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MICROLOCAL TEMPERED INVERSE IMAGE
AND CAUCHY PROBLEM

F. Tonin

Abstract: We prove an inverse image formula for the functor Tµhom(·,O) of

Andronikof [A], that is, the microlocalization of the functor Thom(·,O) of tempered

cohomology introduced by Kashiwara. As an application, following an approach initi-

ated by D’Agnolo and Schapira, we study the tempered ramified linear Cauchy problem.

We deal with ramifications of logarithmic type, or along a swallow’s tail subvariety, or

at the boundary of the data existence domain.

1 – Introduction

The construction of Thom(·,DbX) has been introduced by Kashiwara in [K 1]

and has been microlocalized by Andronikof in [A]. A slightly different and more

systematic exposition has been provided by Kashiwara and Schapira in [K-S 2].

In the present paper we give a microlocal version of the inverse image formula

[K-S 2, Theorem 4.5] (with p submersive)

RHomDY

(

DX→Y , Thom(p
−1F,DbY )

)

∼
→ p−1 ThomDX (F,DbX) ,(1)

namely, we prove the formula (with p submersive)

Rt p′∗ p
−1
π Tµhom(L,DbY )

∼
→ RHomDX

(

DX→Y , Tµhom(p
−1L,DbX)

)

.(2)

By the aid of (2) it is possible to obtain a sheaf theoretical Cauchy–Kowalewsky

type theorem. This last makes in particular possible, adapting a method due
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to [D’A-S 1], to recover some known results on the tempered ramified Cauchy

problem (see [La, Th. 3.2.6], [Le 2], [Sc]).

In §2 we recall all the notions and the machinery we will need in the paper.

In §3 we present an inverse image theorem for the functor Tµhom(·,O). The

main tools for proving it are formula (1) and Andronikof’s stalk formula for

Tµhom(·,O) ([A, Prop. 2.3.3]).

In §4 we prove a Cauchy–Kowalewski type formula for the functor Thom(·,O).

The idea of the proof is to use Sato’s distinguished triangle and the microlocal-

ization of the functor Thom(·,O) as developed in [A]. This allows us to shift the

problem to the cotangent space, where by use of contact transforms the system is

reduced to a partial de Rham system. Thorough use of the theory of EX -modules

is made. We then need the result of §3 to complete the proof.

Applications follow, which are the tempered analogues of results already ob-

tained by [D’A-S 1] and [D’A-S 2] (see [La], [Le 2], [Sc]).

In the first one we deal with tempered holomorphic functions with ramifi-

cations of logarithmic type along a hypersurface. This application involves the

notion of perverse sheaf. A proof of this result has been obtained by use of second

microlocalization (see [La, Th. 3.2.6]). Our proof just uses microlocalization.

A second application is concerned with the Cauchy problem for tempered

holomorphic functions ramified along singularities of “swallow’s tail” type as in

[Le 2]. Again, the notion of perverse sheaf is used.

Remark that the functor Tµhom(·,O) is only defined on R-constructible sheaves.
So its employment only allows us to treat ramified functions of finite determina-

tion (see [H-L-W], [Le 1] for the case of data with general ramification).

We prove also a theorem on the Cauchy problem for tempered holomorphic

functions defined in domains determined by the characteristic real hypersurfaces

issuing from the boundary of the domain where the data are defined. This last

application extends results of [Sc].

We are deeply indebted to Professor Andrea D’Agnolo and Professor Pierre

Schapira for a many useful discussion.

2 – Notations and definitions

We shall follow the notations of [K-S 1]. We also refer to [S 1] for an exposition

of E-modules theory, to [K 1] for the functor Thom (see also [K-S 2]) and to [A]

for the functor Tµhom.
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Geometry.

Given two sets X, Y we will denote by q1:X × Y → X and q2:X × Y → Y

the projections on the first and second factor; similar notations will be used for

the product of more than two sets. Given a function f :X → Y , denote by ∆f its

graph, a subset of X × Y . Let X be a complex manifold of complex dimension

n. Define XR the real underlying manifold to X and X the complex conjugate

to X. If no confusion arises we will sometimes write X instead of XR. Denote

by τX :TX → X the tangent bundle, πX :T
∗X → X the cotangent bundle. If

(x) = (x1, ..., xn) is a local coordinate system on X, we denote by (x; ξ) the

associated coordinate system on T ∗X. If no confusion arises we will write π

instead of πX . We will identify X with T ∗XX, the zero section of T
∗X. We also

write Ṫ ∗X = T ∗X \ T ∗XX and π̇X = πX |Ṫ ∗X . If M is a closed submanifold of X,

we denote by T ∗MX the conormal bundle to M in X.

Let f :Y → X be a morphism of manifolds. Define tf ′ and fπ the natural

mappings associated to f :

T ∗Y
tf ′
←− Y ×X T ∗X

fπ
−→ T ∗X .(3)

Set T ∗YX: =
tf ′−1(T ∗Y Y ). Let A be a closed conic subset of T

∗X. One says f is

non-characteristic for A if T ∗YX ∩ f
−1
π (A) ⊂ Y ×XT

∗
XX.

We consider T ∗X endowed with its canonical symplectic structure. We will

denote by CS(K) the Whitney normal cone ofK along S; it is a subset of T
∗
T ∗
S
T ∗X

(see [K-S 1, Def. 4.1.1]). Given a function f :Y → X, we define the projection

q:T ∗Y (X×Y )→ Y . LetW be a subset of T ∗Y . We say that f is non-characteristic

for A on W (see [K-S 1, Def. 6.2.7]) if

q̇tπ q̇
′−1
(

CT ∗
Y
(X×Y )(A× T

∗
Y Y )

)

∩ V = ∅ .(4)

Let V and T be two conic smooth involutive manifolds in a neighborhood of

ξ ∈ Ṫ ∗X, V being regular involutive. We say that V is non glancing with respect

to T if for any function φ defined in a neighborhood of ξ, such that φ|T = 0 and

dφ 6= 0, the vector Hφ is not tangent to V . If Y is a submanifold of X we say

that V is non glancing with respect to Y if V is non glancing with respect to

Y ×X T ∗X.

If E is a vector space and γ is a cone in E, we denote by Z(γ) the set

{(e, e′) ∈ E × E; e′−e ∈ γ} ⊂ E × E. If γ is a conic subset of TX, one denotes

γa = −γ. One says that γ is proper if its fibers contain no lines. One denotes by

γ◦ the polar cone to γ, a convex conic subset of T ∗X (see [K-S 1, (3.7.6)]).
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Sheaves.

Let X be a real analytic manifold. Recall that the dualizing complex ωX
is isomorphic to orX [dimX], where orX is the orientation sheaf. We denote by

Db(CX) (respectively D
b
R−c(CX)) the derived category of the category of com-

plexes of sheaves with bounded (resp. bounded and R-constructible) cohomology.
To an object F in Db(CX) we associate its micro-support SS(F ), a closed conic

involutive subset of T ∗X (see [K-S 1, Chapter 5]). Let V be a subset of T ∗X.

One says that f is non-characteristic for F on V if f is non-characteristic for

SS(F ) on V .

For a sheaf F on X, when considering its inverse image π−1X F on T ∗X we will

often simply write F instead of π−1X F .

We shall use the language of kernels, as developed in [K-S 1, §3.6]. Given two

objects F ∈ Db(CX×Y ) and G ∈ D
b(CY×Z), F ◦ G will denote the composition

of kernels Rq13!(q
−1
12 F ⊗ q

−1
23 G) (see [K-S 1, (3.6.2)]); it is an object in D

b(CX×Z).

We will make use of the notion of perverse sheaf (see [K-S 1, Chapter 10] for

an exposition).

Let Ω ⊂ T ∗X; one denotes by Db(CX ; Ω) the localization of D
b(CX) by

the full subcategory of objects whose microsupport is disjoint from Ω (see [K-S 1,

Chapter 6]). Recall that a morphism u:F → G in Db(X) becomes an isomorphism

in Db(X; Ω) if Ω∩ SS(H) = ∅, H being the third term of a distinguished triangle

F
u
→ G→ H

+1
→ .(5)

Let f :Y → X be a morphism of complex manifolds; let ξ ∈ T ∗X, π(ξ) ∈ f(Y ).

Let F ∈ Db(CX ; ξ). According to [K-S 1, Prop. 6.1.9], [D’A-S 1, Lemma 1.3.4],

we consider the condition

tf ′−1(tf ′(ξ)) ∩ f−1π (SS(F )) ⊂ {ξ} in a neighborhood of ξ ,(6)

Lemma 2.1 ([K-S 1, Prop. 6.1.9]). Let F ∈ Db(CX ; ξ) satisfy (6); then

there exists F ′ ∈ Db(CX) with
tf ′−1(tf ′(ξ))∩ f−1π (SS(FY,ξ)) ⊂ {ξ} and that f is

noncharacteristic for FY,ξ, and there exists a morphism F ′ → F (resp. F → F ′)

in Db(CX) which is an isomorphism at ξ. Moreover, for F ∈ Db(CX ; ξ) satisfying

(6), the object FY,ξ := f−1F ′ (resp. f !F ′) of Db(CY ;
tf ′−1(ξ) does not depend

(up to isomorphism) on the choice of F ′.

Definition 2.2. Let F ∈ Db(CX ; ξ) satisfy (6). We define the microlocal

inverse image (resp. extraordinary inverse image) of F by f−1µ,ξF := f−1F ′ (resp.

f !µ,ξF := f !F ′), where F ′ is the complex constructed in Lemma 2.1. The functor
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f−1µ,ξ (·) (resp. f
!
µ,ξ(·)) is a functor from the full subcategory of D

b(CX ; ξ) whose

objects verify (6) to Db(CY ;
tf ′(ξ)).

D and E-modules. (See [S-K-K], and also [S 1] for an exposition.)

LetX be a complex manifold and letOX be the sheaf of holomorphic functions

on X. By DX (respectively EX) we denote the sheaf of holomorphic finite order

differential operators on X (resp. microdifferential operators on X). We denote

by Db(DX) (resp. D
b
coh(DX)) the derived category of the category of sheaves of

left DX -modules with bounded (resp. bounded and coherent) cohomology. We

define analogously the categories Db(EX) and D
b
coh(EX). We will also use the

category Db(EX |Ω). Suppose M ∈ Ob(Db
coh(DX)). We denote by char(M) the

characteristic variety ofM.

To a map f :Y → X of complex manifolds one associates the (DY , f
−1DX)-

bimodule DY→X ≡ OY ⊗f−1OX f
−1DX and the (f

−1DX ,DY )-bimodule DX←Y : =

f−1DX ⊗f−1OX ΩY |X (see [S-K-K] for more details).

The functors Thom(·,Db) and Tµhom(·,Db). (See [K 1], [A].)

We write Db for the sheaf of Schwartz distributions. Let U be an open subset

of X. Let x ∈ ∂U . The distribution u ∈ Γ(U ;DbX) is said to be tempered at

x if there exists an open neighborhood V of x and v ∈ Γ(X;DbX) such that

v|V ∩U = u|V ∩U ; u is said to be tempered if it is tempered at any point in ∂U .

We shall denote by S ′X(U) the subspace of DbX(U) of tempered distributions.

Let F be a R-constructible sheaf. One defines Thom(F,DbX)(U) as the space
of sections φ ∈ Γ(U ;Hom(F,DbX)) such that for all subanalytic relatively com-

pact open sets V ⊂ U and for all sections s ∈ Γ(V ;F ), we have φ(s) ∈ S ′X(V ).

The correspondence U 7→ Thom(F,DbX)(U) defines a sheaf that has the fol-

lowing properties.

1) Thom(F,DbX) is a C
∞-module, in particular it is a soft sheaf.

2) For all subanalytic open subsets V of X and for all subanalytic closed

subsets Z of X we have

Γ(U ; Thom(CV )) = S
′
U (U∩V ) , Thom(FZ ,DbX) = ΓZ Thom(F,DbX) .(7)

3) The functor F 7→ Thom(F,DbX) is an exact functor from R − c(X)op to
the category Mod(DX) of DX -modules.
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One also defines:

Thom(·,OX) = RHomD
X

(

OX , Thom(·,DbXR)
)

.(8)

We recall that Andronikof [A] performed the construction of the functor

Tµhom(·,Db): DbR−c(CX)
op → Db(π−1DX) .(9)

The construction is the analog of the construction leading to the functor µhom(·, ·).

Recall that one has a morphism of functors

Tµhom(·,DbX)→ µhom(·,DbX) .(10)

Moreover, there are isomorphisms

Rπ∗ Tµhom(F,DbX) ' ThomX(F,DbX)

Rπ! Tµhom(F,DbX) ' RHom(F,CX)⊗DbX .

We also define:

Tµhom(·,OX) = RHomD
X

(

OX , Tµhom(·,Db)
)

.(11)

For a more recent construction of the functors Thom(·,DX) and Thom(·,OX) we

refer the reader to [K-S 2].

D-modules with regular singularities.

We review in this section some notions and results from Kashiwara–Oshima

[K-O].

The ring EX is naturally endowed with a Z-filtration by the degree, and we
denote by EX(k) the sheaf of operators of degree at most k. Denote by OT ∗X(k)

the sheaf of holomorphic functions on T ∗X, homogeneous of degree k.

Let V ⊂ T ∗X be a conic regular involutive submanifold. Denote by IV (k) the

sheaf ideal of sections of OT ∗X(k) vanishing on V . Let EV be the subalgebra of

EX generated over EX(0) by the sections P of EX(1) such that σ1(P ) belongs to

IV (1) (here σ1(·) denotes the symbol of order 1). For example, if X = X ′ ×X ′′,

and V = T ∗X′X ′ × U for an open subset U ⊂ Ṫ ∗X ′′, then EV is the subalgebra of

EX generated over EX(0) by the differential operators of X
′.

Let P be a coherent EX -module. One says that P has regular singularities

along V if locally there exists a coherent sub-EX(0)-module P0 of P which gen-

erates it over EX , and such that EV P0 ⊂ P0. One says that P is simple along V

if locally there exists an EX(0)-module P0 as above such that P0/EX(−1)P0 is a

locally free OV (0)-module of rank one.
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One says that P has regular singularities if P has regular singularities along

Ṫ ∗X ∩ char(P).

ToM∈ Dbcoh(DX) we associate its microlocalization

EM = EX ⊗π−1DX π
−1M .

We say thatM has regular singularities along V if EM has regular singularities

along V .

One of the main results of Sato–Kawai–Kashiwara [S-K-K] asserts that contact

transformations can be quantized to give an equivalence of categories at the level

of E-modules. Remark that the notion of module with regular singularities is

invariant by quantized contact transformations, and that a module with regular

singularities along V is supported by V (cf. [K-O, Lemma 1.13]).

Theorem 2.3 (cf. [K-O, Theorem 1.9]). Let V = T ∗X′X ′×U ⊂ T ∗(X ′×X ′′),

where U ⊂ Ṫ ∗X ′′ is an open subset. If P has regular singularities along V , then

it is a quotient of a multiple partial de Rham system:

(OX′ × EX′′)N → P → 0 .

Here, × denotes the exterior tensor product for E-modules.

3 – An inverse image theorem for Tµhom(·,O)

The aim of this chapter is to prove the following result:

Proposition 3.1. Let p:X → Y be a smooth morphism of real analytic

manifolds and let L ∈ Db
R−c(CY ). Then one has a canonical isomorphism:

Rt p′∗ p
−1
π Tµhom(L,DbY )

∼
→ RHomπ−1DX

(

π−1DX→Y , Tµhom(p
−1L,DbX)

)

.(12)

When restricting (12) to the zero section, one recovers the isomorphism (see

[K 1], [A, Prop. 1.1.3], [K-S 2, Th. 4.5 (i)]):

RHomDX

(

DX→Y , Thom(p
−1L,DbX)

)

∼
→ p−1 Thom(L,DbY ) .(13)

Corollary 3.2. Let p:X → Y be a smooth morphism of complex analytic

manifolds and let L ∈ Db
R−c(CY ). Suppose that Tµhom(p−1L,OX) ∈ Db(EX).

Then one has a canonical isomorphism:

Rt p′∗ p
−1
π Tµhom(L,OY )

∼
→ RHomEX

(

EX→Y , Tµhom(p
−1L,OX)

)

.(14)
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Proof: We apply the isomorphism (see [K-S 2, (5.5)]):

RHomp−1D
Y

(

p−1OY ,RHomDX (DXR→YR , N)
)

'

' RHomDX

(

DX→Y , RHomD
X
(OX , N)

)

,
(15)

with N replaced by Tµhom(p−1L,DbX) and then we apply Proposition 3.1. More-

over, due to the fact that p is smooth we have EX→Y = EX ⊗π−1DX π
−1DX→Y .

Proof of Proposition 3.1: First of all, we construct the morphism in (12).

The construction of the morphism

Rt p′!

(

π−1DX→Y ⊗
L
π−1p−1DY

p−1π Tµhom(L,DbY )
)

→

→ Tµhom(p!L,DbX)[dim(X)− dim(Y )]
(16)

follows the same lines as that of Tµhom(·,OX) (see [A, Th. 3.3.6]). We just have

to consider [A, Lemma 2.4.6], and to use the morphism [A, (1.1.10)]

DY→X ⊗p−1DX p
−1ThomX(F,DbX) → ThomX(p

−1F,DbX)(17)

to adapt [A, Prop. 3.3.3].

Since p is smooth, tp′ is a closed embedding, and p!L[dim(Y ) − dim(X)] '

p−1L. Hence, using the projection formula, (16) reads:

π−1X DX→Y ⊗
L
π−1
X

p−1DY
Rt p′∗ p

−1
π Tµhom(L,DbY ) → Tµhom(p

−1L,DbX) .(18)

The morphism in (12) is obtained by adjunction from the morphism above.

We have to show that the morphism in (12) is an isomorphism in Db(CT ∗X).

When restricted to the zero section of T ∗X, (12) is nothing but the inverse of

the isomorphism (13). We are then left to prove that the stalk at ξ of (12) is an

isomorphism, for every ξ ∈ Ṫ ∗X.

If ξ ∈ Ṫ ∗X \X ×Y Ṫ
∗Y both terms are zero. Let then ξ ∈ X ×Y Ṫ

∗Y , and

set η = pπ(ξ).

As we have to examine the stalk of the morphism at ξ, the claim is of local

nature. Then we can suppose, until the end of the present chapter, X: = Y × Z

with Y and Z finite dimensional real vector spaces, dim(X) = n, dim(Y ) = m.

Let p and q be the projections p:X → Y , q:X → Z, and πX(ξ) = 0. Also recall

the maps q1:X ×X → X; (x, x′) 7→ x and q2:X ×X → X; (x, x′) 7→ x′. Let us

begin by stating two lemmas.
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Lemma 3.3. Let γ be a closed cone in X with p proper on γ. Take W ⊂W ′

open neighborhoods of 0 in Z, V ⊂ V ′ open neighborhoods of 0 in Y . Suppose

that:

q
(

γ ∩ p−1(V ′+V a)
)

+W ⊂W ′ ,(19)

where V a: = −V . Then:

Z(γ) ∩ q−12 (V
′×W ′) ∩ q−11 (V ×W ) = Z(γ) ∩ q−12 (V

′×Z) ∩ q−11 (V ×W ) .(20)

Refer to §2, Geometry, for notations.

Proof: Consider the following diagram:

Y
p
←− Y ×Z

q1←− X×X
q2−→ Y ×Z

p
−→ Y

q↓ q↓

Z Z

(21)

Let (x, x′) ∈ Z(γ) with x ∈ V×W and x′ ∈ V ′×Z. Then p(x′−x) ∈ V ′−V implies

x′−x ∈ p−1(V ′−V ). Also, x′−x ∈ γ, so:

x′ − x ∈ γ ∩ p−1(V ′ − V )(22)

hence

q(x′ − x) ∈ q
(

γ ∩ p−1(V ′ − V )
)

.(23)

This toghether with q(x) ∈W give us:

q(x′) = q(x′ − x) + q(x) ∈ q
(

γ ∩ p−1(V ′ − V )
)

+W(24)

and, by (19), q(x′) ∈ W ′; in other words (x, x′) ∈ Z(γ) ∩ q−12 (V
′ × W ′) ∩

q−11 (V ×W ).

Lemma 3.4. Let γ be a closed cone in X. Let p|γ be proper with convex

fibers. Let γ′: = p(γ) and let G ∈ Db(CY ). Then:

p−1(CZ(γ′) ◦G) ' CZ(γ) ◦ p
−1G .(25)

Refer to §2, Sheaves, for notations.

Proof: Let ∆p: = {(x, y) ∈ X × Y ; y = p(x)}. Then one has:

CZ(γ) ◦ C∆p ' q13!
(

C(Z(γ)×Y )∩(X×∆p)

)

' C{(x,y)∈X×Y ; (x+γ)∩ p−1(y) 6= ∅} ,
(26)
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where q13:X×X×Y → X×Y is the projection on the first and third factors.

Analogously:

C∆p ◦ CZ(γ′) ' q13!
(

C(∆p×Y )∩(X×Z(γ′))

)

' C{(x,y)∈X×Y ; y ∈ p(x)+γ′} .
(27)

So we have C∆p ◦ CZ(γ′) ' CZ(γ) ◦ C∆p .

End of proof of Proposition 3.1.

We recall the stalk formula for Tµhom(·,DbY ) at η (see [A, Prop. 2.3.3] and

also [K-S 1, Prop. 3.5.4] and proof of [K-S 1, Prop. 4.4.4]): ∀ j

Hj
(

Tµhom(L,DbY )
)

η
'

lim
→V,γ′H

jRΓ
(

V ; Thom(CZ(γ′) ◦ LV ,DbY )
)

,(28)

where γ′ is a convex proper closed subanalytic cone in Rm such that γ′ ⊂

Int({η}◦a)∪{0}, and V is a subanalytic open neighborhood of πY (η)=0 in Y .

Then we use the stalk formula for Tµhom(·,DbX). Let γ be a convex proper

closed subanalytic cone in Rn such that γ ⊂ Int({ξ}◦a) ∪ {0}, and let U , U ′

be subanalytic open neighborhoods of π(ξ) = 0 in X, with U ⊂ U ′. It is not

restrictive to take U=V×W , U ′=V ′×W ′ with V, V ′ subanalytic open sets in Y ,

W,W ′ subanalytic open sets in Z. Also, take V, V ′, W,W ′ as to satisfy (19). The

stalk formula reads: ∀ j

HjRHomDX

(

DX→Y , Tµhom(p
−1L,DbX)

)

ξ
'

'
lim
→U ′,U,γH

jRΓ

(

U ; RHomDX

(

DX→Y , ThomX

(

CZ(γ) ◦ ((p
−1L)U ′),DbX

)

)

)

.
(29)

Let us make use of the following morphisms:

CZ(γ) ◦ ((p
−1L)U ′) ' CZ(γ) ◦ ((p

−1L)U ′)U

' Rq1!
(

q−12 p−1L⊗ CZ(γ)∩q−1
2

U ′∩q−1
1

U

)

' Rq1!
(

q−12 p−1L⊗ CZ(γ)∩q−1
2

p−1V ′∩q−1
1

U

)

' (CZ(γ) ◦ p
−1LV ′)U

' CZ(γ) ◦ p
−1LV ′

' p−1(CZ(γ′) ◦ LV ′) ,

where the third isomorphism is due to Lemma 3.3, whereas the last one follows
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from Lemma 3.4. We can rephrase (29) taking into account the following:

RΓ

(

U ;RHomDX

(

DX→Y , ThomX

(

p−1(CZ(γ′) ◦ LV ′), DbX
)

)

)

'

' RΓ
(

U ; p−1 ThomY (CZ(γ′) ◦ LV ′ , DbY )
)

' RΓ
(

V ×Z; p−1 ThomY (CZ(γ′) ◦ LV ′ , DbY )
)

' RΓ
(

V ; R p∗ p
−1 ThomY (CZ(γ′) ◦ LV ′ , DbY )

)

' RΓ
(

V ; ThomY (CZ(γ′) ◦ LV ′ , DbY )
)

.

(30)

The first isomorphism is due to (13); the last one to p having contractible fibers,

so that R p∗ p
−1(·) = idY . By this and and (28) we get: ∀ j

Hj RHomDX

(

DX→Y , Tµhom(p
−1 L, DbX)

)

ξ
'

'
lim
→V ′,V,γ′H

j RΓ
(

V ; ThomY (CZ(γ′) ◦ LV ′ , DbY )
)

' Hj Rt p′∗ p
−1
π Tµhom(L,DbY )ξ ,

(31)

which proves (12). This completes the proof of Proposition 3.1.

4 – Applications to the Cauchy problem

4.1. A result for Thom(·,O)

We present here, as an application of Proposition 3.1, an inverse image theo-

rem for Thom(·,O) which will be useful in §4.2, §4.3, §4.4. It can also be regarded

as a tempered version of [D’A-S 1, Th. 2.1.1].

Theorem 4.1. Let X be a complex manifold, Y a closed submanifold of X,

f :Y ↪→ X the embedding. Let Z be a subset of Y . Let V be a smooth, conic,

involutive, regular submanifold of Ṫ ∗X. Let K be an object of DbR−c(CX), L

an object of DbR−c(CY ), M an object of Dbcoh(DX). Assume to be given a

morphism ψ:L→ f−1K. Assume that:

i)M has regular singularities along V ;

ii) V is non glancing with respect to Y in a neighborhood of π̇−1X (Z);

iii) SS(K) ⊂ V out of tf ′−1T ∗ZY ;
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iv) Tµhom(K,OX) (respectively Tµhom(L,OY )) is locally concentrated in one

degree outside of the zero section T ∗XX (resp. T ∗Y Y );

v) the morphism induced by ψ, L→ f−1µ,ξK is an isomorphism in Db(CY ; ξY )

∀ ξ ∈ π̇−1X (Z) ∩ f
−1
π (char(M));

vi) the morphism induced by ψ, RΓ{y}(L ⊗ ωY ) → RΓ{x}(K ⊗ ωX), is an

isomorphism for every y ∈ Z, x = f(y).

Then the natural morphism induced by ψ:

f−1RHomDX

(

M, Thom(K,OX)
)∣

∣

∣

Z
→ RHomDY

(

MY , Thom(L,OY )
)∣

∣

∣

Z
,(32)

is an isomorphism.

Remark 4.2. Let us explain how the morphism (32) is obtained. We have a

morphism induced by ψ, Thom(f−1K,OY )→ Thom(L,OY ). We have the chain

of morphisms:

f−1RHomDX

(

M, Thom(K,OX)
)

→

→ RHomDY

(

f−1M, f−1Thom(K,OX)
)

→ RHomDY

(

DY→X ⊗
L
f−1DX

f−1M, DY→X ⊗
L
f−1DX

f−1(Thom(K,OX))
)

→ RHomDY

(

MY , Thom(f
−1K,OY )

)

→ RHomDY

(

MY , Thom(L,OY )
)

.

The third morphism here is induced by the canonical morphism (see [A, Prop.

1.2.3(i)])

DY→X ⊗
L
f−1DX

f−1Thom(K,OX) → Thom(f
−1K,OY ) .(33)

Remark 4.3. Before going into the proof, let us explain how the morphism in

(vi) is constructed. From ψ and the natural morphism f−1K ⊗ωY/X → f !K, we

obtain the arrow L⊗ωY/X → f !K and hence the arrow L⊗ωY → f !K⊗f−1ωX '

f !(K ⊗ ωX). Applying the functor RΓ{y}(·), we obtain

RΓ{y}(L⊗ ωY ) → RΓ{y}f
!(K ⊗ ωX) ' RΓ{y}(K ⊗ ωX) .(34)

Remark 4.4. We are dealing with the issue that Tµhom(K,OX) and other

sheaves obtained by applying the functor Tµhom(·,O) be concentrated in one
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degree. This is a sufficient condition in order to make Tµhom(K,OX) into an

object of the category Db(EX) (see also [A, 5.6.1]). Alternatively, condition (iv)

in Theorem 4.1 may be substituted by the requirement that locally out of T ∗XX

(respectively T ∗Y Y ) Tµhom(K,OX) (resp. Tµhom(L,OY )) be a well defined object

in Db(EX) (resp. D
b(EY )); for this other condition refer to §4.4 and the Appendix.

We remark that it is conjectured that Tµhom(K,OX) be naturally an object of

Db(EX), but we are not taking it for granted in the present paper.

Remark 4.5. Identify Y ×X T ∗X to a subset of T ∗X. Indeed, (ii) reads:

∀ ξ ∈ (Y ×XT
∗X) ∩ V , Tξ(Y ×XT

∗X)⊥ ∩ TξV = {0} .(35)

Since Tξ(Y ×XT
∗X)⊥ = Tξ(

tf ′−1 tf ′(ξ)), this implies:

Tξ(
tf ′
−1 tf ′(ξ)) ∩ Tξ(char(M)) = {0} .(36)

This implies that tf ′−1 tf ′(ξ) ∩ charM is a finite set. We proved that, thanks

to assumption (ii), ∀ η ∈ π̇−1Y (Z) there exist ξ
1, ..., ξr ∈ tf ′−1(η) with: tf ′−1(η) ∩

f−1π (char(M)) ⊂ {ξ
1, ..., ξr}. Then f is non-characteristic for M, that is, tf ′ is

finite on f−1π (char(M)).

Lemma 4.6.

(a) There is a canonical isomorphism:

RπX∗RHomDX

(

M, Tµhom(K,OX)
)

' RHomDX

(

M, Thom(K,OX)
)

.(37)

(b) (See [D’A-S 1, Proof of Th. 2.1.1]) Suppose hypothesis (i) of Theorem 4.1

holds, then:

RπY ∗R
tf ′! f

−1
π RHomDX

(

M,Tµhom(K,OX)
)

'

' f−1RHomDX

(

M, Thom(K,OX)
)

.
(38)

Proof: (a) The formula follows from [A, Prop. 3.1.4].

(b) By our hypothesis f is non-characteristic forM. We consider the following

commutative diagram:

T ∗Y
tf ′
←− Y ×X T ∗X

fπ
−→ T ∗X

πY↓ π↓ πX↓

Y
idY←− Y

f
−→ X

(39)
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We have the chain of isomorphisms:

RπY ∗R
tf ′! f

−1
π RHomDX

(

M, Tµhom(K,OX)
)

'

' RπY ∗R
tf ′∗ f

−1
π RHomDX

(

M, Tµhom(K,OX)
)

' Rπ∗ f
−1
π RHomDX

(

M, Tµhom(K,OX)
)

' f−1RπX∗RHomDX

(

M, Tµhom(K,OX)
)

' f−1RHomDX

(

M, Thom(K,OX)
)

,

(40)

where the first isomorphism is due to the fact (being f non-characteristic forM)

that tf ′ is proper on f−1π char(M) and hence on

f−1π supp
(

RHomDX

(

M, Tµhom(K,OX)
))

(41)

and the third to the fact that, being RHomDX (M, Tµhom(K,OX)) conic,

RπX∗RHomDX

(

M,Tµhom(K,OX)
)

'

' i−1RHomDX

(

M, Tµhom(K,OX)
)

,
(42)

i denoting the immersion of the zero-section X in T ∗X. The last isomorphism

follows from (a).

Set
A = Rtf ′! f

−1
π RHomDX

(

M, Tµhom(K,OX)
)

,

B = RHomDY

(

MY , Tµhom(L,OY )
)

.
(43)

These two sheaves are objects in the full subcategory of Db(CX) whose objects

have locally constant cohomology along the orbits of the action of R+ on T ∗X.
We remark that there exists a natural morphism A→ B. In fact, we have the

following morphisms:

Rtf ′! f
−1
π RHomDX

(

M, Tµhom(K,OX)
)

→

→ Rtf ′! RHomf−1DX

(

f−1M, f−1π Tµhom(K,OX)
)

→ Rtf ′! RHomDY

(

DY→X ⊗
L
f−1DX

f−1M, DY→X ⊗
L
f−1DX

f−1π Tµhom(K,OX)
)

→ RHomDY

(

DY→X ⊗
L
f−1DX

f−1M, Rtf ′!

(

DY→X ⊗
L
f−1DX

f−1π Tµhom(K,OX)
)

)

→ RHomDY

(

DY→X ⊗
L
f−1DX

f−1M, Tµhom(f−1K,OX)
)

→ RHomDX

(

MY , Tµhom(L,OX)
)

,
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where the fourth morphism is due to [A, (3.3.4)], and the fifth is induced by ψ.

We apply the functor Rπ∗(·) to the distinguished triangle

RΓT ∗
X
X → RΓT ∗X → RΓṪ ∗X

+1
→ .(44)

Keeping in mind that for conic sheaves Rπ∗RΓT ∗
X
X(·) ' Rπ!(·), we obtain the

following distinguished triangle

RπY ! → πY ∗ → π̇Y ∗
+1
→ .(45)

We apply this triangle to the natural morphism A→ B of the preceding lemma:

RπY !A −→ RπY ∗A −→ Rπ̇Y ∗A
+1
−→

1↓ 2↓ 3↓

RπY !B −→ RπY ∗B −→ Rπ̇Y ∗B
+1
−→

(46)

Taking Lemma 4.6 into account, our theorem will be proven if we get to prove

that 2 is an isomorphism. In order to achieve that, we will prove that 1 and 3

are isomorphisms.

First vertical arrow. We have to prove that:

RπY !A ' RπY !B .(47)

We have RπY !R
tf ′! f

−1
π ' Rπ! f

−1
π ' f−1 πX!. We have the following formula

(see [A, Prop. 3.1.4(ii)]):

Rπ! Tµhom(F,OX) ' Rπ! µhom(F,OX) .(48)

By this and byM being coherent we have

RπY !A ' f−1πX!RHomDX

(

M, µhom(K,OX)
)

' f−1
(

RHom(K,CX)⊗RHomDX (M,OX)
)

.

On the other hand, thanks again to [A, Prop. 3.1.4(ii)], we have:

RπY !B ' RπY !RHomDY

(

MY , Tµhom(L,OY )
)

' RπY !RHomDY

(

MY , µhom(L,OY )
)

' RHom(L,CY )⊗RHomDY (MY ,OY ) .

(49)
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ButM is a coherent module non-characteristic with respect to f , so alsoMY is

a coherent DY -module, so by the Cauchy–Kowalevski theorem, we have

f−1RHomDX (M,OX) ' RHomDY (MY ,OY ) .(50)

We are thus reduced to proving:

f−1RHom(K,CX) ' RHom(L,CY ) .(51)

Then it is possible to make use of hypothesis (vi) in order to argue exactly as in

[D’A-S 1, §2A] and conclude that the first vertical arrow is an isomorphism.

So we are left with the third vertical arrow.

Third vertical arrow. Let H ⊂ X be a submanifold such that Y ⊂ H.

Remark that all our hypotheses will hold also for H in place of Y with respect

toM. Thus, the morphism (32) is an isomorphism if and only if for any such H

we have:

RHomDX

(

M, Thom(K,OX)
)∣

∣

∣

Z
→ RHomDH

(

MH , Thom(L,OH)
)∣

∣

∣

Z
.(52)

By considering a chain of submanifolds:

Y = H0 ⊂ H1 ⊂ · · · ⊂ HcodX Y = H ,

we easily reduce to the case codX Y = 1.

Our thesis is now that the natural morphism

Rπ̇Y ∗A → Rπ̇Y ∗B(53)

is an isomorphism. In other words that, for every η ∈ π̇−1Y (Z),

Rtf ′! f
−1
π RHomDX

(

M,Tµhom(K,OX)
)

η
→

→ RHomDY

(

MY , Tµhom(L,OY )
)

η

(54)

is an isomorphism. As we noticed in Remark 4.4, there exist ξ1, ..., ξr ∈ tf ′−1(η)

such that:
tf ′
−1
(η) ∩ f−1π (V ) ⊂ {ξ

1, ..., ξr}(55)

and thanks to hypotheses (ii), (iii) we then have that f is non-characteristic

for K and ξ1, ..., ξr are isolated in tf ′−1(η) ∩ f−1π (SS(K)). Then (see [D’A-S 1,

Lemma 2.1.3]) we can find sheaves K1, ...,Kr on X such that:
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(1) there exists a distinguished triangle
⊕r

i=1Ki → K → K0
+1
→;

(2) f−1π SS(Ki) ∩ tf ′−1(η) ⊂ {ξi} and ξi /∈ SS(K0) for i = 1, ..., r;

(3) f−1
µ,ξi

K = f−1Ki at η for i = 1, ..., r.

Also (see [P-S, Lemma 4.2], [S-K-K, Chapter II, Th. 2.2.2]) we can find

EX -modulesM1, ...,Mr such that:

(4) EX ⊗DX M'
⊕r

i=1Mi in D
b(EX |fπtf ′−1(η));

(5) f−1π SS(Mi) ∩
tf ′−1(η) ⊂ {ξi};

(6) f−1(EX ⊗DX M) '
⊕r

i=1 f
−1Mi in D

b(EY |η).

Remark that the Ki’s are R-constructible. In fact in [D’A-S 1, Lemma 2.1.3] the
Ki’s are obtained by a “microlocal cut-off”. See [A, §A.1] for the “microlocal

cut-off lemma” [K-S 1, Prop. 6.1.4] in the framework of R-constructible sheaves.

Due to ξi /∈ SS(K0) and the distinguished triangle
⊕r

i=1Ki → K → K0
+1
→,

the Tµhom(Ki,OX)’s are concentrated in one degree. We then get the chain of

isomorphisms:

Rtf ′! f
−1
π RHomDX

(

M, Tµhom(K,OX)
)

η
'

' Rtf ′! f
−1
π RHomEX

(

EX ⊗
L
DX M, Tµhom(K,OX)

)

η

'
r
⊕

i=1

RHomEX

(

EX ⊗
L
DX M, Tµhom(Ki,OX)

)

ξi

'
r
⊕

i=1

RHomEX

(

EX ⊗
L
DX M, Tµhom(Ki,OX)

)

ξi

'
r
⊕

i=1

RHomEX

(

Mi, Tµhom(Ki,OX)
)

ξi
,

(56)

where the second and fourth isomorphisms are due to conditions 2 and 5 above.

Then we are reduced to prove the following isomorphism:

RHomEX

(

Mi, Tµhom(Ki,OX)
)

ξi
' RHomEY

(

MY,ξi , Tµhom(L,OY )
)

η
,(57)

whereMY,ξi = (Mi)Y,η denotes the EX -module inverse image ofM at p. Remark

that we have
⊕r

i=1MY,ξi =MY,η.

Thanks to the assumption (ii) that V be non glancing with respect to Y , we

can apply [S 1, Cor. A.4.5] with W = Y ×X T ∗X, that is:



186 F. TONIN

Lemma 4.7 ([S 1, Cor. A.4.5], [S 1, Cor. I.6.2.3]). Let V andW be two conic

involutive manifolds in a neighborhood of p ∈ Ṫ ∗X, V being regular. Assume

that V is non glancing with respect to W . Then there exists a system of local

homogeneous symplectic coordinates (x; ξ) such that:























p = (0; dxn)

V =
{

(x; ξ); ξ1 = ... = ξr = 0
}

, r < n ,

W =
{

(x; ξ); x1 = ... = xd = 0
}

, d ≤ r .

(58)

We may quantize this contact transformation using the theory of contact

transforms for the functor Tµhom(·,OX) as developed in [A, Chapter 5].

Then we use an argument similar to [K 2, page 32]. By Theorem 2.3,M is a

quotient of a multiple de Rham system. Hence, we have an exact sequence

0→ Q→ (OX′ × EX′′)N
α
→M→ 0,(59)

where Q = kerα has regular singularities along V .

Let us suppose that we have proved the claim forM = (OX′ × EX′′)N . Con-

sidering the long exact cohomology sequence obtained by applying the functor

RHomEX

(

·, Tµhom(Ki,OX)
)

ξi
(60)

to (59), we would have isomorphisms:

Extj+1EX

(

M, Tµhom(Ki,OX)
)

ξi
' ExtjEX

(

Q, Tµhom(Ki,OX)
)

ξi
.(61)

Starting from j = −1, we would thus get the claim by induction on j. We are

then reduced to prove our claim in case

Mi =

(

EX
EXD1 + · · ·+ EXDr

)N

(62)

where r: = codim(V ) and N is an integer; of course we may now assume N = 1.

We just treat the case codimV = 1, the other cases being analogous. So suppose

Mi =
EX
EXD1

. We remark that in the present situation EX
EXD1

= EX→Y andMY,ξi '

EY , whereMY,ξi denotes the EX -module inverse image ofM at ξi. Remark that

locally X = Y ×Z, with Y and Z being local charts, with a projection p:X → Y

and p ◦ f = idY . Also, due to assumption (iii), SS(Ki) ⊂ V . Thanks to [K-S 1,

Prop. 6.6.2] we have Ki = p−1L′ ∃L′ ∈ Db(CX). But p ◦ f = 1Y , so that

Ki = p−1L.
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By these reductions and taking into account (57), we are left to prove the

following isomorphism:

Rtf ′! f
−1
π RHomEX

(

EX→Y , Tµhom(p
−1L,OX)

)

ξi
' Tµhom(L,OY )ξi .(63)

If we apply the functor Rtf ′! f
−1
π (·) to the isomorphism given by Corollary 3.2 we

get

Rtf ′! f
−1
π Rtp′∗ p

−1
π

(

Tµhom(L,OY )
)

ξi
'

' Rtf ′! f
−1
π RHomEX

(

EX→Y , Tµhom(p
−1L,OX)

)

ξi
.

(64)

Remark that Rtp′∗ = R
tp′!. Since p ◦ f = idY , we have R

tf ′! f
−1
π Rtp′! p

−1
π = 1T ∗Y ,

by which we obtain (63).

This completes the proof of Theorem 4.1.

4.2. Logarithmic ramifications

Theorem 4.1 allows us to recover in particular a result of Y. Laurent (see [La,

Th. 3.2.6]). Our proof doesn’t make use of second microlocalization.

Let z ∈ C be a coordinate and set D = ∂
∂z . Define N :=

DC
DCDzD

; N is a coher-

ent DC-module which represents the complex of holomorphic tempered functions

on C with logarithmic ramification at 0. Set L1{0}|C := RHomDC(N ,OC). Re-

mark that, by [K 1], Thom(L1{0}|C,OC) = N . Let X be a complex analytic

manifold and Y a smooth complex hypersurface in X, and Z a smooth complex

hypersurface in Y . Let f :Y → X be the embedding.

Let us see how this geometrical setting can be applied to the Cauchy problem.

TakeM a left coherent DX -module. Let V : = char(M). LetM have regular sin-

gularities along V , and V be smooth and non glancing with respect to Y×X T
∗X.

We remark that in the present situation Y ×X T ∗X is transversal to char(M).

Lemma 4.8 ([S 1, Prop. III.2.2.2], [D’A-S 1, Prop. 3.1.3]). Under the previ-

ous hypotheses there exist smooth hypersurfaces Z1, ..., Zr ofX pairwise transver-

sal, transversal to Y , and such that Zi ∩ Y = Z for every i. Moreover, for a

neighborhood W of Ṫ ∗ZY ,

char(M) ∩ tf ′
−1
(T ∗ZY ) ⊂

r
⋃

i=1

T ∗ZiX ∪ T
∗
XX .(65)
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By possibly shrinking X, we have that there exist complex analytic functions

g:Y → C with dg 6= 0 and g−1(0) = Z, g1, ..., gr:X → C with dgi 6= 0 and

g−1i (0) = Zi, such that gi ◦ f = g.

Moreover our hypotheses also imply that f is non-characteristic for M. Set

L: = g−1L1{0}|C and Ki: = g−1i L1{0}|C.

We have the technical lemma:

Lemma 4.9 ([D’A-S 1, Lemma 3.2.1]). There exists a natural map τ :L→CX .

Moreover, applying the functor RΓ{0}(·) to this map we get an isomorphism:

RΓ{0} L
∼
→ RΓ{0}CX .(66)

Proof: We have the morphisms

OC ↪→ DC → N '
DC

DCDzD
.(67)

This gives us a morphism

L1{0}|C ' RHomDC(N ,OC) → CC ' RHomDC(OC,OC) ,(68)

which induces the morphism

L ' g−1RHomDC(N ,OC)
τ
→ g−1CC ' CX .(69)

We omit the proof of the isomorphism.

Define K to be the first term of a distinguished triangle

K →
r
⊕

i=1

Ki
h
→

r−1
⊕

i=1

CX
+1
→(70)

where h is the composite of the natural morphism
⊕r

i=1τi:
⊕r

i=1Ki →
⊕r

i=1CX

and the map
⊕r

i=1CX →
⊕r−1

i=1 CX given by (a1, ..., ar) 7→ (a2−a1, ..., ar−ar−1).

Due to f being non characteristic for Ki the isomorphism

RΓ{y}(L⊗ ωY )
∼
→ RΓ{y}(K ⊗ ωX)(71)

reads as

RΓ{y}(L)
∼
→ RΓ{y}(f

−1K) .(72)

By Lemma 4.9 hypothesis (vi) of Theorem 32 is satisfied.
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We write O1[Z|Y ]: = Thom(L,OY ) the complex of tempered holomorphic func-

tions on Y with ramification along Z of logarithmic type. We write
∑

iO
1
[Zi|X]

: =

Thom(K,OX) the complex of holomorphic tempered functions on X with rami-

fication of logarithmic type along the Zi’s.

Thanks to [K-S 1, Chapter 10], and g being finite, L is a perverse sheaf and

thanks to [A, Cor. 5.6.1] Tµhom(L,OY ) is concentrated in one degree. The same

argument holds for Tµhom(Ki,OX).

We have that, out of the zero section T ∗XX:

Tµhom(K,OX)
∼
→

r
⊕

i=1

Tµhom(Ki,OX)(73)

so that, out of the zero section, Tµhom(K,OX) is concentrated in one degree.

Applying Theorem 4.1 we get the following theorem.

Theorem 4.10. Keeping the same notation as above, the natural morphism:

f−1RHomDX

(

M,
∑

i

O1[Zi|X]

)∣

∣

∣

Z
' RHomDY

(

MY ,O
1
[Z|Y ]

)∣

∣

∣

Z
(74)

is an isomorphism.

This theorem states existence and uniqueness of the solution for the Cauchy

problem with tempered holomorphic data logarithmically ramified along the Zi’s

and tempered holomorphic traces logarithmically ramified along Z.

4.3. Swallow’s tail

This case of the swallow’s tail appeared first in [Le 2]. Here we adapt the

method of [D’A-S 2] to the tempered case. Let X be an open subset of Cn+1

containing 0 and endowed with coordinates x=(x0, x
′). Set Y ={x∈X; x0=0}.

Let

T =

{

x′ ∈ Y ; the polynomial in z, A(z, x′) = zn+1 − xn z
n−1 − ...

...− x2 z − x1 has at least one double root

}

.

Define Ỹ ⊂ Cz×Y the variety given by the equation A(z, x
′) = 0. If we consider

the projection η: Ỹ → Y , we find that the “swallow’s tail” T is nothing but the

image by η of the point in Ỹ where η is not smooth. T is thus a singular va-

riety, but nevertheless its conormals Λ = T ∗TregY give a Lagrangian manifold in

Ṫ ∗X, featuring just one codirection above 0. Let L = η!CỸ ; there is a canon-

ically induced morphism τ :L → CY . As in the previous section, we get that

Tµhom(L,OY ) is concentrated in one degree. Define O
ram
[T |Y ]: = Thom(L,OY ).
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Moreover, suppose there exist T1, ..., Tr “swallow’s tails” in X such that the

Ti are mutually transversal and transversal to Y (i.e. Λi ∩ Λj ⊂ T ∗XX for i 6= j

and Λi ∩ T
∗
YX ⊂ T ∗XX for every i) with Ti ∩ Y = T . Define Ki: = ηi!CX̃i

, i =

1, ..., r where ηi: X̃i → X are defined analogously to above. There are canonical

morphisms τi:Ki → CX . As in the previous section, we get that Tµhom(Ki,OX)

is concentrated in one degree. Let as aboveK be the complex defined by (70) with

this choice of the Ki’s. As in the previous section, out of T
∗
XX, Tµhom(K,OX)

is concentrated in one degree. Define
∑

iO
ram
[Ti|X]

: = Thom(K,OX).

Lemma 4.11. The canonically induced morphism: RΓ{0}η!CỸ → RΓ{0}CY

is an isomorphism.

This follows from the fact that η−1(0) = {0}, and that Ỹ is a complex manifold

of the same dimension as Y .

Due to f being non characteristic for Ki the isomorphism

RΓ{y}(L⊗ ωY )
∼
→ RΓ{y}(K ⊗ ωX)(75)

reads as

RΓ{y}(L)
∼
→ RΓ{y}(f

−1K) .(76)

By Lemma 4.11 hypothesis (vi) of Theorem 32 is satisfied.

LetM be a left coherent DX -module. Let V : = char(M). LetM have regular

singularities, and let V be smooth and non glancing with respect to Y ×X T ∗X.

We denote by f the immersion of Y into X. Suppose also that:

char(M) ∩ tf ′
−1
(T ∗TY ) ⊂

r
⋃

i=1

T ∗TiX ∪ T
∗
XX .(77)

Applying Theorem 4.1 we get the following theorem.

Theorem 4.12. Keeping the same notation as above, the natural morphism

f−1RHomDX

(

M,
∑

i

Oram[Ti|X]

)∣

∣

∣

T
' RHomDY

(

MY ,O
ram
[T |Y ]

)∣

∣

∣

T
(78)

is an isomorphism.

We skip the details (see §4.2) and just remark that this theorem proves exis-

tence and uniqueness for the solution of the Cauchy problem, when holomorphic

tempered traces and data ramified along T and the Ti’s are considered; the solu-

tion itself being a holomorphic tempered function ramified along the Ti’s.
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4.4. Decomposition at the boundary

Let Y be a smooth complex analytic hypersurface of a complex analytic man-

ifold X and let f :Y → X be the embedding. Let ω be an open subset of Y with

smooth boundary Q. Consider a linear partial differential operator with holo-

morphic coefficients P = P (z,D). Let M = DX
DXP

. Suppose M has regular sin-

gularities. Assume that V := char(M) be smooth and non glancing with respect

to Y ×X T ∗X. Then, by [D’A-S 1, Prop. 3.3.7] there exist Ωi (i = 1, ..., r) open

subsets of X with smooth boundaries Qi such that Ωi ∩ Y = ω and the Qi’s are

pairwise transversal and transversal to Y . Remark that T ∗ωY = SS(Cω) ⊂ T ∗Y .

Moreover condition (65) holds with Z, Zi replaced by Q, Qi.

Let Ki = CΩi (i = 1, ..., r); they are objects of D
b
R−c(CX). Let L = Cω; it is

an object of DbR−c(CY ). Of course, f
−1Ki = L and one has canonical morphisms

τi:Ki → CX . Let K be the first term of a distinguished triangle

K →
r
⊕

i=1

Ki
h
→

r−1
⊕

i=1

CX
+1
→(79)

constructed like in §4.2. Of course SS(Ki) ⊂ T ∗QiX ∪ T
∗
XX.

Set for short
∑

iRΓ[Ωi]OX = Thom(K,OX), RΓ[ω]OY = Thom(L,OY ).

Theorem 4.13. The canonical morphism

RHomDX

(

M,
∑

i

RΓ[Ωi]OX
)∣

∣

∣

Y
→ RHomDY

(

MY , RΓ[ω]OY
)

(80)

is an isomorphism.

Proof: See [D’A-S 1, Th. 3.3.6]. When considering the stalk at y ∈ Y , the

only non trivial case is when y ∈ ∂ω. We have to check that Tµhom(K,OX)

and Tµhom(L,OY ) are well defined objects in D
b(EX) and D

b(EY ). As said in

Remark 4.4 of §4, this is what we need in order to be able to employ Theorem 4.1.

Alternatively, a sufficient condition is given by assumption (iv) in Theorem 4.1.

We can make use of Lemma A.1 with U = Ωi keeping in mind that, out of the

zero section T ∗XX,

Tµhom(K,OX) '
r
⊕

i=1

Tµhom(CΩi ,OX) .(81)

As far as Tµhom(L,OY ) is concerned, we can make use of Lemma A.1 again, with

U = ω. So all hypotheses are satisfied and we may apply Theorem 4.1.
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Theorem 4.13 gives a result of decomposition at the boundary for the Cauchy

problem with tempered data (refer also to [Sc]). In fact, let us apply the functor

RΓ(Y,RHomDX (M, Thom(·,OX))|Y ) to the distinguished triangle (79). By the

Cauchy–Kowalevski theorem we find that, as Y is locally Stein, the sequence

0 →
r−1
⊕

i=1

Γ

(

Y ; RHomDX

(

M, Thom(CX ,OX)|Y
)

)

→

→
r
⊕

i=1

Γ

(

Y ; RHomDX

(

M, Thom(Ki,OX)|Y
)

)

→

→ Γ

(

Y ; RHomDX

(

M,
∑

i

RΓ[Ωi]OX
)∣

∣

∣

Y

)

→ 0

is exact. Hence by (80) we get that the local holomorphic solution of the Cauchy

problem






P (z,D)u(z) = 0 ,

Dh
1u(z)|Y ∈ Γ(ω; Thom(L,OY )), 0 ≤ h < m ,

(82)

may be written as a sum u =
∑r

i=1 ui, where ui is a tempered holomorphic

function on Ωi ∩ W which satisfies the equation Pui = 0, W being an open

neighborhood of Y in X.

A Appendix

As usual, we suppose that X is a complex manifold. Let X×X be a complex-

ification of X and δ:X → X ×X the diagonal immersion. The following result

was communicated to the author by P. Schapira.

Lemma A.1. Suppose U ⊂ X is open with real analytic boundary of

codimension one and U is locally on one side of ∂U . Then µhom(CU ,OX) is a

well defined object in Db(EX).

Proof: By [S 2] we have that

Hj
(

µhom(δ∗CU ,OX×X)
)

= 0 ∀ j 6= 2dimRX .(83)

Hence by [K-S 1, Chapter 11] µhom(δ∗CU ,OX×X) is a well defined object of

Db(EX×X)|T ∗
∆
X×X . Since

µhom(CU ,OX) ' RHomDX

(

OX , µhom(δ∗CU ,OX×X)
)

,(84)
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we get µhom(CU ,OX) ∈ D
b(EX). The same result holds with µhom(C∂U ,OX),

so that by using the distinguished triangle CU → CU → C∂U
+1
→ it holds also for

µhom(CU ,OX).

Remark that Lemma A.1 holds true replacing µhom by Tµhom. We make use

of this lemma in §4.4.
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des Microfonctions Holomorphes au Problème de Cauchy à Données Sin-
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Exposé 13, 1986.
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