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STABILIZATION OF A HYBRID SYSTEM:
AN OVERHEAD CRANE WITH BEAM MODEL

E. Feireisl and G. O’Dowd

Abstract: The object of this paper is the study of a model of an overhead crane

consisting of a beam carrying a load, fixed to a moving platform. Stabilization of the

system is achieved by means of a monotone feedback law taking into account the position

and the velocity of the platform. We then prove that strong stabilization occurs without

global monotonicity, thanks to an energy estimate for solutions of a variational nonlinear

nonautonomous evolution equation.

1 – Introduction

In this work, we shall study a model of an overhead crane with beam, which

is a structure consisting of a platform moving along a straight rail and carrying

a beam at the end of which a load is attached. With a feedback control law

taking into account the position and the velocity of the platform, the objective

is to drive it at a given point from a given configuration, so that the whole

structure should be at rest. We propose a modelization which yields a hybrid

system namely a partial differential equation coupled with dynamic equations at

both ends. This study follows the overhead crane problem with a cable (see [6],

[5] or [2]), where strong stabilization was achieved by means of the application

of LaSalle’s invariance principle, which usually requires some monotonicity. Two

models will be studied, according to whether the beam is linked or clamped

at the platform. In the sequel, we consider an orthonormal basis (O;~i,~j) for

which ~i is parallel to the direction of the beam at vertical rest, x = 0 being the

platform’s abscissa and ~j is parallel to the rail. The following equations come

from projections over (O,~j) axis.
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According to the classical laws of linear elasticity, the vibrations of the beam,

which is supposed homogeneous and of unit length, are governed by Euler–

Bernoulli’s equation. Thus, the transversal displacement y(x, t) at time t of a

point of the beam of curvilinear abscissa x satisfies the equation

ytt + yxxxx − (a yx)x = 0(1.1)

where a denotes the tension force due to the load and the lineic mass of the beam.

We shall make first the following assumption on a:

a ∈ H1(0, 1) and a(x) ≥ a0 > 0 ,(1.2)

which will be sufficient for well-posedness of the problem. Other assumptions will

be necessary for stabilization and will be mentioned later on.

The load M is supposed to be point mass and to have no moment of inertia,

hence:

yxx(1, t) = 0 .(1.3)

The displacements of the ends of the beam are governed by Euler–Newton’s

equation. For the load, this leads to:

Mytt(1, t)− yxxx(1, t) = −a(1) yx(1, t) .(1.4)

Let us note (0, F (t)) the components of the force vector acting on the platform.

If the beam is supposed to be linked to the platform, we have

yxx(0, t) = 0(1.5)

and the displacement is governed by

mytt(0, t) + yxxx(0, t) = F (t) + a(0) yx(0, t) .(1.6)

If the beam is clamped, we have

yx(0, t) = 0 ,(1.7)

mytt(0, t) + yxxx(0, t) = F (t) .(1.8)

Thus, we have to consider two hybrid systems
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ytt + yxxxx − (a yx)x = 0
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Mytt(1, t)− yxxx(1, t) = −a(1) yx(1, t)
yxx(0, t) = 0

mytt(0, t) + yxxx(0, t) = F (t) + a(0) yx(0, t) ,

(1.9)
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



ytt + yxxxx − (a yx)x = 0

yxx(1, t) = 0

Mytt(1, t)− yxxx(1, t) = −a(1) yx(1, t)
yx(0, t) = 0

mytt(0, t) + yxxx(0, t) = F (t) .

(1.10)

For a solution of any of these two systems, we set

E(t) =
1

2

(
∫ 1

0

(

y2
xx(x, t) + y2

t (x, t) + a(x) y2
x(x, t)

)

dx(1.11)

+ α y2(0, t) +my2
t (0, t) +My2

t (1, t)

)

where α > 0 is constant.

In both cases, supposing y regular enough, integration by parts yields, using

the boundary conditions at both ends:

E′(t) = yt(0, t)
(

F (t) + α y(0, t)
)

(1.12)

so that choosing a control law F of feedback type of the form

F (t) = f(yt(0, t))− α y(0, t)(1.13)

where the function f satisfies

s f(s) ≤ 0 ∀ s ∈ R ,(1.14)

systems (1.9) and (1.10) are dissipative since in both cases

E′(t) = yt(0, t) f(yt(0, t)) ≤ 0 ∀ t ≥ 0 .(1.15)

Let us briefly outline the content of this paper. The second part is devoted

to the formulation of these systems into abstract evolution equations in Hilbert

spaces and to their well-posedness. In the third part, which is more or less clas-

sical, strong stability is proved with global monotonicity for the feedback law by

considering the ω-limit sets, La Salle’s principle and a multiplier method. The

major part of this work is section four, where strong stabilization is achieved

with a hypothesis of local monotonicity, which leads to a possibly non contrac-

tive semigroup. Nonemptiness of ω-limit sets is obtained by showing that the

orbits are bounded for the graph norm by means of a functional related to the

energy which can be associated to weak solutions of a non autonomous variational

equation of evolution.
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2 – Well-posedness

We first study the system (1.9). According to a well known procedure, we

transform this system into an equation of evolution with (y, yt, yt(0, t), yt(1, t))

as unknown in an appropriate Hilbert space. Let us introduce

H = H2(0, 1)× L2(0, 1)× R× R(2.1)

equipped with the following scalar product, for U=(y, z, η, ξ) and Ũ=(ỹ, z̃, η̃, ξ̃)

in H:

〈U, Ũ〉 =

∫ 1

0
(yxx ỹxx + a yx ỹx + z z̃) + α y(0) ỹ(0) +mη η̃ +M ξ ξ̃(2.2)

the associated norm is denoted ‖ · ‖.
In this space, we consider the unbounded operator A defined by

D(A) =

{

U= (y, z, η, ξ) ∈ H / y ∈ H4(0, 1), z ∈ H2(0, 1)(2.3)

yxx(1) = 0, yxx(0) = 0, η = z(0), ξ = z(1)

}

A(U) =

[

−z, yxxxx − (ayx)x,(2.4)

1

m

(

yxxx(0) + α y(0)− a yx(0)− f(η)
)

, − 1

M

(

yxxx(1)− a yx(1)
)

]

.

Each solution t 7→ U(t) = (y(·, t), z(·, t), yt(0, t), yt(1, t)) of the equation
dU
dt

+ AU = 0 is such that y is, at least formally, solution of (1.9), as one

can easily check. We study the maximal monotonicity of A. To this end, we shall

assume, in addition to (1.14):

f is continuous and non increasing on R .(2.5)

Theorem 1. The operator A is maximal monotone in H.

Proof: Monotonicity: integration by parts yields

〈AU−AŨ , U− Ũ〉 = −
(

f(η)− f(η̃)
)

(η − η̃)(2.6)

which is positive by virtue of (2.5).
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Maximality: one has to solve the equation U + AU = U0 for U = (y, z, η, ξ) ∈
D(A) with a given U0 = (y0, z0, η0, ξ0) ∈ H. This is equivalent to the resolution

of the system


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


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





y − z = y0

z + yxxxx − (a yx)x = z0

η +
1

m

(

yxxx(0) + α y(0)− a yx(0)− f(η)
)

= η0

ξ − 1

M

(

yxxx(1)− a yx(1)
)

= ξ0 .

(2.7)

Since U ∈ D(A), one has η = z(0) and ξ = z(1) so η = y(0) − y0(0) and

ξ = y(1)− y0(1) according to the first equation, thus


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












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





z = y − y0

yxxxx − (a yx)x + y = y0 + z0

1

m

(

yxxx(0) + (α+m) y(0)− a yx(0)− f
(

y(0)−y0(0)
)

)

= η0 + y0(0)

− 1

M
yxxx(1) +

1

M
ayx(1) + y(1) = ξ0 + y0(1) .

(2.8)

Following a method used in [6], this system can be solved by means of the mini-

mization of the functional J defined on H2(0, 1) by

J(ψ) =
1

2

[

∫ 1

0
(ψ2 + ψ2

xx + aψ2
x) dx + (α+m)ψ2(0) +M ψ2(1)

]

−(2.9)

−
∫ 1

0
ψ(y0 + z0) dx−m

(

η0 + y0(0)
)

−G
(

ψ(0)− y0(0)
)

−M
(

ξ0 + y0(1)
)

with G defined by G(s) =

∫ s

0
f(t) dt.

From (2.5) we deduce that J is strictly convex, continuous and coercive on

H2(0, 1). Consequently, J has a unique minimum y ∈ H2(0, 1). As in [6], we

show that y ∈ H4(0, 1). Then setting z = y − y0, η = z(0) and ξ = z(1) , we

obtain that U = (y, z, η, ξ) ∈ D(A) and U + AU = U0.

By application of the theory of maximal monotone operators (see [1]), we

obtain:
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Theorem 2. The operator A is the infinitesimal generator of a continuous

semi-group of contractions (S(t))t∈R+ on H. Consequently, for all U0 ∈ D(A),

the equation

dU

dt
+ AU = 0 , U(0) = U0(2.10)

has a unique solution U with the regularity

U ∈ W 1,∞(R+,H) ∩ L∞(R+, D(A))(2.11)

defined by t 7→ U(t) = S(t)U0. Moreover,

t 7→ ‖U(t)‖ is non increasing.(2.12)

Remark. Let us note U(t) = (y(·, t), z(·, t), η(t), ξ(t)) the solution of

the above equation. By virtue of the definition of A, we see that

ytt + yxxxx− (ayx)x=0 a.e. (t, x) ∈ R+× ]0, 1[, yxx(0, t)=0, mη′(t)+ yxxx(0, t) =

f(η(t)) − α y(0, t) + a yx(0, t), with η(t) = yt(0, t). But without more regularity

for y, no sense can a priori be given to ytt(0, t). A similar conclusion holds at

x = 1, since Mξ′(t)− yxxx(1, t) = −a yx(1, t), with ξ(t) = yt(1, t).

Proposition 1. For all U0 ∈ D(A), the function E[U0] : t 7→ 1
2 ‖U(t)‖2 has

a derivative on R+ and

E[U0]
′(t) = yt(0, t) f(yt(0, t)) ≤ 0 .(2.13)

Proof: According to (2.11), U(t) is regular enough to insure derivability of

E[U0]; an integration by parts leads easily to the result.

Finally, let us mention that system (1.10) can be solved in the same fashion

by considering the Hilbert space

H =

{

U= (y, z, η, ξ) ∈ H2(0, 1)×L2(0, 1)×R×R / yx(0)=0

}

(2.14)

endowed with the same norm as for problem (1.9)

‖U‖2 =

∫ 1

0
(y2

xx + a y2
x + z2) dx+ α y2(0) +mη2 +Mξ2(2.15)

and the unbounded operator A defined by

D(A) =

{

U= (y, z, η, ξ) ∈ H / y ∈ H4(0, 1), z ∈ H2(0, 1)(2.16)

yxx(1) = 0, zx(0) = 0, η = z(0), ξ = z(1)

}
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AU =

(

−z, yxxxx−(ayx)x,(2.17)

1

m

(

yxxx(0)+α y(0)−f(η)
)

, − 1

M

(

yxxx(1)− a yx(1)
)

)

.

Under the hypothesis (2.5), theorem 2 can be proved in the same way as it has

been done for system (1.9).

3 – Stabilization

Strong stabilization of systems (1.9) and (1.10) can be established by using

LaSalle’s invariance principle, which shows that the ω-limit set of any orbit

{U(t), t ≥ 0}, U0 ∈ D(A), is reduced to {0}. Let us summarize the process:

after checking the precompactness of the orbits, an argument of weak-strong clo-

sure of the graph of A shows that the ω-limit points belong to D(A). LaSalle’s

principle applied to the Lyapunov function ‖U(t)‖2 leads to the consideration of

solutions with constant energy. A multiplier method shows that the null function

is the only solution satisfying this property.

In addition to (1.14) and (2.5), we shall assume

sf(s) 6= 0 for all s > 0 .(3.1)

So f can vanish on an interval ]S, 0] with S ≥ −∞. One can envisage the sym-

metric situation with respect to 0 for f : setting in this latter case w = −y and

g(s) = −f(−s), we recover assumption (3.1).

Let us first consider system (1.9). We assume in addition to (1.2):

a ∈ H2(0, 1) and a′′ ≤ 0 a.e. on [0, 1] .(3.2)

Notice that this property is satisfied whenever a is affine, which is a reasonable

hypothesis from a physical point of view (case of an homogeneous beam).

Theorem 3. For all initial data U0 in D(A), the solution U of (2.10) satisfies

‖U(t)‖ −→
t→∞

0 .

The proof is divided into several steps: in Propositions 2 and 3, we establish

that the ω-limit sets are non empty and recall some results from dynamical sys-

tems theory while in Propositions 4 and 5, we study some solutions of constant

energy. Proof of theorem 3 follows then from La Salle’s principle.
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Proposition 2. The canonical embedding from D(A), endowed with the

graph norm, into H is compact.

Proof: One can easily check that the graph topology on D(A) is the restric-

tion of the canonical topology of H4(0, 1) × H2(0, 1) × R2. The result is then

a consequence of the compactness of the embedding from this latter space into

H2(0, 1)× L2(0, 1)× R2 which has a norm equivalent to the norm on H.

Proposition 3. For all U0 ∈D(A), the set ω(U0) = {W∈H / ∃ (tn) −→
n→∞

∞
such that S(tn) −→

t→∞
W} is nonempty, included in D(A), invariant under the

action of (S(t))t≥0 and satisfies: dist(S(t)U0, ω(U0)) −→
t→∞

0. Moreover, ‖S(t)W‖
is constant on R+ for all W ∈ ω(U0).

Proof: It follows from (2.11) that the orbit {U(t), t ≥ 0} is bounded for

the graph norm so by Proposition 2, ω(U0) is nonempty and by a weak-strong

closure argument of the graph of A, included in D(A) (see [1], prop. 2.5)). The

other properties are consequences from classical dynamical systems theory (see

[4], theorem 2.1.7).

Proposition 4. Let U: t 7→ (y(·, t), z(·, t), η(t), ξ(t)) be a solution of (2.10),
with the regularity of theorem 2, satisfying η(t) = yt(0, t) = 0 ∀ t ≥ 0. Then y is

identically 0.

Proof: Since yt(0, t) = 0, y is solution of the system


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













ytt + yxxxx − (a yx)x = 0

yxx(1, t) = 0

Mξ′(t)− yxxx(1, t) = −a(1) yx(1, t)
yxx(0, t) = 0

yxxx(0, t) = −α y(0, t) + a(0) yx(0, t)

and moreover α y(0, t) = C0 is constant. For all T > 0 we then have 0 =
∫ T

0

∫ 1

0
(yxxxx + ytt − (a yx)x) dx dt which yields: 0 =

∫ 1

0
(yt(x, T ) − yt(x, 0)) dx +

Myt(1, T )−Myt(1, 0)+C0 T hence C0=0 since it is immediate that

∫ 1

0
(yt(x, T )−
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yt(x, 0)) dx+Myt(1, T )−Myt(1, 0) is bounded independently of T . Thus,


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


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
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
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




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



















ytt + yxxxx − (ayx)x = 0

yxx(1, t) = 0

Mξ′(t)− yxxx(1, t) = −a(1) yx(1, t)
yxx(0, t) = 0

y(0, t) = 0

yxxx(0, t) = a(0) yx(0, t) .

(3.3)

We now use a multiplier method to deduce that y ≡ 0, namely the multiplier

(x−1) yx. An integration by parts leads to

∫ T

0

∫ 1

0
(x−1) yx ytt(x, t) dx dt =

∫ 1

0

[

(x−1) yx yt
]T

0
dx+

1

2

∫ T

0

∫ 1

0
y2
t (x, t) dx dt(3.4)

∫ T

0

∫ 1

0
(x−1) yx(a yx)x(x, t) dx dt =

1

2

∫ T

0
a(0) y2

x(0, t) dt

+
1

2

∫ T

0

∫ 1

0
ψ(x) y2

x(x, t) dx dt

(3.5)

where ψ(x) = (x−1) a′(x)−a(x). Let us notice that ψ′(x) = (x−1) a′′(x), which
is nonnegative by (3.2). Thus,

ψ(x) ≤ ψ(1) = −a(1) < 0 for all x ∈ [0, 1] .(3.6)

Finally,

∫ T

0

∫ 1

0
(x− 1) yx yxxxx(x, t) dx dt =

∫ T

0
a(0) y2

x(0, t) dt

+
3

2

∫ T

0

∫ 1

0
y2
xx(x, t) dx dt .

(3.7)

Putting together (3.4) to (3.7), the equality

∫ T

0

∫ 1

0
(x− 1) yx

(

ytt + yxxxx − (a yx)x
)

dx dt = 0

yields

0 =

∫ 1

0

[

(x− 1) yx yt
]T

0
dx +

1

2

∫ T

0
a(0) y2

x(0, t) dt +(3.8)

+
1

2

∫ T

0

∫ 1

0
y2
t (x, t) dx dt +

3

2

∫ T

0

∫ 1

0
y2
xx(x, t) dx dt −

1

2

∫ T

0

∫ 1

0
ψ(x) y2

x(x, t) dx dt .
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From (2.11), it is clear that

∫ 1

0
[(x−1) yx yt]

T

0 dx is bounded independently of T .

Thanks to (3.6), we then have

∫ T

0
a(0) y2

x(0, t) dt,

∫ T

0

∫ 1

0
y2
t ,

∫ T

0

∫ 1

0
y2
xx and

∫ T

0

∫ 1

0
y2
x(3.9)

are bounded independently of T .

To conclude, we use the following immediate identities:

∫ 1

0

∫ T

0
y ytt(x, t) dt dx =

∫ 1

0
[y yt(x, t)]

T

0 dx−
∫ T

0

∫ 1

0
y2
t (x, t) dx dt ,(3.10)

∫ 1

0

∫ T

0
y yxxxx(x, t) dt dx =

∫ T

0
[y yxxx(x, t)]

1
0dt+

∫ T

0

∫ 1

0
y2
xx(x, t) dx dt ,(3.11)

∫ 1

0

∫ T

0
y(a yx)x(x, t) dt dx =

∫ T

0
a(1) y yx(1, t) dt−

∫ T

0

∫ 1

0
a(x) y2

x(x, t) dx dt .(3.12)

Putting together (3.10) to (3.12), the equality

∫ T

0

∫ 1

0
y
(

ytt + yxxxx − (a yx)x
)

dx dt = 0

leads to

0 =

∫ 1

0
[y yt(x, t)]

T

0 dx+

∫ T

0
[y yxxx(x, t)]

1
0 dt−

∫ T

0
a(1) y yx(1, t) dt −(3.13)

−
∫ T

0

∫ 1

0
y2
t (x, t) dx dt+

∫ T

0

∫ 1

0
y2
xx(x, t) dx dt+

∫ T

0

∫ 1

0
a(x) y2

x(x, t) dx dt .

Taking into account the boundary condition at x = 1, we have

∫ T

0

(

y yxxx(1, t)− a(1) y yx(1, t)
)

dt =

∫ T

0
My ξ′(t) (1, t) dt

= [My yt(1, t)]
T

0 −M
∫ T

0
y2
t (1, t) dt

so (3.13) becomes

0 =

∫ 1

0
[y yt(x, t)]

T

0 dx + [My yt(1, t)]
T

0 − M

∫ T

0
y2
t (1, t) dt −(3.14)

−
∫ T

0

∫ 1

0
y2
t (x, t) dx dt +

∫ T

0

∫ 1

0
y2
xx(x, t) dx dt +

∫ T

0

∫ 1

0
a(x) y2

x(x, t) dx dt .
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But (2.11) insures also the boundedness of

∫ 1

0
[y yt(x, t)]

T

0 dx+ [My yt(1, t)]
T

0

independently of T , so by (3.9), we deduce from (3.14) that

M

∫ T

0
y2
t (1, t) dt(3.15)

is bounded independently of T and so is

∫ T

0
‖U(t)‖ dt. But as (2.13) implies that

‖U(t)‖ is constant, we deduce that ‖U(t)‖ = 0, and Proposition 4 is proved.

Proposition 5. Let U : t 7→ (y(·, t), z(·, t), η(t), ξ(t)) be a solution of (2.10),
with the regularity provided by theorem 2, satisfying: ∀ t≥ 0 η(t) = yt(0, t)≤ 0

and f(yt(0, t)) = 0. Then yt(0, t) −→
t→+∞

0.

Proof: According to the hypothesis, y is solution of the system



















































ytt + yxxxx − (a yx)x = 0

yxx(1, t) = 0

Mξ′(t)− yxxx(1, t) = −a(1) yx(1, t)
yxx(0, t) = 0

mη′(t) + yxxx(0, t) = −α y(0, t) + a(0) yx(0, t)

yt(0, t) ≤ 0 .

The function t 7→ y(0, t) is therefore nonincreasing and bounded according to

(2.11). So l = lim
t→∞

y(0, t) exists. As in the proof of Proposition 4, the equality

∫ T

0

∫ 1

0

(

yxxxx + ytt − (a yx)x
)

dx dt = 0

leads to

∫ 1

0
[yt(x, t)]

T

0 dx + [Myt(1, t)]
T

0 + [myt(0, t)]
T

0 +

∫ T

0
α y(0, t) dt = 0 .

The first three terms on the left hand side of this equality are bounded inde-

pendently of T , and so is

∫ T

0
α y(0, t) dt, which is only compatible with l = 0.

Consequently, y(0, t) ≥ 0 and

∫ +∞

0
α y(0, t) dt < +∞.

Next,

∫ T

0
y2
t (0, t) dt = [yt(0, t) y(0, t)]

T

0 −
∫ T

0
y(0, t) η′(t) dt.
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As (2.11) shows that η′(t) and [yt(0, t) y(0, t)]
T
0 are bounded, then the same is

true for

∫ T

0
y2
t (0, t) dt i.e.

∫ +∞

0
y2
t (0, t) dt < +∞ .(3.16)

Let us now consider a positive sequence tn → +∞ and the sequence of func-

tions (vn)n∈N defined on [0, 1] by vn(t) = yt(0, t+ tn) = η(t + tn). As η and η′

are bounded on R+, we deduce that the sequence (vn)n∈N is bounded in H1(0, 1).

So we can extract a subsequence, still denoted (vn)n∈N, uniformly convergent

on [0, 1] to a continuous function v, thanks to the compactness of the injection

H1(0, 1)→ C0[0, 1]. By the dominated convergence theorem, we have

∫ 1

0
v2(t) dt = lim

n→+∞

∫ 1

0
v2

n(t) dt = lim
n→+∞

∫ tn+1

tn

y2
t (0, t) dt ,

the latter integral being zero by virtue of (3.16). As a result, v ≡ 0 on [0,1]. The

sequence (tn)n∈N being arbitrary, one can easily deduce that

yt(0, t) −→
t→+∞

0 .(3.17)

Let us now achieve the proof of Theorem 3. According to Proposition 3,

it is sufficient to establish that ω(U0) is reduced to {0}. For any W0 ∈ ω(U0)

let W : t 7→ S(t)W0 = (y(·, t), z(·, t), η(t), ξ(t)) be the solution of (2.10) such

that W (0) = W0. According to Proposition 3, ‖W (t)‖ is constant, i.e.

yt(0, t) f(yt(0, t)) = 0 by (2.13) which implies by (3.1): yt(0, t) ≤ 0 ∀ t ≥ 0.

So (3.17) holds by Proposition 5.

Next, we choose W1∈ ω(W0), a sequence tn→+∞ such that S(tn)(W0)→W1

and set W1(t) = S(t)W1, denoted by (y1(·, t), z1(·, t), η1(t), ξ1(t)). Since S(t) is

continuous on H for all t ≥ 0, we have

W (t+ tn) = S(t)W (tn) = S(t) (S(tn)W0) −→
n→+∞

S(t)W1 =W1(t) ,(3.18)

and in particular,

η(t+ tn) = yt(0, t+tn) −→
n→+∞

η1(t) .(3.19)

The comparison with (3.17) gives η1(t) = 0 for all t ≥ 0. Thus, η1 ≡ 0 and

by Proposition 4, we deduce that W1(t) = 0 ∀ t ≥ 0, in particular, W1 = 0.
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To conclude, on the one hand we have: ‖W (tn)‖ is constant and equal to

‖W (0)‖ = ‖W0‖ and on the other hand, ‖W (t + tn)‖ converges to ‖W1‖ = 0

as n→ +∞. Thus, W0 = 0, and the proof of Theorem 3 is now complete.

For the second hybrid system (1.10), we shall assume that

a is affine on [0, 1] .(3.20)

It is possible, but rather artificial, to relax this last assumption: some careful

further computations would lead to the same conclusion if we had assumed instead

of (3.20): a ∈ H3(0, 1), a′′ ≥ 0, a′′′ ≤ 0 a.e. and a′(0) + a(0) > 0.

Under hypothesis (3.20) and within the framework of (2.14)–(2.17), we can

prove theorem 3 using the same approach as with operator (2.17). In fact, it is

sufficient to prove Proposition 4, which is equivalent to showing that 0 is the only

solution of the system



















































ytt + yxxxx − (a yx)x = 0

yxx(1, t) = 0

Mξ′(t)− yxxx(1, t) = −a(1) yx(1, t)
yx(0, t) = 0

y(0, t) = 0

yxxx(0, t) = 0

(3.21)

because we can first easily prove that y0 is a constant which is necessarily 0.

Fix any T > 0. First of all, with φ(x) = x− 1, the equality

∫ T

0

∫ 1

0
φ(x) yx

(

yxxxx + ytt − (a yx)x
)

dx dt = 0

leads, after integration by parts, to

0 =

∫ 1

0
[φ(x) yx yt(x, t)]

T

0 dx +
1

2

∫ T

0

∫ 1

0
y2
t −(3.22)

− 1

2

∫ T

0
y2
xx(0, t) dt +

3

2

∫ T

0

∫ 1

0
y2
xx −

1

2

∫ T

0

∫ 1

0
(a′φ− aφ′) y2

x .

Since a is affine, a′φ − aφ′ = −a(1). Furthermore, according to (2.11), there

exists a constant C depending only on U(0) such that

∀ t ≥ 0 , ‖yx(·, t)‖
L2(0,1)

and ‖yt(·, t)‖
L2(0,1)

≤ C ,
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so that by (3.22),

1

2

∫ T

0

∫ 1

0
y2
t +

3

2

∫ T

0

∫ 1

0
y2
xx +

a(1)

2

∫ T

0

∫ 1

0
y2
x ≤ 1

2

∫ T

0
y2
xx(0, t) dt + C .(3.23)

Next, the equality

∫ T

0

∫ 1

0
yxxx

(

yxxxx + ytt − (ayx)x
)

dx dt = 0

leads, after integration by parts, to

0 =
1

2

∫ T

0
y2
xxx(1, t) dt +

∫ 1

0
[yxxx yt(x, t)]

T

0 dx +
1

2

∫ T

0
y2
xt(1, t) dt(3.24)

+
1

2

∫ T

0
a(0) y2

xx(0, t) dt +
3

2

∫ T

0

∫ 1

0
a′y2

xx ,

with a′ being constant. According to (2.11),

AU = −dU
dt

∈ L∞
(

(0,+∞), H2(0, 1)×L2(0, 1)×R2
)

.

In particular, we deduce that yxxxx ∈ L∞((0,+∞), L2(0, 1)) . The equality

yxxx(x, t) = yxxx(0, t) +

∫ x

0
yxxxx(s, t) ds

implies

y2
xxx(x, t) ≤

∫ 1

0
y2
xxxx(s, t) ds ,

thus there exists a constant C, depending only on U(0) such that

∀ (x, t) , y2
xxx(x, t) ≤ C .(3.25)

Therefore (3.24) and (3.25) imply in particular

1

2

∫ T

0
a(0) y2

xx(0, t) dt ≤ −3

2

∫ T

0

∫ 1

0
a′y2

xx + C .(3.26)

The comparison between (3.23) and (3.26) yields

1

2

∫ T

0

∫ 1

0
y2
t +

3

2

∫ T

0

∫ 1

0
y2
xx +

a(1)

2

∫ T

0

∫ 1

0
y2
x ≤ −3

2 a(0)

∫ T

0

∫ 1

0
a′y2

xx + C .(3.27)

We have a(0) + a′ = a(1) and (3.27) gives

1

2

∫ T

0

∫ 1

0
y2
t +

3 a(1)

2 a(0)

∫ T

0

∫ 1

0
y2
xx + a(1)

∫ T

0

∫ 1

0
y2
x ≤ C .(3.28)
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Consequently,
∫ T

0

∫ 1

0
y2
t +

∫ T

0

∫ 1

0
y2
xx +

∫ T

0

∫ 1

0
y2
x ≤ C .(3.29)

Finally, the equality
∫ T

0

∫ 1

0
y
(

yxxxx + ytt − (a yx)x
)

= 0

combined with (3.29) gives easily

∫ T

0
y2
t (1, t) dt ≤ C .

We deduce that
∫ T

0
E(t) dt ≤ C

independently of T and we conclude as in (3.15).

4 – Stabilization under a relaxed hypothesis on monotonicity

In this last section, we prove that we can get rid of global monotonicity for f

to stabilize both systems (1.9) and (1.10), provided that f is more regular than

in (2.5) and is locally monotone in a neighbourhood of 0. The method used here

can also be adapted to the hybrid system studied in [2], where stabilization with

no global monotonicity was established by a technique based on some Riemann’s

invariants for a wave equation, which does not seem to be applicable to the beam

equation.

Moreover, the monotonicity of the operator A followed from the monotonicity

of f , so the well-posedness may not hold and no contraction property can a priori

be expected.

Let us describe this last section. First, we prove using an a priori estimate

that the systems are well posed for a large class of feedback laws. Then, we show

that despite any contraction property, ‖AU(t)‖ is bounded thanks to an energy

inequality for dU
dt

obtained by means of a weak formulation of a non autonomous

equation of which dU
dt

is solution.

From now on, we make the following assumptions:

(i) f ∈W 2,∞
loc (R) ,

(ii) s f(s) < 0 for all s 6= 0 ,

(iii) ∃ ε>0 / f ′(s) ≤ 0 for all s ∈ [−ε, ε] .
(4.1)
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All notations of section 2 will be kept and only system (1.9) will be studied.

Mutatis mutandis, the same results can be obtained for system (1.10). We still

work in the Hilbert space H defined by (2.1) and (2.2) and more or less the same

operator A, but considered as a lipschitz perturbed maximal monotone operator.

More precisely, let A0 be the operator with domain defined by (2.3) and by

A0(U) =

[

−z, yxxxx−(a yx)x,(4.2)

1

m

(

yxxx(0) + α y(0)− a yx(0)
)

, − 1

M

(

yxxx(1)− a yx(1)
)

]

.

This operator corresponds to the choice f ≡ 0 in (2.4). In particular,

A0 is maximal monotone on H(4.3)

and (2.6) yields

〈A0U,U〉 = 0 .(4.4)

The absence of f in (4.2) is compensated by the introduction of the operator B

defined on H by

BU =

(

0, 0, − 1

m
f(η), 0

)

.(4.5)

Now, set

A = A0 + B(4.6)

with domain D(A) defined by (2.3), which is not necessarily monotone.

We consider the evolution equation

dU

dt
+ AU = 0 , U(0) = U0 ,(4.7)

which gives, as in section 2, at least formal solutions for system (1.9).

For the existence of solutions for equation (4.7), we recall the following result

(see [1] or [3]):

Theorem 4. Let H be a Hilbert space, A1 a maximal monotone operator

on H and L a lipschitzian operator defined on H. Then for all U0 ∈ D(A1), there

exists a unique function U : [0,+∞[→ H such that:

(i) U(0) = U0 ,

(ii) ∀ t ≥ 0, U(t) ∈ D(A1) ,

(iii) ∀T >0, U ∈W 1,∞((0, T ),H) ,

(iv)
dU

dt
(t) + A1U(t) + LU(t) = 0 a.e. t ∈ [0,+∞[ .

(4.8)
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We can then state:

Theorem 5. The operator A is the infinitesimal generator of a semigroup

(S(t))t∈R+ of continuous operators on H. Therefore, for all U0 ∈ D(A), equation

(4.7) admits a unique solution t 7→ U(t) satisfying

∀T >0, U ∈W 1,∞((0, T ),H) ∩ L∞((0, T ), D(A))(4.9)

given by U(t) = S(t)U0. Moreover,

t 7→ ‖U(t)‖ is non increasing .(4.10)

Proof: As in [2], it is based on an a priori estimate: given any U0 ∈ D(A),

a straightforward computation shows that every solution U = (y, z, η, ξ) of (4.7)

satisfies
〈

dU

dt
, U

〉

= 〈−A0U,U〉 − 〈BU,U〉 =
1

m
f(η) η ≤ 0

so t 7→ 1
2‖U(t)‖2 is non increasing. In particular,

|η(t)| ≤ 1√
m
‖U(t)‖ ≤ K =

1√
m
‖U0‖ .

Consequently, the knowledge of f on the interval IK = [−K,K] is sufficient to

solve (4.7). In other words, given any function f̄ coinciding with f on IK and the

operator B defined on H by BU = (0, 0,− 1
m
f̄(η), 0), then any solution U of

dU

dt
+ A0U + BU = 0 , U(0) = U0 ,(4.11)

is a solution of (4.7) and vice versa.

From (4.1)(i), there exists a constant cK ≥ 0 such that the function fK : s 7→
f(s) − cKs is decreasing on IK . Let us consider any function f̄K continuous and

decreasing on R extending fK and set f̄(s) = f̄K(s)+ cKs, which by construction

coincides with f on IK . With that choice of f̄ , we may now consider equation

(4.10). In fact, B = B1 + L, where

B1U =

(

0, 0,
1

m
fK(η), 0

)

,(4.12)

LU =

(

0, 0,
1

m
cK η, 0

)

.(4.13)



236 E. FEIREISL and G. O’DOWD

The operator L is lipschitz on H and it is easy to see that B1 is maximal monotone

on H; thus, A0+B = (A0+B1)+L and according to [1], corollary 2.7, p. 36, the

operator A1 = A0 + B1, with domain D(A), is maximal monotone on H. The

existence, uniqueness and regularity of a solution for the equation (4.10) follows

from theorem 4.

The main result of this paper is the following:

Theorem 6. Under assumptions (4.1), for all U0 in D(A), the solution U of

(4.7) satisfies

‖U(t)‖ −→
t→∞

0 .

Let us first analyse the situation: (4.9) gives only local in time estimations

of the solution {U(t), t ≥ 0} for the graph norm of A, so the orbits may not be

precompact for the topology of H; consequently, the ω-limit sets may be empty

or even if they are not, not included in D(A) (this lack of regularity does not

allow to make any use of a method based on multipliers for the resolution of the

problem of uniqueness that occurs, even if La Salle’s principle could be employed).

We prove that despite the lack of the contraction property of the semigroup,

the orbits {U(t), t ≥ 0} are bounded for the graph norm. The method used in

the sequel is summarized below:

(i) equations (1.9) are formally differentiated with respect to t and it is

proved that the evolution problem which is associated to this new system

has strong solutions as well as weak solutions in the sense of uniform

limits of strong solutions; a functional related to the energy is associated

to these two kinds of solutions;

(ii) weak solutions satisfy a variational formulation, also satisfied by dU
dt
;

(iii) a uniqueness argument for this formulation allows to associate to dU
dt

the

functional considered in (i); using Gronwall’s lemma, boundedness of this

energy is shown and then, the conclusion follows as in section 3.

Let us now detail the proof of theorem 6. U0 ∈ D(A), T > 0 are given as well

as the solution t 7→ U(t) of (4.7) where U(t) is denoted (y(·, t), yt(·, t), η(t), ξ(t)),
with η(t) = yt(0, t), ξ(t) = yt(1, t). We set

g(t) = f ′(yt(0, t)) .(4.14)

According to (4.1)(i) and (4.8), we know that

g is lipschitz on [0, T ] .(4.15)
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Differentiating (1.9) with respect to t, we see that v = yt satisfies formally







































vtt + vxxxx − (a vx)x = 0

vxx(1, t) = 0

Mvtt(1, t)− vxxx(1, t) = −a(1) vx(1, t)
vxx(0, t) = 0

mvtt(0, t) + vxxx(0, t) = vt(0, t) g(t)− α v(0, t) + a(0) vx(0, t) .

(4.16)

It must be pointed out that g(t) = f ′(yt(0, t)) is a coefficient of this system.

As in section 2, we transform (4.16) into an abstract evolution equation by

setting V (t) = (v(·, t), vt(·, t), vt(0, t), vt(1, t)), which leads to the consideration of

F : R+×H −→ H
(

t, (v, w, θ, χ)
)

7→
(

0, 0,− 1
m
g(t).θ, 0

)

.
(4.17)

As one can easily check up, any solution t 7→ V (t) = (v(·, t), w(·, t), θ(t), χ(t)) of
the equation

dV

dt
(t) + A0V (t) + F (t, V (t)) = 0(4.18)

is such that (x, t) 7→ v(x, t) satisfies formally (4.16). In fact, (4.18) is the equation

obtained by formal differentiation of (4.7). In the sequel, we show that dU
dt

is a

solution of (4.18) in a certain sense.

It is clear, from (4.15), that F is lipschitz with respect to both variables.

Therefore,

Proposition 6.

(i) For all V0 ∈ D(A), equation (4.18) has on [0, T ] a unique strong solution

t 7→ V (t) ∈ W 1,1((0, T ),H) such that V (0) = V0. Moreover, there exists

a constant K > 0 such that for all (V0,W0) ∈ D(A)2, the corresponding

solutions t 7→ V (t), W (t) satisfy

‖V (t)−W (t)‖ ≤ K ‖V0 −W0‖ .(4.19)

(ii) There exists a family (S(t))t≥0 of operators defined and continuous on H

such that for all V0 ∈ D(A0), t 7→ S(t)V0 is the unique strong solution

of (4.18) which satisfies V (0) = V0.

Proof: (i) is a consequence of [7] (theorem 1.6 p. 189); (ii) follows from

(4.19) and the density of D(A) in H.
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Next, we define a functional related to the energy for these two kinds of

solutions:

Proposition 7. For all V0 ∈ H, set E[V0] : t 7→ 1
2‖S(t)V0‖2. Then E[V0] is

differentiable on [0, T ] and denoting S(t)V0 = (v(·, t), w(·, t), θ(t), χ(t)), one has

E[V0]
′(t) = θ2(t) g(t)(4.20)

Proof: We first establish the result for V0 ∈ D(A), which is obtained by

an integration by parts as in Proposition 1. When V0 ∈ H, t 7→ S(t)V0 is a

uniform limit on [0, T ] of a sequence (Vn(·))n≥1 of strong solutions. Obviously,

E[Vn](t)−→
n→∞

E[V0](t) uniformly on [0, T ]. Noting Vn(t) = (vn(·, t), wn(·, t), θn(t),
χn(t)), we know that E[Vn]

′(t) = θ2
n(t) g(t). As θn(t) −→

n→∞
θ(t) uniformly [0, T ],

we deduce that it is also true for their squares (since (θn(t)) is bounded). Propo-

sition 7 follows from an elementary result about sequence of differentiable func-

tions.

Let us consider now a variational formulation of (4.18).

Proposition 8. For all V0 ∈ H, V (t) = S(t)V0 satisfies:










∀W ∈D(A∗
0) , t 7→ 〈V (t),W 〉 ∈W 1,1((0, T ),R) and

d

dt
〈V (t),W 〉+ 〈V (t),A∗

0W 〉+ 〈F (t, V (t)),W 〉 = 0 for a.e. t .
(4.21)

Proof: The proposition is obvious when V0 ∈ D(A). When V0 ∈ H, as in

Proposition 7, we choose a sequence (Vn(·))n≥1 of strong solutions which con-

verges uniformly to V (·) on [0, T ].

Next, for all W ∈ D(A∗) let us consider φ[W ] : t 7→ 〈V (t),W 〉 and φn[W ] :

t 7→ 〈Vn(t),W 〉. It is clear that φn[W ](t)−→
n→∞

φ[W ](t) uniformly on [0, T ].

On the other hand, we can easily check that

〈Vn(t),A∗
0W 〉+ 〈F (t, Vn(t)),W 〉 −→

n→∞
〈V (t),A∗

0W 〉+ 〈F (t, V (t)),W 〉

uniformly on [0, T ] by the lipschitz property of F . As a result, (φn[W ])n≥1 is a

Cauchy sequence in W 1,1((0, T ),R) . Since uniform convergence on [0, T ] implies

convergence in L1(0, T ), we deduce that: φ[W ] ∈W 1,1((0, T ),R) and (4.21) holds

a.e. t ∈ [0, T ].

We consider now the solution t 7→ U(t) = (y(·, t), yt(·, t), η(t), ξ(t)) of (4.7)

which was fixed previously.
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Proposition 9. V (t) = dU
dt
(t) satisfies the variational formulation (4.21).

Proof: For all t ∈ [0, T ] and all W ∈ D(A∗), one has, according to (4.7),
〈

dU

dt
(t),W

〉

+ 〈U(t),A∗
0W 〉+ 〈BU(t),W 〉 = 0 .

Obviously, t 7→ 〈U(t),A∗
0W 〉 is differentiable, with derivative

〈

dU

dt
(t),A∗

0W

〉

.

Let us denote by ηW the third component of W ; thus,

〈BU(t),W 〉 = − 1

m
f(η(t)) ηW

which is clearly differentiable, with derivative

− 1

m
η′(t) g(t) ηW

which is precisely the value of 〈F (t, V (t)),W 〉, since the third component of

V (t) = dU
dt

is η′(t).

Finally, t 7→ 〈dU
dt
(t),W 〉 is differentiable on [0, T ] as a sum of differentiable

applications, and (4.21) holds.

The last point concerns the uniqueness of the variational formulation:

Proposition 10. Let V1 and V2 be two solutions of (4.21) such that V1(0) =

V2(0); then V1≡ V2.

For the proof, we can refer to [8], Proposition 3.4, p. 71, where a link between

mild and weak solutions is established.

Now we are ready to prove theorem 6: according to Propositions 9 and 8,
dU
dt
(t) = S(t) (dU

dt
(0)) and from Proposition 7, ψ(t) = 1

2 ‖dUdt (t)‖2 is differentiable

and ψ′(t) = η′2(t) g(t). Let us write

ψ(t) = ψ(0) +

∫ t

0
ψ′(τ) dτ

= ψ(0) +

∫ t

0
1{|η|>ε} η

′2(τ) g(τ) dτ +

∫ t

0
1{|η|≤ε} η

′2(τ) g(τ) dτ ,

where 1{|η|≤ε} denotes the characteristic function of the set {τ / |η(τ)| ≤ ε}, on
which g(τ) ≤ 0 by (4.1)(iii). Consequently,

ψ(t) ≤ ψ(0) +

∫ t

0
1{|η|>ε} η

′2(τ) g(τ) dτ .(4.22)
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From the definition of the norm on H (see (2.2)), we have η′2(τ) ≤ 2mψ(τ);

on the other hand, we write

g(τ) = f ′(η(τ)) =
f ′(η(τ))

f(η(τ)) η(τ)
f(η(τ)) η(τ)

and we introduce

c = sup

{∣

∣

∣

∣

f ′(s)
f(s)s

∣

∣

∣

∣

, s / ε ≤ |s| ≤ 1√
m
‖U0‖

}

.

Observing that |η(τ)| ≤ 1√
m
‖U0‖, we deduce that

ψ(t) ≤ ψ(0) + 2mc

∫ t

0
ψ(τ) |f(η(τ)) η(τ)| dτ ,

and since (2.13) yields

∫ +∞

0
f(η(τ)) η(τ) dτ < +∞ ,

we deduce from Gronwall’s lemma that

ψ(t) ≤ ψ(0) e2mc
∫ t

0
f(η(τ)) η(τ) dτ

which implies that ψ(t) is bounded independently of t.

Thus, ‖dU
dt
(t)‖ is bounded, ‖BU(t)‖ is also clearly bounded so the same prop-

erty holds for ‖A0 U(t)‖. The orbit {U(t), t≥0} is then bounded for the graph

norm and precompact for the topology of H. The existence of ω-limit points for

that orbit is guaranteed and these points belong to D(A), because the graph

of A=A0+B possesses the weak-strong closure property since B is a continu-

ous operator on H and A0 is maximal monotone. We can proceed further and

conclude as in section 3.
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