T , s1 < T < ∞. We shall prove that the mild solution of

equation (1) defined on [0, s1) has a continuous extension on [0, s1] and therefore,
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in accordance with Theorem 2.4, it has a “substantial” extension to the right of

s1 which is a contradiction with the definition of s1.

Let X(t), t ∈ [0, s1), be the mild solution of equation (1). Then for fixed

t ∈ [0, s1) we have

E(‖X(t)‖p) ≤ 3pMpE(‖ξ‖p) + 3pMp tp−1
∫ t

0
E
(

‖F (s,X(s))‖p
)

ds

+ 3pCT M
p

∫ t

0
E
(

‖B(s,X(s))‖p
L0

2

)

ds

that is

E(‖X(t)‖p) ≤ 3pMpE(‖ξ‖p)+(3pMp T p−1+3pCT M
p)

∫ t

0
H
(

s,E(‖X(s)‖p)
)

ds .

Take u0 ∈ [0,∞), u0 > 3pMpE(‖ξ‖p), α = (3pMp T p−1+3pCT M
p) and let u(t)

be the global solution of equation











du(t)

dt
= αH(t, u(t)) ,

u(0) = u0 .

We have

E(‖X(t)‖p)− α

∫ t

0
H
(

s,E(‖X(s)‖p)
)

ds < u0 = u(t)− α

∫ t

0
H(s, u(s)) ds

for all t ∈ [0, s1). It follows, easily, (see [7], Lemma 4) that

E(‖X(t)‖p) < u(t) ≤ u(T ), for all t ∈ [0, s1) .

Let 0 < ρ < s < t < s1. We have

E
(

‖X(t)−X(s)‖p
)

=

= E

(

∥

∥

∥

∥

(

S(t)− S(s)
)

ξ +

∫ s

0

(

S(t− θ)− S(s− θ)
)

F (θ,X(θ)) dθ

+

∫ t

s
S(t− θ)F (θ,X(θ)) dθ +

∫ s

0

(

S(t− θ)− S(s− θ)
)

B(θ,X(θ)) dW (θ)

+

∫ t

s
S(t− θ)B(θ,X(θ)) dW (θ)

∥

∥

∥

∥

∥

p)

≤
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≤ 5p ‖S(t)− S(s)‖pE(‖ξ‖p)

+ 5p T p−1E

(
∫ s

0

∥

∥

∥

[

S(t− θ)− S(s− θ)
]∥

∥

∥

p
‖F (θ,X(θ))‖p dθ

)

+ 10pMp T p−1
∫ t

s
E
(

‖F (θ,X(θ))‖p
)

dθ

+ 5pCT E

(
∫ s

0

∥

∥

∥

[

S(t− θ)− S(s− θ)
]∥

∥

∥

p
‖B(θ,X(θ))‖p dθ

)

+ 10pMpCT

∫ t

s
E
(

‖B(θ,X(θ))‖p
)

dθ

≤ 5pE(‖ξ‖p) ‖S(t)− S(s)‖p

+ (5p T p−1 + 5pCT )

∫ ρ

0

∥

∥

∥S(t− θ)− S(s− θ)
∥

∥

∥

p
H(θ, u(θ)) dθ

+ (10pMp T p−1 + 10pMpCT )

∫ s

s−ρ
H(θ, u(θ)) dθ

+ (10pMp T p−1 + 10pMpCT )

∫ t

s
H(θ, u(θ)) dθ .

Using the continuity of the function t → S(t) in operator norm, for t > 0,

the Lebesgue convergence theorem and the integrability of the function θ →

H(θ, u(T )) on [0, T ], we find

(3) lim
s,t↑s1

E
(

‖X(t)−X(s)‖p
)

= 0 .

From (3) it follows that there exists limt↑s1X(t)
def
= X(s1) and E(‖X(s1)‖

p)<∞.

The following corollary is an immediat consequence of Theorem 3.1 and

Remark 2.1.

Corollary 3.1. For the stochastic differential equation (1), suppose that the

following conditions are satisfied:

(a) ‖F (t, x)− F (t, y)‖p + ‖B(t, x)−B(t, y)‖p
L0

2

≤ λ(t)α(‖X − Y ‖p),

(b) ‖F (t, 0)‖, ‖B(t, 0)‖L0
2
∈ F

p
loc([0,∞), R+),

for all t ∈ [0,∞) and x, y ∈ H, where λ(t) ≥ 0 is locally integrable and α : R+ →

R+ is a continuous, monotone nondecreasing and concave function with α(0) = 0,

α(u) > 0 for u > 0 and
∫

0+
1

α(u) du =∞.
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Let E(‖ξ‖p) < ∞. Then, on any finite interval [0, T ], the equation (1) has a

unique solution.

Remark 3.1.

i) If λ(t) ≡ L (L > 0) and α(u) = u (u ≥ 0) condition (a) implies a global

Lipschitz condition.

ii) Another example is: α(u) = u ln( 1
u
) for 0 < u < u0 (u0 sufficiently small),

α(0) = 0 and α(u) = (a u+ b) for u ≥ u0, where a u+ b is the tangent line

of the function u ln( 1
u
) at point u0.
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