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LOCAL AND GLOBAL EXISTENCE FOR MILD SOLUTIONS
OF STOCHASTIC DIFFERENTIAL EQUATIONS

D. BARBU

Abstract: In the present paper we shall investigate the local and global existence of
mild solutions for a class of Ito type stochastic differential equations under the condition
that the coefficients satisfy more general conditions than Lipschitz and linear growth.

1 — Introduction

In the present paper, we shall consider a stochastic differential equation of Ito
type,

" { dX (1) = (AX(1) + F(t, X(1)) ) dt + B(t, X (£)) dW (2),

We will assume that a probability space (2, F, P) together with a normal
filtration Fy, t > 0 are given. We denote by P and Pr the predictable o-fields on
Qoo = [0,400) x Q and on Qp = [0,T) x Q respectively.

We assume also that U and H are separable Hilbert spaces and that W is
a Wiener process on U with covariance operator (). We will assume that () is
a symmetric, positive, linear and bounded operator on U with Tr@Q < oco. Let
Up = Q%(U) with the induced norm |julg = HQ_% ul|. The spaces U, H and
LY = Ly(Uy, H) (LY is the space of all Hilbert-Schmidt operators from Up into
H) are equipped with Borel o-fields B(U), B(H) and B(LJ). The space L3 is
also a separable Hilbert space equipped with the norm || ¥|| Ly = H\I'Q% | Lo (0, H) -
Moreover, ¢ is a H-valued random variable, Fp-measurable.
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We fix T > 0 and impose first the following conditions on coefficients A, F
and B of the equation (1):

i) A is the infinitesimal generator of a strongly continuous semigroup S(t),
t>0in H.
ii) The mapping F': [0,T] x Qx H — H, (t,w,x) — F(t,w, ) is measurable
from (Qr x H, Pr x B(H)) into (H, B(H)).
iii) The mapping B: [0,7] x Q2 x H — LY, (t,w,x) — B(t,w,x) is measurable
from (Qr x H, Pr x B(H)) into (Lg7 B(LY)).

A mapping X : [0,7] x Q — H which is measurable from (Qr,Pr) into
(H,B(H)), is said to be a mild solution of (1) if

P(/OT(HS(t—s F(s, X ()| + | s¢ t—s)B(s,X(s))‘Lg)ds<+oo>:1

and, for arbitrary t € [0,7], we have
X(t) = S(t)§+/0t S(t—s)F(s,X(s))ds+/()t S(t — ) B(s, X (s)) dW(s) P as..

Existence and uniqueness theorem for solutions of the equation (1) under
Lipschitz conditions on the coefficients are studied in [4], Th. 7.4.

Stochastic evolution equations in infinite dimensions are natural generaliza-
tions of stochastic ordinary differential equations and their theory has motivations
coming both from mathematics and the natural sciences: physics, chemistry and
biology, cf. [4].

In the present paper we shall present existence (local and global) and unique-
ness results for solutions of the above mentioned equation under more general
conditions. Similar results in finite dimensional case can be found in [1], [3], [6],
[7].

A fundamental role in the proof of our theorems will play the following propo-
sition ([4], P. 7.7.3).

Proposition 1.1. Let p > 2, T > 0 and let ® be a LY-valued, predictable
process, such that E(fOT |®(s)][7) < +00. Then there exists a constant Cr such
2

that
(sup H/ S(t—s)P(s)dW (s H><C’TE(/OTH<I>(5)H]ngs).

t€[0,T]

Moreover W§(t) = fg S(t — s) ®(s) dW(s) has a continuous modification.
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2 — The local existence of solutions

In the following we shall fix a real number p, p > 2. We shall denote by Br
the space of all H-valued predictable processes X (¢,w) defined on [0, 7] x 2 which
are continuous in t for a.e. fixed w € € and for which

1XC ) lsr < {E(oi?% ||X(t,w)|]p>}% <o

The next lemma is proved in [1]:

Lemma 2.1. The space By is a Banach space with the norm || - || g,

In the following we denote by ©(Xq, ) o {X € Br: | X — Xo|lp, <1} the

closed ball of center Xy with radius r in Brp.

Theorem 2.1. For the stochastic dzfferential equation (1), let the functions
F(t,w,x) and B(t,w,x) be continuous in x for each fixed (t,w) € Qr, and let the
following conditions be satisfied:

(1a) There exists a function H : [0,00) x [0,00) — [0,00), (t,u) — H(t,u)
such that

E(|F(t, X)) + E(I1B( X)) < H(tB(IX])?)

for allt € [0,T) and all X € LP(Q,F, H).

(1b) H(t,u) is locally integrable in t for each fixed u € [0,00) and is continu-
ous, monotone nondecreasing in u for each fixed t € [0, 00).

Then there exists T € [0,T] such that the operator G: B; — B,
t t
GX(t) = S(t) f—l—/ S(t—s) F(s,X(s)) ds—i—/ S(t—s)B(s,X(s))dW(s), te[0,7]
0 0

is well defined and has the property:

G(O(S()& 1) CO(S()E 7).
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Proof. From Proposition 1.1 it follows that the operator G is well defined
for all 7 € [0,7]. Now we have:

E( sup
0<s<Tt

(GX)(s) = S(5)¢]|") <

< m(” /0 "S- S)F(S,X(s»dsHp)

+ 2pE( sup
0<s<Tt

/Os S(s— 0) B(0, X (0)) dW(H)Hp>

< 9P MP 1 /OTE(HF(S,X(S))]Z’) ds + 2" Cr /OTE(HB(S,X(S))H’EQ) ds

<l /OTH(S,E(HX(S)HP)) ds .

We have denoted M = sup;cioq) [|S(¢)|| L), Cr = 28 MP TP~ + 2P Cp and
we applied the Holder inequality for the first integral and used Proposition 1.1
for the second integral. If X € ©(S(-)&, r) C B, then E(||X(s) — S(s)&||P) <P
for every s € [0, 7] and therefore

B(Ix)|7) < B(I1X(s) - S(s) €l + 15(s) €1l)”
<2 + 2 B(||S(s)€|P) < CF

where Cf, = 2P rP + 2P MP E(||£||?). The function H(s,u) being monotone non-
decreasing in u, we have

E( sup

0<s<7

6x)(s) - 8)¢[") < 5 [ (5. ds

for all X € ©(S(:)&,r) C By. But H(-,up) is locally integrable and therefore
there exists 7/ such that

C}/ H(s,up)ds <rP .m
0

In the following we consider the basic notions connected with measures of
noncompactness and condensing operators (see [1]).

Definition 2.1. A function ¥, defined on the family of all subsets of a
Banach space E with values in some partially ordered set (Q,<), is called a
measure of noncompactness (MNC for brevity) if ¥(coO) = ¥(O) for all O C E,
where €0 O is the closure of the convex hull of O.
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Definition 2.2. Let Eq and E5 be Banach spaces and let ® and ¥ be MNC
in Fy; and Es, respectively, with values in some partially ordered set (Q, <).
A continuous operator f: D(f) C E; — Es is said to be (®, ¥)-condensing if
O C D(f), ¥[f(O)] > ®(0) implies O is relatively compact.

Definition 2.3. The Hausdorff measure of noncompactness x(O) of the set
O in a Banach space FE is the infimum of the numbers € > 0 such that O has a
finite e-net in F.

Recall that a set C' C E is called an e-net of O if O C C+¢ B(0,1) = {s+¢b:
s€ C,be B(0,1)} where B(0,1) is the closed ball of center 0 and radius 1 in E.
The MNC x enjoy the following properties:

a) regularity: x(O) = 0 if and only if O is totally bounded;

b) nonsingularity: x is equal to zero on every one-element set;
¢) monotonicity: O1 C Og implies x(01) < x(O2);

d) semi-additivity: x(O1 U O2) = max{x(01), x(02)};

e

f

) semi-homogeneity: x(t O) = |t| x(O) for any number ¢;

) algebraic semi-additivity: x(O1 + O3) < x(01) + x(02);

g) invariance under translations: x(O + xg) = x(O) for any z( € E;

h) invariance under passage to closure and to the convex hull: x(O) = x(O) =
x(coO).

The following result ([1], Th. 1.5.11 and generalisation 1.5.12) is fundamental
for our considerations.

Theorem 2.2. Let ¥ a MNC on a Banach space E which is additively-
nonsingular (i.e. such that ¥(O U {x}) = ¥(O) for all O C E and x € E) and a
(U, W) condensing operator f which maps a nonempty, convex, closed subset M
of the Banach space F into itself. Then f has at least one fixed point in M.

Let M[0,T] denote the partially ordered linear space of all real monotone
nondecreasing functions defined on [0, 7] and let us consider the following MNC
on the space Br defined above:

U: By — M[0,17,
[W(O)](t) = xt[O]
where x; is the Hausdorff MNC on the space B; and Oy = {z|j0: © € O} C By.
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Theorem 2.3. For the stochastic differential equation (1), suppose that the
following conditions are satisfied:
(3a) The functions F(t,w,x) and B(t,w,z) satisfy conditions (la), (Ib) of
Theorem 2.1 and are continuous in x for fixed (t,w) € Qr.
(3b) There exists a function K : [0,00) x [0,00) — [0,00) that is locally

integrable in t for each fixed u € [0,00) and is continuous, monotone
nondecreasing in u for each fixed t € [0,00), K(t,0) =0 and

B(|F@, x) - e, ) |") + B(| Bt X) - B Y)| ig) <K(LE(IX -Y|P))

for allt € [0,T] and X,Y € LP(Q2, F, H).

(3c) If a nonnegative, continuous function z(t) satisfies

2(t) < a/tK(s,z(s))ds, te|0,71],

to

where a > 0, Ty € (0,T), then z(t) =0 for all t € [0,T1].

Then the operator G': By — Br,
(G'X)(t) = /OtS(t —3s)F(s,X(s))ds —i—/OtS(t —5)B(s,X(s))dW(s), te€[0,T],

is condensing with respect to the MNC ¥ on any bounded subset of the space
Br.

Proof. We follow similar results for finite dimensional case ([1], Lemma 4.2.6).
Suppose ¥(0O) < ¥(G'O) for some bounded set O C By. We show that in this
case ¥(0) = 0 from which results that O is relatively compact in By. In fact
x7(0O) = 0 and from this follow that O is totaly bounded in Bp, that is O is
relatively compact. Let us notice that the function ¢ — [¥(O)](t) is monotone
nondecreasing and bounded and therefore for a fixed ¢ > 0 there exists only a
finite number of jumps of magnitude greather than . Remove the points corre-
sponding to these jumps together with their disjoint d1-neighborhoods from the
segment [0, 7], and using points 3;, j = 1,...,m, divide the remaining part into
intervals on which the oscillation of the function W(O) is smaller than €. Now
surround the points 3; by disjoint d>-neighborhoods and consider the family of
all functions Z = {z: k = 1,...,1} continuous with probability one, constructed
as follows: zj, coincides with an arbitrary element of a [(¥(O))(/3;) +€]-net of the
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set Op, on the segment o; = [Bj—1+ 02, B — 2], 7 = 1,...,m and is linear on the
complementar segments.
Let u € (G'O). Then u = (G'z) for some z € O and

Iz = = I, < [(BO)E) +e]”

where 22 is some element of the [(¥(0))(B;) +e]-net of Op,. Since z?jwj = Zk|o,
for some element z;, of the set Z, it follows that for s € o; we have

B(ll2(s) = z(s)|P) < E(ﬁ_ Lo e - 2(s)|1”)

<llz =271, < [(®O)B)+¢]” < [(WO)(s) +2¢]

Then

B( sup [[(62)(s) - (@0 ) <

< 2P MP P~ 1/ (HFS z(s)) — F(s, zi(s H )ds

P
Lg) ds

4op C’T/O E(HB(S,Z(S)) ~ B(s, ()]
<y [(K (5B (1)~ ()P ) s
_ c}é/@ K(s,E(Hz(s) - zk(s)Hp)) ds

+Cr /[o,t]—ug”l . K(s, E(Hz(s) - Zk(s)”P)) ds ,

where Cl = 2P MPTP~1 420 Cp, M = supyepo7 [1S(#) ||l L(zry and Cr is the con-
stant from Proposition 1.1. The set O is bounded and Z is finite and therefore
exists ug > 0 such that

E(Hz(s) - zk(s)Hp) <wug forall z€O, z€Z, s€l0,T].

Using (2b) we can find §; > 0 and d2 > 0 sufficiently small that can ensure that

(o))" < [wE@onw)’ <+ /OtK(s, [(w(0))(s) +2¢]") ds
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From the arbitraryness of € and the continuity of K in the second argument it
follows that

o)) < [ k(s [wone)]) as

0

By the last inequality, Lemma 2.2 and (2c) we deduce that ¥(O) = 0.
The continuity of the operator G’ follows easily. In fact, for X, Xy,... in By
we have

IGX ~ Xy, = E( suwp [G'X(0) - GXo(0)]?)
te[0,T]

< o P TP /OTE<HF(3,X(5)) - F(S,Xn(s))Hp> ds
T
4op C’T/O E<HB($,X(S)) - B(S,Xn(s))‘ig> ds
<Ch /OTK<S,E(HX(S) - Xn(s)Hp)) ds

T
< C’T/ K (s,1X — Xall, ) ds
0

from which we get |G'X — G/XnH%T —0as | X - Xp|p, —0.n

Remark 2.1.

i) Evidently, under the in conditions of Theorem 3.3 the operator G: By —
By defined by

(GX)(t) =S¢+ (G'X)(t), telo,T],

where £ € LP(Q, Fy, H) is also W-condensing.

ii) The inequality in (3b) of Theorem 2.3 is satisfied if the function K is
concave with respect to u for each fixed ¢ > 0 and

|Ft.2) — F.w) |+ |[Bit.2) - Bt.y)]

P
— P

by < K (bl = yl?)
for all z,y € H and ¢t > 0. This follows immediately from Jensen’s
inequality.

iii) The function K (t,u) = A(t) a(u), t > 0, u > 0, where A(t) > 0 is locally
integrable and «: Ry — R, is a continuous, monotone nondecreasing
function with «(0) = 0, a(u) > 0 for u > 0 and [+ ﬁ du = o0 is an
example for Theorem 2.3 (3c) (see [7]).
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Lemma 2.2. Let K: [0,00)? — [0,00), (t,u) — K(t,u) be a function which
is locally integrable in t for each fixed u € [0,00) and continuous, monotone
nondecreasing in u for each fixed t € [0,00), K(t,0) = 0 and for which if there
exists a continuous function z: [0,T] — [0,00), 2(0) = 0 which satisfies

z(t)g/OtK(s,z(s))ds, tel0,T],

then z(t) = 0 for all t € [0,T.
Then if a nonnegative monotone nondecreasing function w: [0,7] — [0, 00),
u(0) = 0, satisfies

t
uh) < [ Kis,u(s) s, tef0.T],
0
it follows u(t) = 0 for all t € [0,T].

Proof. Let u as above and denote by U the class of functions v: [0,7] —
[0, 00) which satisfy v(0) = 0, v(T') = u(T), v(t) > u(t) for all t € [0,T], they are
monotone nondecreasing and

v(t)g/OtK(s,v(s))ds, tel0,T].

Evidently u € U and U is partially ordered if we let vy < vo if v1(t) < vo(t) for
all t € [0,T7.

We shall prove that I/ has maximal elements. For this it will be sufficient, in
accordance with Zorn’s Lemma to prove that a totally ordered subset of ¢/ has a
majorant.

Let U' = {v;}ier C U be a totally ordered subset of U. We shall prove that
sup;e; v; € U and then sup,c; v; will be a majorant for 4’. We have

t t
/ K(s,supvi(s)) ds > / K(s,vi(s))ds >wvi(t) forall t€[0,T], iel.
0 0

el
Therefore
t
/ K(s,supvi(s)) ds > supwi(t), te€]0,T].
0 i€l i€l
Obviously sup,c;v; is monotone nondecreasing (sup;c;v;)(0) = 0 and

(sup;er vi)(T) = w(T) that is sup;c;vi € U.
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Let v be a maximal element of &. We shall prove that v is continuous. Sup-
pose v has a discontinuity point ¢ty € (0,7] (¢ = 0 is a continuity point) and
v(to +0) = v(tg) > v(to — 0). For other cases the proof will be the same. Let
e = 3(v(tg 4+ 0) — v(tg — 0)). We shall “raise up” v on the left (but close) of .
Let 6 > 0 such that [; K(s,u(T))ds < ¢, for all J € B([0,T]), m(J) < 0.
We define w: [0,7] — [0, 00)

N U(t)7 t e [O,T]*[t[)*(;,to),
wit) = {U(t0—0)+5, t € [to— 0, to) -

Evidently w > v. We shall prove that w € . For this it is sufficient to prove
that

2) w(t) < /Ot K(s,w(s))ds .

If t <tg— 4, (2) is obviously satisfied. If ¢ > to, then

t

/t K(s,w(s))ds > / K(s,v(s))ds > v(t) = w(t) .
0

0
Ifte [t() —d,tp), then

to

/t K(s,w(s))ds > /to K(s,v(s))ds — K(s,v(s))ds
0 0 to—6

0
> wu(tp) — K(s,u(T))ds > v(tg) —e =w(t) .
to—0
We have proved that w € Y. But w > v, w # v which is a contradiction with the
maximality of v. Therefore v is continuous on [0,7] and from the hypothesis of
lemma it follows v(t) = 0, for all ¢ € [0,7T]. But v(t) > u(t) > 0, that is u(t) =0
for all t € [0,77]. u

Theorem 2.4. Suppose the conditions of Theorem 2.3 are satisfied. Then
there exists T' € (0,T] for which equation (1) has a unique solution in Brp.

Proof. In accordance with Theorem 2.1 there exists T” for which the operator
G defined above has the property that

G(O(S()& 1)) COS()& ) C By .

But ©(S(+) &, r) is a nonempty, closed, convex subset of By, G is a ¥-condensing
and then, from Theorem 2.2, it follows that G has at least one fixed point in
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O(S(-)&, r) C Byr. The fixed point is unique. Indeed, let X, Y € By be two
fixed points of G. Then we would have

E(Oggt |X(s)=Y (s)|P) < 22 ha7 2 E(/OtHF(s, X(s)=F(s,Y ()| ds)
ig ds)

< (P MPPlyop CT)/OK(S,E(||X(s)—Y(s)||p>>ds.

+op CTE</0tHB(S,X(8)) — B(s.Y(s))

Therefore
t
IX — Y|P, < (@M 4o cT)/O K (s, X~ Y[, ) ds

From condition (2c) it follows that | X — Y[/, =0, thatis X =Y. u

3 — The global existence of solutions

In this section we shall discuss the existence of global solutions of equation (1).
We suppose that the infinitesimal generator A generates a compact Cyp-semigroup
(see [5]). Similar results in finite dimensional case can be found in [7].

Theorem 3.1. For the stochastic differential equation (1), suppose that the
following conditions are satisfied:

(5a) F and B satisfy conditions of Theorem 2.3 with T = co.

(5b) for all T > 0, o > 0, equation

du(t)
dt

= a H(t,u(t))

has a global solution on (tg,00) for any initial value (tg,up), to > 0,
(27} Z 0.
Then equation (1) with initial value § € LP(Q, Fy, H) has a global solution on
[0, 00).

Proof. Let U the set of times s for which equation (1) has a mild solution
on [0, s] and let s; = sup s 5. From Theorem 2.4 we have that s; > 0. Suppose
s1 < oo and let T, s1 < T < oo. We shall prove that the mild solution of
equation (1) defined on [0, s1) has a continuous extension on [0, s1] and therefore,
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in accordance with Theorem 2.4, it has a “substantial” extension to the right of
s1 which is a contradiction with the definition of sy.

Let X(t), t € [0,s1), be the mild solution of equation (1). Then for fixed
t € [0,s1) we have

BOX @) <3 M B(lel) +3 20 [ B(1F(, X (6)1P) ds

+3PCTMP/O E(]|B(s, X (), ) ds
that is
E(|X (1)||) < 37 MP B([¢]|P)+(37 MP TP~'+37 Cp MP) / (s, B(IX(3)]7)) ds

Take ug € [0,00), ug > 37 MP E(||€||P), o = (3P MP TP~1 43P C MP) and let u(t)
be the global solution of equation
du(t)
dt
u(0) = up .

= O‘H(tﬂ u(t)) )

We have
BAXOI) —a [ H(s BUX ) ds < o= u(t) ~ o [ His,u(s))ds
for all t € [0, s1). It follows, easily, (see [7], Lemma 4) that
E(|X®|P) <u(t) <u(T), forall te][0,s1).

Let 0 < p < s <t<s;. We have

o

v /: S(t — 0) F(6, X (0)) db + /0 (S(t —6) — S(s - 6)) B(6, X(6)) W (6)

-

B(I1X(t) - X(s)|”) =

(5() - 5()) € + /0 (5(t—0) — S(s — 0)) F(0,X(0)) o

+ [ st 0) B, x @) aw (o)
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< 5P|IS5(t) = S(s)[I” E([I€11P)

+ 5P TPl E(/OH [S(t—0)— S(s—0)] Hp IF(0, X (6))|? d9>

+10P MP TP} /: E(HF(e, X(9))||”) do

+5pCTE(/
0

+10° MP Cyp /: E(|B6. X(0)]") do

[5(t—0)— s(s— 0)] [ 1B6, X 0))1 de)

<SPE([EIP) 1S(#) = S(s)I”

p
(5P TP 45 CT)/ |5t —0) — (s — 0)|[" (0. u(6)) a0
0
(107 MPTP*1+1OPMPCT)/ H(0,u(0)) do
5—p
t
+ (107 Mpr’1+10pMpCT)/ H(0,u(6))do .

Using the continuity of the function ¢ — S(¢) in operator norm, for ¢ > 0,
the Lebesgue convergence theorem and the integrability of the function 8 —
H(,u(T)) on [0,T], we find

(3) lim E<||X(t) - X(s)||p) =0.

s,tTs1

From (3) it follows that there exists lim, X (t) défX(sl) and E(|| X (s1)|?)<oc.nm

The following corollary is an immediat consequence of Theorem 3.1 and
Remark 2.1.

Corollary 3.1. For the stochastic differential equation (1), suppose that the
following conditions are satisfied:

(@) [|[F(t,z) = F(t,y)|P + Bt 2) = B(t,y)|7g < A®) a(|X = Y[7),
(b) [E0), [I1B(t,0)llLy € Fp.([0,00), RF),
for allt € [0,00) and z,y € H, where \(t) > 0 is locally integrable and a: R4 —

R is a continuous, monotone nondecreasing and concave function with a(0) = 0,
a(u) >0 for u> 0 and [+ ﬁdu:oo.



424 D. BARBU

Let E(||£||P) < co. Then, on any finite interval [0, T, the equation (1) has a
unique solution.

Remark 3.1.

i) If AX(t) = L (L > 0) and a(u) = u (u > 0) condition (a) implies a global
Lipschitz condition.

ii) Another example is: a(u) = uln(1) for 0 < u < ug (up sufficiently small),
a(0) =0 and a(u) = (au+0b) for u > ug, where au + b is the tangent line
of the function uIn(L) at point uq.
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