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1 – Introduction

The calculus of Fourier integral operators introduced by Hörmander in [11] has

found widespread use throughout the study of linear partial differential equations.

However, it is limited by the fact that in general the calculus is not closed under

composition. Also various natural distributions which arise, for example the

forward fundamental solution of the wave operator, are not contained within

the calculus. Generalizations of the class have been introduced by Boutet de

Monvel, Guillemin, Melrose, Uhlmann and the author, see [4], [10], [13], [15],

[17] and [19]. Our purpose here is to introduce a new approach to composing

these classes which can handle all the different classes simultaneously and will

always give information about the resultant class regardless of the degeneracy

of the composition. This will yield the clean composition theorem for Fourier

integral operators as a simple special case as well as generalizations involving

paired Lagrangian distributions. We will see that a general composition can be

reduced to understanding its local symplectic geometry.

The basic object of the theory of Fourier integral operators is the Lagrangian

distribution which was originally defined in [11] using oscillatory integrals. It

was later noticed by Beals, Bony, Melrose that these spaces could be defined in

terms of stability of application of operators. For the case of conormal bundles,

this became distributions whose orders were stable under repeated application of

vector fields tangent to the submanifold. This was later generalized to all conic

Lagrangian submanifolds by replacing the vector fields with first order pseudo-

differential operators characteristic on the submanifold. This second definition

had the advantages that the geometry appeared more naturally and that it was

a priori coordinate invariant.
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The essential idea in our approach is to regard the modules, under which sta-

bility is required, to be the prime objects of study. Proving composition theorems

then becomes a question of how does the module change under certain operations.

This means that one always obtains information about the composite regardless

of how degenerate the composition. Melrose in [16] and [18] has already exploited

this point of view in the special case where the modules are generated by vec-

tor fields, in which case one can work with Lie algebras of vector fields instead.

Testing by Lie algebras of vector fields has also been extensively used in proving

propagation theorems for semi-linear wave equations.

A composition is a sequence of three operations, exterior product, restriction

to the diagonal and a push-forward along the diagonal so it is enough to under-

stand the transformation of the defining modules in each of these three cases.

Definition 1.1. We shall say M is a defining class of symbols on a smooth

manifold X, ifM is submodule of the spaces of homogeneous smooth functions of

order one (over the functions of order zero) which is closed under Poisson bracket.

Definition 1.2. If M is a defining class of symbols and H is a class of

distributions then Il(M,H) is the set of u ∈ H such that

P1 . . . Pku ∈ H

for all k ≤ l ∈ {N}∪{∞} and Pj ∈M. If H = Hs
loc we write the class as I

(s)
l (M).

We shall drop the subscript when l =∞.

In this note, we shall work in the context of Sobolev spaces but it is important

to realize that the only important properties we use are the L2 continuity of zeroth

order operators and their micro-localizability — one could equally well work with

Besov spaces. Note one could also work with line bundles.

Suppose X,Y are smooth manifolds and π is the projection from X × Y to

X. Upon pushing-forward a distribution from X × Y to X, wavefront which is

not conormal to the fibres will be killed, i.e. only wavefront set contained in

N∗
X(Y ) =

⋃

x∈X

N∗({x} × Y )

will show up below. Note that a function on T ∗(X) can be pulled-back to a

function on N∗
X(Y ) by

π̄∗(f)(x, ξ, y, 0) = f(x, ξ) .

We prove,
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Theorem 1.1. LetM be a defining class of symbols on X × Y where X,Y

are smooth manifolds and Y has a smooth density. If u ∈ I
(s)
l (M) and the

support of u is proper with respect to projection onto Y then π∗u ∈ I
(s)
l (M̃)

where M̃ is the class of symbols on X, which after being pulled back to N ∗
X(Y )

are restrictions of elements of M.

We can view restrictions in a similar way. If Y is a submanifold of X then

a function, f(y, η), on the cotangent bundle of Y , T ∗Y , can be pulled back to a

function on T ∗Y (X), the cotangent bundle of X restricted to Y , by the dual to

the derivative of the natural inclusion

i : Y → X .

Theorem 1.2. Let M be a defining class of symbols on X. If u ∈ I
(s)
l (M)

and Y is a submanifold of X of codimension k such that

( ⋂

p∈M

p−1(0)
)
∩N∗(Y ) = ∅(1.1)

and WF(u) ∩ N∗(Y ) = ∅ then i∗Y u ∈ I
(s)
l (M̃) where M̃ is the class of symbols

which after being pulled back to T ∗Y (X) are restrictions of elements of M close

to
⋂

p∈M
p−1(0).

Note that the condition (1.1) ensures that WF(u) ∩N ∗(Y ) = ∅ when l = ∞
and hence that the restriction exists.

The case of exterior product is much simpler.

Theorem 1.3. LetMi be a defining class of symbols on a smooth manifold

Xi. Suppose ui ∈ I
(s)
l (Xi) then

u1 ⊗ u2 ∈ I
(min(s,t,s+t))
l (M)(X1, X2)

where M is the set of first order homogeneous functions on T ∗(X1 ×X2) − {0}
of the form ∑

aj p̄1,j +
∑

bk p̄2,k

where aj , bk are zeroth order functions on T ∗(X1 ×X2) − {0} and with aj zero

near N∗
X1

(X2) and bj zero near N∗
X2

(X1) and pi,l ∈ Mi and p̄i,k denotes the

pull-back to product space.
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With these three theorems proven, we show that proving the clean composition

theorem for Fourier integral operators is then just the observation that if two

submanifolds intersect cleanly and if a smooth function defined on one vanishes

on the intersection then it can be extended smoothly to vanish on the second.

Paired Lagrangian distributions often arise as pseudo-differential operators

with singular symbols, in which case one Lagrangian is the conormal bundle to

the diagonal, and the questions then arises of when are these classes closed under

composition. We study two cases. The first comes from when the second La-

grangian submanifold is obtained by flowing out a submanifold by Hamiltonians

associated to Poisson commuting functions. This arises when studying operators

of the form

P =
∑

Q2
j

or

P = Q1 + iQ2

with Qj of real principal type (see for example [10]). We show that in this case

the class is closed under composition.

The second case we examine is that of when the second Lagrangian is the graph

of a symplectomorphism which arises in the study of singular Radon transforms.

In this case, the class is not closed under composition but we identify a class in

which RtR,RRt lies for R in this class.

I would like to thank Richard Melrose and Gunther Uhlmann for helpful

conversations.

2 – Stability under testing

Our purpose in this section is to review how to define some of the basic objects

in micro-local analysis in terms of stability under repeated application of elements

of modules of pseudo-differential operators and to examine how these modules

behave under exterior products, restrictions and push-forwards. As a composition

can be decomposed into an exterior product, a restriction and a push-forward

these theorems will be enough to deduce general composition theorems.

Throughout, M will be a smooth manifold with cotangent bundle T ∗M .

We will denote the “classical” (or polyhomogeneous with integer step) pseudo-

differential operators of order m by ΨDOm
phg(M). We will work solely with

pseudo-differential operators which are proper and classical. We will assume

our manifolds are equipped with smooth densities and so smooth functions can

be regarded as a subset of the space of distributions.
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Example 2.1. Let Λ be a conic Lagrangian submanifold of T ∗M − {0} and

let M be the set of first order functions which vanish on Λ. Then

I(M) =
⋃

s

I(M, Hs
loc)

is the set of Lagrangian distributions associated with Λ. These are the Schwartz

kernels of Fourier integral operators.

Example 2.2. Let Σ be an isotropic submanifold of T ∗M − {0} and then

let M be the first order functions which are zero on Σ and whose Hamiltonians

are tangent to Σ. Then

I(M) =
⋃

s

I(M, Hs
loc)

is the set of isotropic distributions with respect to Σ.

Example 2.3. Let Λ1,Λ2 be cleanly intersecting conic Lagrangian subman-

ifold of T ∗M − 0 and let M be the first order symbols which are characteristic

on Λ1 ∪ Λ2. Then

I(M) =
⋃

s

I(M, Hs
loc)

is the set, I(Λ1,Λ2), of paired Lagrangian distributions with respect to (Λ1,Λ2).

Note that this is a very weak definition of a paired Lagrangian distribution

— in particular it includes the set of isotropic distributions with respect to the

intersection.

Example 2.4. Let Λ be a conic Lagrangian submanifold of T ∗M − {0} and

suppose Σ1, . . . ,Σk are nested submanifolds of Λ, then let M be the first order

symbols which are characteristic on Λ and whose Hamiltonians are tangent to

each of the Σj . Then

I(M) =
⋃

s

I(M, Hs
loc)

is the set of marked Lagrangian distributions, Ima, with respect to (Λ,Σ1, . . . ,Σk)

(see [17]).

Note that if a class of symbols, M, fails to be a defining class because of

non-closure under Poissson bracket then it will still define a class of distributions

but in the infinite regularity case, the class will be equal to that obtained by

using the smallest class of operators containingM which is closed under Poisson

bracket. This is because if

P1P2u, P2P1u ∈ Hs
loc



134 M.S. JOSHI

then so is

[P1, P2]u .

This is one reason why Lagrangian submanifolds are natural: if two functions

vanish on a Lagrangian submanifold then so does their Poisson bracket and La-

grangian submanifolds are of minimal dimension amongst submanifolds having

this property.

If there is an element P ofM which is not characteristic at a point (x, ξ) then

it is immediate from micro-ellipticity that (x, ξ) 6∈WF(u) for u ∈ I(M, Hs
loc) so

we have

Proposition 2.1. If u ∈ I(M, Hs
loc) then

WF(u) ⊂
⋂

p∈M

p−1(0) .

With our definitions now made, we consider exterior products, push-forwards

and restrictions.

If πy is the projection of X × Y onto X then it defines a push-forward map

of distributions whose supports are proper for the projection by

〈(πy)∗u, φ〉 = 〈u, (πy)
∗φ〉(2.1)

for u ∈ D′(X × Y ) and φ ∈ C∞c (X). This defines a continuous map from

Hs
c (X × Y ) to Hs

c (X) (see Section 3). A simple upper bound on the wavefront

set holds expressing the fact that only singularities conormal to the push-forward

are retained, letting

N∗
X(Y ) =

⋃

x∈X

N∗({x}×Y ) ,

we have

WF((πy)∗u) ⊂
{
(x, ξ) ∈ T ∗(X)− {0} : ∃y (x, ξ, y, 0) ∈WF(u)

}
(2.2)

= (πy)∗

(
N∗

X(Y ) ∩WF(u)
)
.(2.3)

For a proof of this see [11]. There is a natural projection of N ∗
X(Y ) onto T ∗(X)

π̄(x, ξ, y, 0) = (x, ξ) .

Thus functions on T ∗(X)−{0} can be pulled back using π̄ to functions on N ∗
X(Y )

by

π̄∗q(x, ξ, y, 0) = q(x, ξ) .



COMPOSITION THEOREMS 135

Since we know that only wavefront set meeting N ∗
X(Y ) shows up after the push-

forward, it is not surprising that it is the behaviour of the defining classes at

N∗
X(Y ) which affects the regularity properties below. We now proceed to the

proof of Theorem 1.1 which expresses this relationship.

Proof of Theorem 1.1: See Section 3 for a proof that π∗ maps elements

of Hs
loc(X × Y ) which are proper to the projection into Hs

loc(X). We need to

show stability for (πy)∗u under application of operators with principal symbols

in M̃. We do this by lifting the pseudo-differential operators to act on X × Y

and then add operators which are killed by the push-forward to obtain operators

with symbols in M.

Taking local coordinates and a partition of unity, it is enough to take Y to be

Rn. When pushing-forward with respect to Lebesgue measure on Rn derivatives

will vanish. So with a general density and Q a zeroth order pseudo-differential

operator, for any j we have

(πy)∗(Dyj
Qu) = (πy)∗(Q

′u)

with Q′ a zeroth order pseudo-differential operator. So

P (πy)∗(u) = (πy)∗

((
P̄ +

∑
Dyj

Qj

)
u+Ru

)
,(2.4)

where P̄ is P lifted and Qj is an arbitrary zeroth order pseudo-differential oper-

ator and R is zeroth order.

Note that if P has Schwartz kernel K(x, x′) then P̄ will have Schwartz kernel

K(x, x′) δy(y
′) and so P̄ is not quite a pseudo-differential operator as its wavefront

set contains N∗(y = y′) — it is in fact a paired Lagrangian distribution. However

the additional wavefront set will be killed by the push-forward and is therefore

irrelevant. So provided there exists Qj such that the principal symbol of P̄ +∑
Dyj

Qj is inM
′ nearN∗

X(Y ) then (πy)∗(u) will retain membership ofHs
loc under

application of P as then (P̄ +
∑
Dyj

Qj)u will remain in I(M, Hs
loc). Inductively,

this remains true for any application P1P2 . . . Pk for Pj with this property. But

the condition on Pj is equivalent to the hypothesis of our theorem and so the

result follows.

Corollary 2.1. If the conic Lagrangian submanifold Λ intersects N ∗
X(Y )

cleanly then for properly supported elements

(πy)∗ : I
(s)
l (Λ)→ I

(s)
l (Λ′) ,

where Λ′ = {(x, ξ) : ∃y (x, ξ, y, 0) ∈ Λ}.
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Proof: If a function defined on N ∗
X(Y ) vanishes on the intersection with Λ

then it can immediately be extended to vanish on Λ (see Corollary 4.1) and the

result is immediate.

NB it follows from the discussion in [12] Chap. 21 that Λ′ is at least locally a

Lagrangian submanifold.

We remark that this argument works equally well if the testing functions are

required to vanish to fixed finite order k, (or even infinite order) on Λ — such

classes could be interpreted as having symbols of type 1/k.

The arguments for restrictions are very similar. An embedded submanifold

X of M has a natural inclusion

i : X →M

and the derivative di provides a natural inclusion of tangent spaces. There is

therefore a natural projection of the bundle T ∗M restricted to X onto T ∗X

dual to this inclusion. We use this projection to pull-back functions on T ∗X to

functions on T ∗M|X . In local coordinates such that X = {y = 0}, this becomes,

for q a function on T ∗X,

i∗ q(x, ξ, 0, η) = q(x, ξ) .

Now a distribution, u, on a manifold, M , can be restricted to a submanifold,

X, (or pulled back by the inclusion map i) if its wavefront set is disjoint from

the conormal bundle of X and so we work with defining classes whose wavefront

sets are disjoint from the conormal bundle.

Proof of Theorem 1.2: The mapping property on Sobolev spaces is proven

in Section 3. Our approach to this proof is very similar to that of Theorem 1.1

and in some sense our argument is dual to the one there. Since X is an embedded

submanifold, taking a partition of unity we can work in local coordinates (x, y)

such that X is given by y = 0. For any u ∈ I(M, Hs
loc), WF(u)∩N∗(X) is empty

so i∗X(u) can be defined by

〈
i∗X(u), φ(x)

〉
=
〈
u, δ(y)φ(x)

〉
(2.5)

(see for example [11]). This means that if a smooth function f vanishes on X that

i∗X(fu) is equal to zero. At the pseudo-differential operator level this becomes

P i∗X(u) = i∗X

(
(P̄ +Q)u

)
,

where P̄ is the lifting of P to act in extra coordinates and Q is a first order

pseudo-differential operator of which the total symbol vanishes on X. The extra
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wavefront set in P̄ will be irrelevant as the condition on WF(u) ensures that it

will not interact, so if there exists Q such that the principal symbol of P̄ + Q

is in M near WF(M) then (P̄ +Q)u will remain in I(M, Hs
loc) and so stability

under application of P follows. This condition on the symbol is equivalent to our

hypothesis and the result is now immediate.

Corollary 2.2. If Λ is an embedded Lagrangian submanifold of T ∗M − {0}
disjoint from N∗(X) and Λ intersects T ∗M|X cleanly, then

i∗X : I
(s)
l (Λ)→ I

(s+k/2)
l (Λ′)

where Λ′ is the projection of Λ ∩ T ∗M|X onto T ∗(X). If l < ∞, we also require

WF(u) ∩N∗(X) = ∅.

Proof: This is the same as the proof of Corollary 2.1.

Exterior product is the simplest of the three operations — the distributions

are simply adjoined by making them act in different variables. So if we have that

Mi is a defining class on Xi and that ui ∈ I(Mi,Hi) then it is immediate that

u1 ⊗ u2 will be stable under applications of P̄i — the lifting of an operator with

symbol in Mi to the product space:

P̄1(u1 ⊗ u2) = (P1u1 ⊗ u2) , P̄2(u1 ⊗ u2) = (u1 ⊗ P2u2) .

Theorem 1.3 is now obvious.

We now compute some examples to illustrate the use of the push-forward

theorem when the usual composition calculus fails.

Example 2.5. Let X = Rl
s × Rx and let Y = Ry with dual coordinates

(µ, ξ, η). Then the Lagrangian submanifold in T ∗(X × Y ), Λ = N∗(x = yk+1) is

tangent to N∗
X(Y ) = {η = 0}:

Tp

(
Λ ∩ {η = 0}

)
⊆6 TpΛ + Tp({η = 0})

so the composition with push-forward in y is not clean. Using Taylor’s theorem,

we have that p ∈M(Λ) if and only if

p(s, µ, x, ξ, y, η) = (x− yk+1) p1 +
(
η + (k + 1) yk ξ

)
p2 + µ p3 .

So q(s, µ, x, ξ) ∈ M̃ if and only if there exists smooth r such that

q + η r = (x− yk+1) p1 +
(
η + (k + 1) yk ξ

)
p2 + µ p3
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for some smooth pj . Evaluating at η = 0, µ = 0, we obtain,

q(s, 0, x, ξ) = (x− yk+1) p1 + (k + 1) yk ξ p2 .

Putting y = 0 and observing that the left side is independent of y we deduce that

q(s, 0, x, ξ) must vanish on x = 0 and so

q = x q1 + µ q2 .

So we have that q ∈ M(N ∗(x = 0)). Any q of this form will be extendible to an

element of M(Λ) as we can take

p = (x− yk+1) q1 + µ q2 +
(
η + (k + 1) yk ξ

) y

(k + 1)ξ
q1 .

So we conclude that

(πy)∗ : I
(
N∗(x = yk+1), Hs

loc

)
→ I

(
N∗(x = 0), Hs

loc

)
.

We now consider an example where the nature of the intersection varies

— we do not obtain a Lagrangian distribution but instead a paired Lagrangian

distribution.

Example 2.6. Let (s, x, y) be as in Example 2.5 but now let

Λ = N∗(x = yk+1, s = 0) .

Away from (x, y) = 0 the push-forward in y is transversal and there are no

problems but at the origin there is tangency and a second Lagrangian appears.

Similarly to above, the elements of M(Λ) are of the form

p = (x− yk+1) p1 + s p2 +
(
η + (k + 1) yk ξ

)
p3 .

The same arguments as above show that the elements of M̃ are of the form

x q1 + s q2 .

However, general q1 are not possible, putting s = 0, ξ = 0 and η = 0 we have

that

x q1(0, µ, x, 0) = (x− yk+1) p1(0, µ, x, 0, y, 0) .

The left-hand side is independent of y and the right-hand side vanishes when

x = yk+1. So if k is even then

q = x ξ q
′

1 + s q2
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and when q is odd we have

q = x ξ q
′

1 + s q2 + f

where f is identically zero on x ≥ 0. Thus, as above, when k is even we obtain

(πy)∗ : I
(
N∗(x = yk+1), Hs

loc

)
→ I

(
N∗(s = 0), N∗(x = 0, s = 0), Hs

loc

)

and when k is odd we obtain

(πy)∗ : I
(
N∗(x = yk+1), Hs

loc

)
→ I

(
N∗(s = 0, x ≥ 0), N∗(x = 0, s = 0), Hs

loc

)
.

We give an example where the degeneracy of a restriction yields a paired La-

grangian distribution from a Lagrangian distribution and a slight modification of

this example gives an example of paired Lagrangians going to paired Lagrangians.

Example 2.7. Let Λ be the closure of the conormal bundle of the smooth

part of the cone t2 = x2 in the space Rt × Rn
x. If we let (ξ, τ) be the dual

coordinates, the smooth Lagrangian submanifold Λ can be defined by

xj τ + t ξj = 0 , j = 1, ..., n ,

τ2 − ξ2 = 0 .

So the symbols in the defining class are of the form

n∑

j=1

(xj τ + t ξj) qj + (τ2 − ξ2) r .

We consider the restriction to x1 = 0 — this exists as

Λ ⊂ {τ2 − ξ2 = 0}

and the conormal bundle to x1 = 0 is contained in {τ = 0}. We claim that

symbols of the form

p(x′′, ξ′′, t, τ) =
n∑

j=2

(xj τ + t ξj) qj + t(τ2 − (ξ′′)2) r + f ,

where f is identically zero on (τ 2−(ξ′′)2) ≥ 0, are in the restricted classM′. The

extension of elements of the form (xj τ + t ξj) qj is obvious and if f(x′′, ξ′′, t, τ) is

zero on (τ 2 − (ξ′′)2) ≥ 0 then it will be zero on τ 2 = ξ2 when lifted to the extra

variable and so is extendible. This leaves t(τ 2 − (ξ′′)2) r but

t(τ2 − (ξ′′)2) r + τ x1 ξ1 r = t(τ2 − (ξ)2) r + (t ξ1 + τ x1) ξ1 r

is a valid extension and so the claim is proven.
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These symbols are precisely the ones which are zero on

N∗((x′′)2 = t2)

and on {
x′′ = 0, t = 0, (ξ′′)2 ≤ τ2

}
.

We conclude that the restriction is paired Lagrangian. In fact, the same ar-

guments show that if one takes a paired Lagrangian with respect to Λ and

N∗(x= t=0) cut off away from ξ1=0 then the restriction is in I(N ∗((x′′)2= t2),

N∗(x′′=0, t=0)).

3 – Operations on Sobolev spaces

In this section, we examine how Sobolev spaces behave under three basic

operations thus ensuring that our theorems are not vacuous.

Theorem 3.1. If X,Y are smooth manifolds and Y is equipped with a

smooth density then push-forward along Y induces a map on Sobolev spaces

(πy)∗ : H
s
c (X × Y )→ Hs

c (X) .

Proof: Taking a partition of unity it is enough to consider the case when

X,Y are open subsets of Rn with compact closure. As the smooth density on Y

will be equal to a smooth function times the Euclidean density and the function

will be bounded above it is enough to prove the result for the Euclidean density.

First of all suppose s = 0, then we need to show the continuity of push-forward

on L2
c . Assume that f ∈ L2 has support contained in some box Rk

x × [−C,C]ly
then using Cauchy–Schwartz, we have that

∫ ∣∣∣
∫
f(x, y) dy

∣∣∣
2
dx ≤

∫∫
|f(x, y)|2 dx dy (2C)l(3.1)

and so in terms of norms we have ‖(πy)∗f‖0 ≤ (2C)l/2 ‖f‖0.
The case for positive integers follows come from considering estimates on

derivatives and the negative integers follow by duality. Once one has all the

integral cases one can interpolate to prove the estimate for all s.

Theorem 3.2. Exterior product induces a continuous map

Hs
loc(X)×Ht

loc(Y )→ H
min(s,t,s+t)
loc (X,Y ) .
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Proof: It is enough to show that for s, t ≤ 0 there is a continuous map into

Hs+t and for 0 ≤ s ≤ t there is a continuous map into Hs.

For s, t ≤ 0, we have
∫∫

|f̂(ξ)|2 |ĝ(η)|2 (1 + |ξ|2)s (1 + |η|2)t dξ dη ≥

≥
∫∫

|f̂(ξ)|2 |ĝ(η)|2 (1 + |ξ|2 + |η|2)s+t dξ dη ,
(3.2)

i.e. ‖f(x) g(y)‖s+t ≤ ‖f(x)‖s ‖g(y)‖t and the estimate follows in the Euclidean

case. Taking local coordinates the result then follows in general.

For 0 ≤ s ≤ t, we have that
∫∫

|f̂(ξ)|2 |ĝ(η)|2 (1 + |ξ|2 + |η|2)s dξ dη ≤

≤
∫
|f̂(ξ)|2 (1 + |ξ|2)s dξ

∫
|ĝ(η)|2 (1 + |η|2)t dη

(3.3)

and so that case follows also.

Theorem 3.3. If X is a smooth embedded submanifold of codimension k

in a manifold M and u ∈ Hs
loc(M) is such that WF(u) ∩N ∗(X) = ∅ then i∗Xu is

well-defined and is in H
s−k/2
loc (X).

Proof: That the restrictions is well-defined follows from the calculus of

wavefront sets (see for example [11]).

It is sufficient to work locally so suppose (x′, x′′) is a splitting of the coordinates

in Rn such that X = {x′ = 0} then if p ∈ X we can put u = u1 +u2 +u3 with u1

smooth, u2 identically zero near p and the Fourier transform of u3 is supported in

a cone which does not meet ξ′′ = 0. The regularity properties of i∗Xu near p will

be determined purely by u3. Thus we need to estimate the Hs norm of i∗X(u3).

Now there exists C such that supp(û3) ⊂ {|ξ
′| ≤ C|ξ′′|} and so we have

‖ ̂i∗Xu3‖
2
s′ =

∫ ∣∣∣
∫
û(ξ) dξ′

∣∣∣
2
(1 + |ξ′′|2)s

′

dξ′′(3.4)

≤
∫ ∫

|ξ′|≤C|ξ′′|

|û(ξ)|2 (1 + |ξ′′|2)s
′+ k

2 dξ(3.5)

≤ C ′
∫∫

|û(ξ)| (1 + |ξ|2)s
′+ k

2 dξ .(3.6)

Thus the result follows.

In this note, we do not use the regularity of the distributions under testing

by operators to improve these estimates, however work of Gerard and Golse has

shown this is possible for push-forwards and probably in general, [8].



142 M.S. JOSHI

4 – Clean intersections

Much of this paper involves reducing analysis to questions of differential and

symplectic geometry. We assume that the reader is familiar with the contents of

Chap. 21 of [12] which is a good reference for the symplectic geometry needed in

micro-local analysis. It is customary in micro-local analysis to work with twisted

symplectic forms on products of symplectic manifolds i.e. on the product S1×S2

to take the difference of the pull-back of the symplectic forms rather than the

sum. However, here we shall work with the sum instead as it is more natural when

comparing cotangent bundles of products with products of cotangent bundles. If

Λj is a Lagrangian submanifold of T ∗Xj×T
∗Xj+1 and we regard it as a relation,

we have the twisted composition:

Λ1 ◦ Λ2 =
{
(x, ξ, z, ζ) : (x, ξ, y, η, y,−η, z, ζ) ∈ Λ1×Λ2

}
.

One situation we will need to consider often is that of submanifolds inter-

secting; a theorem due to Bott ([3] or [12]) gives us a necessary and sufficient

condition for two intersecting embedded submanifolds to be modelable by the

vanishing of coordinates.

Definition 4.1. Embedded submanifolds Y,Z of a smooth manifold X are

said to intersect cleanly if Y ∩ Z is a smooth submanifold such that

Tp(Y ∩ Z) = Tp(Y ) ∩ Tp(Z) , p ∈ Y ∩ Z .

Theorem 4.1. If Y and Z intersect cleanly then there exist local coordinates,

x, such that

Y =
{
x1 = . . . = xe = 0, xe+1 = . . . = xk = 0

}
,

Z =
{
x1 = . . . = xe = 0, xk+1 = . . . = xl = 0

}
.

Note that e is the codimension of Tp(Y ) + Tp(Z) and is often called the ex-

cess of the intersection — it expresses how much the intersection has failed to

be transversal. One way of viewing the theorem is that locally there exists a

submanifold containing Y,Z in which they are transversal — it is easy to see

that any transversal intersection must be clean. The important fact about clean

intersections for us is,

Corollary 4.1. If submanifolds Y,Z of X intersect cleanly and the smooth

function f on Y vanishes on Y ∩Z then f is the restriction of a smooth function

on X which vanishes on Z.
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Note that this is not true for general intersections. We recall from [12] Chap. 21

that for clean intersection of Lagrangian submanifolds, a model holds within the

homogeneous symplectic category.

Theorem 4.2. If Λ1 and Λ2 are cleanly intersecting conic Lagrangian sub-

manifolds and p ∈ Λ1 ∩ Λ2 then there are local homogeneous symplectic coordi-

nates (x, ξ) such that

Λ1 =
{
x = 0

}
, Λ2 =

{
x1 = . . . = xk = 0, ξk+1 = . . . = ξn = 0

}
.

When studying the compositions of paired Lagrangian distributions, we shall

need models for triple intersections.

Definition 4.2. We shall say the submanifolds X,Y, Z form a cleanly inter-

secting triple if all the pairwise intersections are clean, the pairwise intersections

of the pairwise intersections and the original submanifolds are clean and for all

p ∈ X ∩ Y ∩ Z

(
Tp(X) + Tp(Y )

)
∩ Tp(Z) =

(
Tp(X) ∩ Tp(Z)

)
+
(
Tp(Y ) ∩ Tp(Z)

)
.(4.1)

The condition (4.1) can be rephrased in a symmetric way:

Proposition 4.1. If A,B,C are subspaces of a vector space V then following

properties are equivalent

(1) A ∩ (B + C) = (A ∩B) + (A ∩ C).

(2) There is a basis for V such that each of A, B and C is a span of elements

of the basis.

(3) dim(A) + dim(B) + dim(C)− dim(A ∩B)− dim(A ∩C)− dim(B ∩C) =

dim(A+B + C).

Example 4.1. In R3, let

X =
{
x1, x3 = 0

}
,(4.2)

Y =
{
x2, x3 = 0

}
,(4.3)

Z =
{
x1 = x2, x3 = xk1

}
, k ≥ 2 ,(4.4)

then X,Y, Z do not form an intersecting triple as (4.1) is violated.
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Theorem 4.3. If the submanifolds X,Y, Z form an intersecting triple then

near any point there exist local coordinates such that each is given by a subset

of the coordinates vanishing.

Clearly, a homogeneous version of the theorem also holds. Note that the

converse to the theorem is trivial. Note also that the conclusion of our theorem is

stronger than requiring the existence of a linear model and is not equivalent. For

example, three collinear lines in a plane would not form an intersecting triple.

Proof: We only need consider points near the triple intersection as other-

wise Bott’s theorem is sufficient. Since we have that the triple intersection is a

submanifold, we can certainly pick coordinates on it and so the behaviour along

X ∩Y ∩Z is parametrised by them. This means that it is enough to consider the

case where the triple intersection is a single point.

Now we know by Bott’s result that there exist coordinates, f , on the ambient

manifold such that locally

Y =
{
f1, . . . , fl = 0 = fl+1 = . . . = fm

}
,(4.5)

Z =
{
f1, . . . , fl = 0 = fm+1 = . . . = fr

}
.(4.6)

Bott’s result also allows us to pick coordinates on X, x, such that

X ∩ Y =
{
x1 = . . . = xα = xα+1 = . . . = xα+β = 0

}
,(4.7)

X ∩ Z =
{
x1 = . . . = xα = xα+β+1 = . . . = xα+β+γ = 0

}
.(4.8)

Our procedure will be to perform non-singular operations on the f coordinates

in such a way that they will agree with the x coordinates on X and then the result

will follow. Let gj denote fj restricted to X.

We know from our hypothesis that

TpX ∩ (TpY + TpZ) = (TpX + TpZ) ∩ (TpY + TpZ) .

This means precisely that 〈{dg1, . . . , dgl}〉 = 〈{dx1, . . . , dxα}〉. So by reorder-

ing the fi and subtracting multiples we can assume that the set {dg1, . . . , dgl} is

linearly independent and that dgα+1, . . . , dgl are equal to zero.

Since we know that gi vanish on X ∩ Y and X ∩ Z we have that

gi =
α∑

j=1

aij xj +
α+β∑

j=α+1

α+β+γ∑

j=α+β+1

hijk xj xk ,

for some smooth functions aij , hijk.
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Now consider gl+1, . . . , gm:

X ∩ Y =
m⋂

i=1

g−1
i (0)

and

dgi
∂

∂xj
= 0 , j = α+ 1, . . . , α+ β, i = 1, . . . , l ,

since ∂
∂xj

, j = α+1, . . . , α+β, are not tangent toX∩Y and are tangent toX, they

are not tangent to Y . So dfl+1, . . . , dfm are full rank on ∂
∂xj

, j = α+1, . . . , α+β,

and thus we have that dgl+1, . . . , dgm is full rank on ∂
∂xj

, j = α+ 1, . . . , α+ β.

So renumbering again we can take {dgl+1, . . . , dgl+β} to be linearly indepen-

dent. As gi vanishes on X ∩ Y , we have

gi =
α∑

j=1

aij xj +
β∑

k=α+1

bik xk , i = l + 1, . . . , l + β ,

for some smooth aij , bik. We also have

dgi
∂

∂xk
= bik , i = l + 1, . . . , l + β, k = α+ 1, . . . , β .

This means that bik(x) is non-singular and so has a smooth inverse cik(x)

which we extend smoothly to a small neighbourhood in the whole manifold.

We now define

f̄i =
α+β∑

k=α+1

cik fk , i = l + 1, . . . , l + β ,

and leave the other fi invariant for now.

Putting ḡi equal to fi restricted to X, we have

ḡi = xα+i−l +
α∑

j=1

a
′

ij xj , i = l + 1, . . . , l + β .

We can subtract multiples of f̄i, . . . i = l+ 1, . . . , l+ β from fi, i = l+ β + 1,

. . . ,m to obtain f̄i, i = l + β + 1, . . . ,m, such that

ḡi = (f̄i)|X =
α∑

j=1

a
′

ij xj , i = l + β + 1, . . . ,m .
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We can also apply the same process to X ∩ Z and obtain

ḡi = xα+β+i−m +
∑

aij xj , i = m+ 1, . . . ,m+ γ ,

ḡi =
∑

aij xj , i = m+ γ + 1, . . . , r .

Now let

f̄i = fi −
α+β∑

j=α+1

α+β+γ∑

k=α+β+1

hijk f̄j+l−α f̄i+m−α−β , i = 1, . . . , l ,

then

ḡi =
α∑

j=1

aij xj , i = 1, . . . , α .

All the operations we have carried out on the fi to obtain f̄i have been non-

singular so the f̄i retain the properties (4.5), (4.6). We also still have that

{dḡ1, . . . , dḡα} is linearly independent and that dḡj , j = α+1, . . . , j = l, are

zero at the intersection. So we can do a matrix inversion at the intersection to

reduce to the case where

gi =

{
xi , i = 1, . . . , α ,

0 , i = α+ 1, . . . , l .

Having done this, we can subtract multiples of the first l fi from the higher

ones to yield that

gi =





xi , i = 1, . . . , α ,

0 , i = i = α, . . . , l, l+β+1, . . . ,m,m+γ+1, . . . r ,

xi+α−l , i = l+1, . . . , l+β ,

xi+α+β−m , i = m+1, . . . ,m+γ .

These new fi now have the requisite properties and the theorem follows.

When one takes a clean composition of two Lagrangian submanifolds, one

obtains a Lagrangian submanifold, at least locally. (Theorem 21.2.4 in [12].)

(Globally, one could obtain self intersections.) So if we compose a pair of La-

grangian submanifolds with a third one then we will obtain a pair of Lagrangian

submanifolds. However, it is not so trivial that if we start with a cleanly inter-

secting pair the output is also cleanly intersecting.

Theorem 4.4. Let Xi, i = 1, . . . , 3 be smooth manifolds and let (Λ1,Λ2)

be a cleanly intersecting pair of Lagrangian submanifolds in T ∗X1 × T ∗X2 and

suppose that Λ3 is a Lagrangian submanifold in T ∗X2 × T ∗X3 such that
(
Λ1 × Λ3, Λ2 × Λ3, T

∗X1 ×N∗∆X2
× T ∗X3

)
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is an intersecting triple than locally (Λ1 ◦Λ3, Λ2 ◦Λ3) are cleanly intersecting

Lagrangian submanifolds.

Proof: We need to check that the intersection is a submanifold and that its

tangent space is equal to the tangent space of the intersection. The fact that the

push-forward of the intersection is a submanifold comes from simply checking the

proof of Theorem 21.2.4 in [12] works equally well for an isotropic submanifold.

The result then follows from checking its tangent space is equal to the intersection

of the tangent spaces of the two pushed-forward Lagrangian submanifolds.

Our proof of the second property relies heavily on the fact that we have

an intersecting triple. For brevity write E = Tp(T
∗X1 × N∗∆X2

× T ∗X3) and

Lj = Tp(Λj × Λ3) then we have that

(L1 + L2) ∩ E = (L1 ∩ E) + (L2 ∩ E)

and so taking orthogonal complements we obtain

(L1 ∩ L2) + E⊥ = (L1 + E⊥) ∩ (L2 + E⊥) .

But this means that
L1 ∩ L2

E⊥
=

L1

E⊥
∩
L2

E⊥
.

The result is now immediate as the differential of the projection onto T ∗X1×T
∗X3

yields an isomorphism of the left-hand side with Tp((Λ1 ◦Λ3)∩ (Λ2 ◦Λ3)) and of

the right-hand side with (Tp(Λ1 ◦ Λ3)) ∩ (Tp(Λ2 ◦ Λ3)).

5 – The clean composition theorem for Lagrangians and paired Lagran-

gians

Our purpose in this section is to show how the clean composition theorem for

Fourier integral operators follows simply from Theorems 1.1 and 1.2.

Theorem 5.1. Suppose Λ1⊂(T ∗X−{0})×(T ∗Y−{0}) and Λ2⊂(T ∗Y−{0})×
(T ∗Z − {0}) are conic, Lagrangian submanifolds such that

(Λ1 × Λ2) ∩
(
(T ∗X − {0})×N∗(∆Y )× (T ∗Y − {0})

)

is clean where ∆Y is the diagonal in Y ×Y then for compositions which are proper

with respect to supports and wavefronts, we have

◦ : Il(Λ0, H
s
loc)× Il(Λ1, H

t
loc) → Il(Λ1◦Λ2, H

min(s,t,s+t)−ny/2) ,

where nY is the dimension of Y .
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Note that this is equivalent to the usual hypothesis for the clean intersection

theorem — we have simply untwisted the Lagrangian submanifolds.

Proof: We can decompose ◦ into three operations: exterior product, restric-

tion to X ×∆Y × Z and the push-forward from X ×∆Y × Z to X × Z.

If K ∈ I(Λ1) and L ∈ I(Λ2) then K ⊗L ∈ I(Λ1 ×Λ2) except for components

near (T ∗X−{0})×(T ∗Y−{0})×Y0×Z0 and X0×Y0×(T ∗Y −{0})×(T ∗Z−{0}).
These additional components are killed by the push-forward part of the composi-

tion and so our theorem reduces to proving that if Λ is a Lagrangian submanifold

of

(T ∗X − {0})× (T ∗(Y )− {0})× (T ∗Y − {0})× (T ∗Z − {0})

which meets

(T ∗X − {0})× (N∗(∆Y ))× (T ∗Z − {0})

cleanly then restriction followed by push-forward yields an element of I(Λ′) with

Λ′ =
{
(x, ξ, z, µ) : ∃ (y, η) (x, ξ, y,−η, y, η, z, µ) ∈ Λ

}
.

Our composition is properly supported so we can reduce to a locally finite sum

of pieces supported in coordinate patches and thus we are reduced to considering

the case where Y is a subset of Rn. We enact a change of coordinates on Yy×Yy′ ,

w = y + y′ ,(5.1)

t = y − y ,(5.2)

and then we have to consider restriction to w = 0, followed by integration in t.

Letting w∗, t∗ be the dual variables, our hypothesis is now that Λ meets w = 0,

t∗ = 0 cleanly. The restriction and the push-forward commute so when combining

the two theorems we have that the composite is stable under operators with

principal symbols which are restrictions of symbols vanishing on Λ. The result is

now immediate — from the restriction and push-forward theorems, the composite

is stable under first order symbols vanishing on Λ ∩ {w = 0, t∗ = 0} which are

restrictions of symbols vanishing on Λ. But the cleanness means that all such

symbols are restrictions and the result follows. The orders follow from the results

of Section 3.

The same techniques establish the analogous result for paired Lagrangian

distributions.

Theorem 5.2. Suppose (Λ1,Λ2) are cleanly intersecting conic Lagrangian

submanifolds in (T ∗X − {0}) × (T ∗Y − {0}) and Λ is a conic Lagrangian sub-

manifold of (T ∗Y − {0})× (T ∗Z − {0}) such that

Λ1 × Λ, Λ2 × Λ, (T ∗X − {0})×N∗(∆Y )× (T ∗Y − {0})
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is an intersecting triple then if for compositions which are proper with respect to

supports and wavefronts we have

◦ : Il(Λ0,Λ1, H
s
loc)× Il(Λ, H

t
loc) → Il(Λ0◦Λ, Λ1◦Λ, H

min(s,t,s+t)−nY /2) ,

where nY is the dimension of Y .

Proof: This is the same as for the Clean Composition Theorem except that

we invoke the triple intersection Theorem 4.3 to obtain the existence of a linear

model and hence the extendibility follows.

6 – Pseudo-differential operators with singular symbols

Our purpose in this section is to study the composition of paired Lagrangian

distributions in a special case where the first Lagrangian submanifold is the conor-

mal bundle to the diagonal and the second one, Λ, is such that Λ ◦ Λ = Λ. It

is then immediate from the calculus of wavefront sets that no new Lagrangian

submanifolds are generated by the composition and so one would expect the class

of paired Lagrangian distributions to be closed under composition. These oper-

ators can be thought of as pseudo-differential operators with singular symbols,

as on the diagonal they are pseudo-differential operators with a symbol which

will typically blow up on approach to the intersection. Composition calculi have

previously been established in the case where the intersection is of co-dimension

one and one-sided ([1], [13], [15]). We shall study the case where Λ is given by

the flow out of a characteristic variety by commuting principal symbols (cf. [10]).

Definition 6.1. Let pj , j = 1, . . . , k, be real first order symbols such that

{dpj} is linearly independent on their common zero set and such that

{pi, pj} = 0 , ∀ i, j ,

then the set of points of the form

exp(t1p1) exp(t2p2) · · · exp(tkpk)(x0, ξ0)

shall be called the bicharacteristic leaf through (x0, ξ0) for (x0, ξ0) ∈
⋂
j
p−1
j (0).

It is immediate that the bicharacteristic leaves form a foliation of the common

zero set — this is the Hamiltonian foliation.
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Definition 6.2. We shall say p1, . . . , pk is pseudo-convex if for any (x0, ξ0)

the map

θx0,ξ0 : Rk → T ∗(M)(6.1)

(t1, t2, . . . , tk) 7→ exp(t1Hp1
) exp(t2Hp2

) · · · exp(tkHpk
)(x0, ξ0)(6.2)

is injective and the composite map with projection to M is proper.

Proposition 6.1. If the system p1, . . . , pk is pseudo-convex and the set Λ

in T ∗(M) × T ∗(M) is defined by (x, ξ, y,−η) ∈ Λ if and only if (x, ξ) and (y, η)

are in the same leaf of the bicharacteristic foliation then Λ is a conic Lagrangian

submanifold.

Proof: The pseudo-convexity condition ensures that Λ is a submanifold and

the homogeneity of the pj ensures that it is conic. To see that Λ is Lagrangian,

note that it is sufficient to prove this at the diagonal as the symplectomorphisms

exp(t1Hp1
) exp(t2Hp2

) · · · exp(tkHpk
)

can be used to take any other point to the diagonal. At the diagonal the tangent

space is

T (N∗(∆) ∩ Λ) + 〈{Hpj
}j=1,...,k〉 .

That T (N∗(∆) ∩ Λ) is isotropic is immediate as N ∗(∆) is Lagrangian and Hpj

are mutually symplectically orthogonal by hypothesis. As Dvpj = 0 for any

v ∈ T (N∗(∆) ∩ Λ)

we have also that v,Hpj
are orthogonal and the result follows.

Note that any flow out Lagrangian will satisfy the relation Λ ◦ Λ = Λ as

membership of a leaf is an equivalence relation.

Theorem 6.1. Suppose Λ is a flow out Lagrangian submanifold then for

compositions which are proper with respect to supports and wavefronts, we have

◦ : Il(N
∗(∆),Λ, Hs

loc)× Il(N
∗(∆),Λ, Ht

loc) → Il(N
∗(∆),Λ, Hmin(s,t,s+t)−n/2) ,

where n is the dimension of the manifold.

Proof: Similarly to the proof of the Clean Composition Theorem 5.1, the

problem is to prove that if a first order symbol q defined on E = T ∗X×N∗(∆)×
T ∗X vanishes on its intersection with N ∗(∆) ×N∗(∆), N∗(∆) × Λ, Λ ×N∗(∆)

and Λ × Λ, then it can be extended to a first order symbol nearby which still

vanishes on them.
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Now near any point in T ∗(X), there is a locally defined homogeneous sym-

plectomorphism, f , defined on an open, conic subset U of T ∗(Rn) − {0} such

that f∗(pj) = ξj (see for example [12], Chap. 21). These can be extended in a

“cylindrical neighbourhood” — {(x, ξ) : ∃ y′ (y′, x′′, ξ) ∈ U} — by putting

f
(
x1 + t1, x2 + t2, . . . , xk + tk, xk+1, . . . , xn, ξ1, ξ2, . . . , ξn

)
=

= exp(t1Hp1
) exp(t2Hp2

) · · · exp(tnHpn) f(x, ξ) .
(6.3)

This extension will be well-defined as Hξj
= ∂

∂xj
and will be a symplectomor-

phism as a Hamiltonian flow is a symplectomorphism. Thus we have symplectic

coordinates in a neighbourhood of any leaf such that Λ = N ∗ (x′′ = y′′). So if we

put these coordinates on all four copies of T ∗(X), we have a linear model which

is clearly equivalent to one in which all the submanifolds are given by the subsets

of the coordinates vanishing.

7 – Singular Radon transforms

In the study of Radon transforms, R, with singular densities under certain

conditions one obtains an operator whose kernel is paired Lagrangian with respect

to the diagonal and to the canonical graph of a symplectomorphism which cleanly

intersect (see [9]). Our purpose in this section is to find a class of distributions

within which RtR,RRt lie. From a straightforward composition of wavefront sets

argument, one obtains that their wavefront sets lie within N ∗(∆) ∪ Γ
′

f ∪ Γ
′

f−1 .

We show that given a non-degeneracy assumption on the fixed points of f that

RtR,RRt lie in I(M) where M is the set of first order symbols which are zero

on all three.

Definition 7.1. If f is a diffeomorphism of a manifold M then we shall say

it has clean fixed point set if the set of fixed points form a submanifold X and

for each p ∈ X

dfp : Tp(M)/Tp(X) → Tp(M)/Tp(X)

has no unit eigenvalues.

So in local coordinates, x = (x′, x′′), with X = {x′ = 0}, we have

f(x′, x′′) =
(
A(x′′)x′, x′′+B(x′′)x′

)
+O

(
(x′)2

)

with A(x′′) a square matrix such that I − A(x′′) is invertible. Geometrically, an

eigenvector of eigenvalue one would express a direction in which the fixed point

remained fixed to some order.
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Theorem 7.1. Suppose f is a symplectomorphism of T ∗M −{0} with clean

fixed point set then for compositions, we have

◦ : Il(N
∗(∆),Γ

′

f , H
s
loc)× Il(N

∗(∆),Γ
′

f−1 , Ht
loc) → Il(M, Hmin(s,t,s+t)−n/2)

where M is the set of first order symbols which vanish on N ∗(∆) ∪ Γ
′

f ∪ Γ
′

f−1 .

Proof: As usual exterior product presents no problems and so our theorem

reduces to showing that if a first order symbol vanishes on N ∗(∆)∪Γ
′

f ∪Γ
′

f−1 and

is pulled back to a function on T ∗(X)×N∗(∆)× T ∗(X) then it can be extended

to a first order symbol nearby which vanishes on each of

N∗(∆)×N∗(∆), N∗(∆)× Γ
′

f−1 , Γ
′

f ×N∗(∆), Γ
′

f × Γ
′

f−1

(cf. proof of Theorem 5.1). We pick local homogeneous coordinates on T ∗X×T ∗X
which reduce N∗(∆) and Γ

′

f to linear subspaces; the transpose coordinates do the

same for N∗(∆) and Γ
′

f−1 . Thus we reduce all the subspaces to a linear model

and the extendibility is then clear — as we are showing vanishing we do not need

symplectic coordinates.

We work with twisted manifolds — i.e. the untwisted maps. We can reduce

by the radial direction as all our manifolds are conic and maps homogeneous and

then extend homogeneously at the end. So suppose g is a map of a manifold Y

to itself with clean fixed point set, we show that there are coordinates on Y × Y

which preserve the diagonal in which Γg = (y, 0, y′′) for some splitting of the

coordinates (y′, y′′). Pick local coordinates on Y such that the fixed point set

is given by y′ = 0 and take these coordinates on each copy of Y . We now take

coordinates, z̃ on the second copy indexed by the first copy to reduce Γg to the

requisite form. Clearly, to preserve the diagonal we will need

z̃(y, y) = y

and so in general

z̃(y, z) = z +H(y, z) (y − z) ,

with H a square matrix. Thus we have

z̃(y, f(y)) = (0, y′′) +
(
G1(y) y

′, G2(y) y
′
)

+H(y, f(y))

(
(0, y′′) +

(
G1(y) y

′, G2(y) y
′
)
− (y′, y′′)

)
,

(7.1)

z̃(y, f(y)) = (0, y′′) +
(
G1(y) y

′, G2(y) y
′
)

+H(y, f(y))
(
(G1(y)− I) y′, G2(y) y

′
)
.

(7.2)
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So now picking H to act only the first coordinates, this becomes, with H1, H2

to be chosen,

z̃(y, f(y)) =

=

((
G1(y) +H1(y, f(y)) (G1(y)− I)

)
y′, y′′ +

(
G2(y) +H2G1(y)

)
y′
)

(7.3)

but then defining

H1(y) = −G1(y) (G1(y)− I)−1 ,(7.4)

H2(y) = −G2(y) (G1(y)− I)−1 ,(7.5)

our result follows. Note that our hypothesis implies that (G1(y) − I)−1 exists

near y′ = 0 and that this also guarantees that

(y, z) 7→ (y, z̃(y, z))

is indeed a diffeomorphism.
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