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OPTIMAL CONTROL AND “STRANGE TERM”
FOR A STOKES PROBLEM IN
PERFORATED DOMAINS

J. SAINT JEAN PAULIN and H. ZOUBAIRI

Abstract: We study a problem of optimal control for Stokes equations in perforated
domains with Dirichlet conditions on the boundary of holes. We consider different sizes
of holes.

1 — Introduction

The aim of this paper is to study an optimal control problem for Stokes
equations in perforated domains with Dirichlet conditions on the boundary of
holes.

Let 2 be a bounded connected open set in R™ (ng) with Lipschitz boundary
0f). Let € be a sequence of positive real numbers which tends to zero. We cover
the set 2 with a regular mesh of size 2¢, each cell is a cube P, i =1,..., N(¢),
similar to [—¢,]". We make a hole TF at the center of each cube Pf, included in
2. We define the holes as follows: each hole T is equal to a. T" where T' is a given
closed set independent of e, and a. is the size of the hole (0 < a. < €). Then the
perforated domain Q. is defined by Q. = Q\UT7. There are different possible
sizes of the holes which can be considered (“critical”, smaller and larger holes).
So we define a ratio o, between the current size of the holes and the critical one:

1/2
(1.1) oo = (/a2 forn>3, o.=¢ (log(ag/s)) / forn=2.
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If the limit of o, as e tends to zero, is positive and finite then the size of the holes
is called critical. If the lin% 0= 400, the size of holes is smaller and if hH(l] o.=0,
E— E—>

the holes are larger (cf. Cioranescu and Murat [2] and Allaire [1]).

Throughout all the sequel, we use the convention of summation over repeated
indices.

We denote by ~ the extension by zero onto the holes.

Let B = (b;j) be a symmetric matrix such that
(1.2) Qm fz fz < sz(x) fl {j < ays fz fl a.e.in Q and b,;j € LOO<Q) s

where «,, and ajs are constants such that apys > oy, > 0.

For € > 0 fixed, we define the optimal control problem as follows.

Let US, C L*(Q:)" be a closed convex set. Let f € L?(2)" be a given function
and let N > 0 be a given constant. For 0. € U, we define the state equation of
the Stokes problem by

Vpe —Au, = f+06 in Q&u
(1.3) divu, = 0 in €.,
ue = 0 on 0f) .
where u., p. are respectively the velocity, the pressure of the fluid and 6. is the
control.
The cost functional is then given by

1 N
(1.4) J.(0:) = f/ BVu. Vu. dr + 7/ 62 dx .
2 Ja. 2 Ja.

The second integral corresponds to the cost of the control whereas the first one

corresponds to the energy of the fluid. The matrix B is used in order to generalize

the usual energy (we obtain this energy when the matrix B is equal to identity).
The optimal control 67 is the function in U, which minimizes J.(6.) for

0. €U, ie.

(1.5) 0 ceU;; and J.(67)= min J.(6.) .

0- €Uz,
This problem admits a unique optimal solution 6% (see Lions [6]).
The problem (1.3)—(1.5) can be reduced to a system of equations by introduc-
ing the adjoint state (v, pl) of (ue,pe). Thus we get
Vpl 4+ Av, = div(BVu,) in Q.
(1.6) dive, = 0 in Q,
ve = 0 on 0f) .

where (v,pl) € (HY(Q)"xLE(Q)).
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The optimal control 0% is characterized by the variational inequality

(L7) 6 el and /Q (e + NO) (0. —0) de > 0 V6. €U, .

Our aim is to study the limiting behaviour of the optimal control 8% as ¢ — 0.

In fact, it can be shown that (up to a subsequence) 58; — 0 weakly in L%(Q)™.
Our objective is to characterize 6 as the optimal control of a similar problem set
in the non-perforated domain €.

The type of optimal control problem which we consider, was studied by Kesa-
van and Vanninathan [5], Kesavan and Saint Jean Paulin [3] in non-perforated
domains and by Kesavan and Saint Jean Paulin [4] in perforated domains. They
studied in [4] the Laplace problem with Neumann conditions on the boundary.
Also Rajesh [7] considered the optimal control problem for the Dirichlet problem
in perforated domains and he obtained a “strange term” in the limit.

This paper is organized as follows. In Section 2, we recall some hypotheses
(H1)-(H6) in perforated domains concerning the holes (see Allaire [1]) and the
main results of the homogenization of Stokes equations. In Section 3, we consider
the critical case and we homogenize the adjoint problem and establish convergence
results of energies which appear in the cost functional. In Section 4, we obtain
the limiting optimal control problem. In Section 5, we study the optimal problem
for smaller sizes of holes (for which ili% 0 = +00).

Notation. Throughout this paper, C denotes various real positive constants
independent of e. The duality products between HJ (2) and H~1(£2), and between
(H(2))™ and (H~1(2))", are each denoted by ( , ). o

We denote by (ex)i1<k<n the canonical basis of R™.

Definition 1.1. We define the set L3(f2) by

(1.8) L2(Q) = {f € 12(Q) | /Qf(:p) dsz} -

2 — Hypotheses on the perforations and preliminary results

We make on the holes the same assumptions as Allaire [1], so there exist
functions (wf, 7%, i) and a linear mapping R, such that
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(H1) wi e HY(Q)", r§ € L3(Q),

divwi; =0 inQ and w; =0 in 77,

( ) k k 7

H3) wj — e, weakly in H'(Q)" and r{ — 0 weakly in L3(€),
k k 0

(H4) . € Wo(Q)",

(H5)

Vwv. and Vo such that v. — v weakly in H(2)", v. = 0 in T7 and
Vo € D(Q),

<V7“2 — Awy,, ¢v5> — (ug, ov) ,

Re € L(Hy(Q)", Hy(Q:)"),

If uw€ H}(Q:)" then R.u=wu in Q,
(H6)
If divu=0 in Q then div(R.u) =0 in Q,

1Rl yn < cllullgr oy -

Example 2.1. The assumptions (H1)-(H6) are satisfied in the particular
case where each hole 77 is a ball of radius a. where a. = Cy en/"=2 for n > 3
and a. = e~ €0/ ¢ for n = 2 with Co > 0 and in a such geometry we can compute
explicitly the functions wy, r, and py, which satisfy (H1)- -(H6) (see [1]). In this
case, the diameter of the holes is such that a. << €.

Note also that, the case where the diameter of the holes a. is of the same

order as € corresponds to the classical homogenization. o

Assumptions (H1)—(H6) hold throughout the paper.
We define the matrix M € (W~=1°°(Q))"*" by (see [1])

(21) Mek = g -

This matrix is symmetric and under the above assumptions, we have the following
result which is due to Allaire [1].

The extension u. of the velocity u. and the extension P¢p. of the pressure p.
(defined by Allaire [1]) satisfy

Theorem 2.2 (Allaire [1]). Depending on the size of the holes, there are
three different limit flow regimes for the solution of (1.3):
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(i) If liIT(l] 0. = +00o then (ug, P°p.) converges strongly to (u, p) in H} ()" x
E—>
L3(RY), where (u,p) is the unique solution of the Stokes problem

Vp—Au = f+6 in Q,
(2.2) divy =0 in Q,
u =0 on 0N .

(ii) If gli% 0-.= 0 >0 then there exist a measure ;¥ and a matrix M such that
Mey, =¥ such that (uz, P°p.) converges weakly to (u,p) in HE(Q)" < L3(%),
where (u, p) is the unique solution of the Brinkman-type law

Vp—Au+Mu = f+6 inQ,
(2.3) divu =0 in €,
u=20 on 0f) .

Remark 2.3. Under hypotheses similar to (H1)—(H6) (with a scaling depend-
ing of o.), if lin(1) 0. = 0 then there exist a matrix My such that (uz/o2, P°p.)
E—

converges strongly to (u,p) in L2()" x L3(£2), where (u, p) is the unique solution
of Darcy’s law
u=My'"(f-Vp+0) inQ,
(2.4) divu=0 in Q,
u.n=0 on 0N .

with n the exterior normal vector to € (see Allaire [1] for more details concerning
these hypotheses and the matrix Mj). o

3 — Homogenization and convergence of some energies

In this section and in Section 4, we assume that
(3.1) limo, = 0>0.
e—0

Following the approach of Kesavan and Saint Jean Paulin [4], we introduce
the adjoint state variable and pass to the limit in the resulting system.

Assuming (3.1), there exists a sequence (wy,r}) satisfying (HI1)-(H6).
We show that there exists n distributions ,ulj_”g (k =1,..,n) and a matrix Mp
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defined below by (3.8) such that, given any f € L?(Q)", if (ue,p:) solves the
Stokes problem (1.3), then (up to a subsequence), we have the following conver-
gence of energies.

(3.2) BVuVu.dx — / BVuVudr + (Mpu, u)
Q. Q

(3.3) BVu.-Vu.dr — BVuVu + '(Mgu)u in D'(Q),

where (u, p) solves the problem (2.3).
This type of results was shown by Rajesh [7] for the Dirichlet problem for the
Laplace operator.

We introduce some auxiliary test functions which are used to homogenize the
adjoint problem (1.6).

Lemma 3.1. Assume (3.1) and let (¢5,s5) € H} (Q:)"x LE(Q:) be the solu-
tion of the auxiliary system

Vss + Ay = —div(BVwi) in €.,
(3.4) dive;, = 0 in €,
Y =0 on 09, .

Then there exist 1y, and sy such that (for a subsequence)

(3.5) e — by, weakly in HZ(Q)"
(3.6) P.(s5) — s, weakly in LZ(Q) .

Proof: Multiplying the first equation of (3.4) by 1}, integrating by parts and

n

taking into account the boundedness of wg in H'(Q)", we have the announced

result. m

Definition 3.2. Let us define the distributions p% € D'(Q), k= 1,...,n by
(3.7) P = =M+ (Vs + Auy)
and the matrix Mp € (W 1) by

(3.8) Mpe, = pu% .o
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Proposition 3.3. Let f € L?(Q). Define M by (2.1) and Mg by (3.8).
Assume that (3.1) holds and that . is such that 6. is bounded in L*(Q)".
Let (ue,pe) and (ve,pl) in (H(Q:)"x L3(Q:))? be the solution of the system

Vp: — Au. = f+06; in €,

Vpl 4+ Av, = div(BVu.) in Q.,

(3.9) divu, = divee = 0 in Q,
U = v, = 0 on 0f). .

Then, up to subsequences

0. — 60 weakly in L2(Q)",
(3.10) uz —u weakly in H}(Q)",
U. — v weakly in H}(Q)"

and

Pep. — weakly in L2(Q),
(3.11) { p: = p y in L§(€)

Pepl —p'  weakly in LE(Q) ,

where the limits (u,p) and (v, p') are solution of the Brinkman type system

Vp—Au+Mu = f+60 in €,
(3.12) Vp +Av— Mv = div(BVu) —*Mpgu in Q,
. divu =dive = 0 in €,
u=0v =10 on 0N} .
Proof:

Step 1: A priori estimates

Since 0. is bounded in L?(£2), it is clear that u; and . are uniformly bounded
in H}(Q)" and, also {Pp.} and {P°pL} are uniformly bounded in LZ(€2).

Hence we can extract a subsequence (again indexed by ¢ for convenience) such

that (3.10) and (3.11) holds.

The homogenization of the state equation (1.3) is known (see Theorem 2.1

(i1)).
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Step 2: Energy method

To pass to the limit in the second equation in (3.9), we use the test functions
(w,ry) defined in (H1)—(H6) and the auxiliary functions (v}, s3.) defined by (3.4).

Let ¢ € D(Q2). Multiplying the second equation in (3.9) by ¢wf and integrat-
ing by parts and using assumption (H2), we get

/ p.Vo wi do = —/ 2e Vo wi dx—/ V. Vwi, ¢ dx
Qe Qe Qe

(3.14)
+ | BVu.Vwi ¢ dx
Qe
where
(3.15) 2 = Vve — BVu, .

Similarly, multiplying the first equation in (3.9) by ¢ ¢, integrating by parts and
taking into account the definition of ¥} (see equation (3.4)), we obtain

/(f+95)¢1/1§’; dx+/ PV 5 do =
Q. Q-

(3.16) _ / VUV v do _/ w Vo 55 da —/ e V Ve do
QE Qs QS

—/ (‘BVwi) Vue ¢ da —/ (*BVwi) ue Vo da .

€ €

Adding (3.14) and (3.16) and transforming all the integrals over €2, into inte-

grals over {2, we get
/Q(f+0~a)¢17;i du +/QP€p5v¢1Z§ da +/§2prgv¢wz dr =

(3.17) :—/%V@ﬁwidw—/V@Vwiqﬁdij/VuNEngwNidx

Q Q Q
— biﬂ?Vqﬁdw—/ﬂEVqﬁPssidx,

Q Q

where

(3.18) ¢ = 'BVW + VYt .

Since divv. = 0 in )., we get

(3.19) / rp ¢ divo. de = 0 .
Q
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Adding (3.17) and (3.19) and integrating by parts, we get

/Q(f%—gs)ﬁbiidm ~|—/QP5p5V¢¢N,§d:L’ —I—/QPepngqbwi dr =

_ —/ £V uf dr + (Auf — Vi, o) +/ Vi Vo do
(3.20) Q @

—/r;w@dwr/vutww”;dx
Q Q

—/QbiuNEVqﬁdx—/QaquﬁPesi dx .

Step 3: Passing to the limit

We now pass to the limit in (3.20) as € tends to 0. In order to do so, we need
some preliminary results.

Using (H3), we have
(3.21) Vwi =0 weakly in L*(Q)™" .

By the definition (3.18) and using the convergences (3.5) and (3.21), we can
extract a subsequence such that

(3.22) b; — Vb, weakly in L*(Q)"*" .

Also by the definition (3.15) and using the convergence (3.10), we get (up to
subsequences)

(3.23) Ze =2z =Vv—BVu weaklyin L*(Q)™".

Now passing to the limit in (3.20), taking into account the convergences in
(H3), (H5), (3.5), (3.6), (3.10), (3.11) and (3.21)—(3.23), we get, (up to subse-
quences)

[G+0) 6w dw+ [ pV6vnde+ [ §Voerdo =
Q Q Q
(3.24) - —/ 2V e, do — (un, o) +/wv¢ vy da
Q Q
—/V@bkuv¢d:r—/uv¢skd:c.
Q Q

Therefore, integrating by parts the right-hand side of (3.24) and using Theorem
2.1 (ii), we have

Mugp, de — | VP pep do =
) Q Q

(3.25
= /(divz)qbek dx — (g, pv) +/ AYpu ¢ dx +/V5ku¢ dz .
Q Q Q
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Since the above relation holds for all ¢ € D(Q2) and since M is symmetric, we
have

(3.26) Vp +dive — Mv = —'Mpu

i.e. (u,p) and (v,p’) satisfy (3.12).

Since M is symmetric and positive definite, the solutions (u,p) and (v,p’) of
(3.12) are unique, and therefore, it follows that the whole sequences (u., Pp,)
and (vz, PpL) converge. This completes the proof of the proposition. u

Now, we treat the convergence of the energies / B YVu. Vu. dx. This type of
e

convergence have been studied by Rajesh [7] for the Dirichlet problem. He has
shown in [7] that “a strange term” for the energy appears in the limit using ideas
of [2]. Similarly, we show a same type of result i.e. a strange term in the limiting
energy for Stokes problem following ideas of [1] and [7].

Theorem 3.4. Let f € L*(Q)" and (ue,p:) be the solution of the Stokes
problem (1.3). Let Mp given by (3.8). Then

(3.27) BVu.Vu, dv — / BVuVu dx + (Mpu, u)
Qe Q
and
(3.28) BVu; Vu. — BVuVu + ‘(Mgu)u in D'(Q).

Proof: Using the fact that (ue,pe) and (ve, pl) are solution of (3.9), we have

BVu, Vu, de = —/ (Vve — BVu.) Vue dz +/ Ve Vug dx
QE € QS

= —/ Vp’sua dx —i—/ Ve Vue dx

(3.29) e e

= / V. Vu, dx
Qe

— [ olf 460 do = [ s+ 60 do
Qe Q

Therefore, integrating by parts and using the homogenization results of Propo-
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sition 3.3 and the fact that M is symmetric, we obtain
lim [ BVu.Vu, dx = / v(f+0) dx
e—0 Q. 0
= / v(Vp — Au+ Mu)
Qe

:—/Avudx—i—/Mvudx
(3.30) Q Q

= (—Av+ Mv, u)
= <Vp/ — div(B Vu) + "Mpu, u>

= [ BVuVudr + (Mpu, u) ,
Q

which proves (3.27).
Let ¢ € D(Q2). Set z. defined by (3.15), integrating by parts and using the
problem (3.9), we have

BVu:.Vu: ¢ de = / VoVu. ¢ dx —/ ze Vue ¢ dx
Qe Qe Qe

(3.31) — [ (s +6-Vp)ods ~ [ 0.Vu. Ve do
Q. Qe
—/ Vplue ¢ dx —|—/ 2. u: Vo dx .
Q. Qe

Using the same arguments as in the proof of Proposition 3.3 and using system
(3.12), we derive

lim BVu:.Vu: ¢ de =

=0 Jq,
(3.32) = /Qv(f+0—vp)¢ dx —/quuw dx —/va’w dx +/Qzuv¢ d
= (Mu, v¢) —i—/QVqu ¢ dx —/szu ¢ dx + (Mpu— Mv, pu) .
Therefore, using the fact that M is symmetric, we have

lim [ BVu.Vue ¢ do = /(Vv—z)Vu ¢ dr + (‘Mpu, ¢pu)
e—0.Jq, Q

(3.33)
= /QBVuVu ¢ dr + ({(Mpu)u, ¢) .

This holds for all ¢ € D(Q2). This proves (3.28) and completes the proof. m
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Now we give some properties concerning the functions (N%)lgkgn-

Theorem 3.5. Let % be as defined in (3.7). Then

3.34 phei = lim BVW Vwi in D'(Q) .
B ey i k

Proof: Let ¢ € D(R2). Using the problem (3.4), the expression (3.19) and
integrating by parts, we have

/QBwaVw,igbdaz - /Q(w,i+ {BVWE) Vol ¢ do —/Qw,iw;‘qsdx
= */Q sFWEV o dx f/ﬂ(vw,w tBVW]) wi Vo da
(3.35) 4 vidw o do + [ 0w Vo de
= —/Q sTwi Vo da —/Q(V¢i+ ‘BVwWE) wi Vo dx
— (Vri = auf o) - [ riui Ve do.

€

Passing to the limit (using the convergences (H3), (H5), (3.5) and (3.6)), we get

lim [ BVw; Vw; ¢ doe = —/skedib dz —/VI/)k ei Vo dxr — (u;, i @)
€ Q Q

e—0JQ

(9] Q
= <V8k+A¢k: — My, ¢€i>
= (M%v ¢€2>

= (M% €, ¢> :

(3.36)

This proves (3.34). n

Corollary 3.6. If B is symmetric positive definite, then ,u'fg is a positive
measure and Mp is symmetric.

Proof: This is a consequence of Theorem 3.5. m

In the next section, we return to the control problem we started with.
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4 — Optimal control

We denote by x. the characteristic function of 2.. We now consider the
optimal control problem (1.3)—(1.5) where the convex set U, C L?(€).) is one of
the following ones (see [3] and [4]).

(4.1) fa = LP(Qe)"
(4.2) = {9 € L*(Q)" | 0> xv ae. in Q} ,
(4'3) cid = {‘9 € LQ(Qe)n ’ Xe 1 < 53 Xe Y2 a.e. in Q} >

where v, 11 and 1o are given functions in L2(Q)".
Now, since 67 is optimal we have

N
(4.4) A (05 de < J.(05) < J.(©.) VO.c U, .

This relation holds in particular with the following choice of O,

Xe in the case of (4.1),
(4.5) ©: = { X% in the case of (4.2),
Xe¥2  in the case of (4.3) .

In each of the three cases above, we have

Lemma 4.1. The optimal control satisfies (up to a subsequence)
(4.6) 6r — 05 weakly in L*(Q)" .

Proof: Using (4.5), we have that J.(0.) is bounded in L?(£2.)", so we derive
from (4.4) the announced result. m

Lemma 4.2. The characteristic function x. of ). satisfies

(4.7) Xe =1 weakly x in L%°(Q) .

Proof: We have, up to a subsequence
Xe — xo weakly x in L%°(Q) .

Since . wf = wy, thus passing to the limit and by uniqueness, we obtain xo=1.u
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We proceed to characterize the limiting optimal control problem. We define
the set Uyq C L*(Q) as

(4.8) Usa = L*(Q)"
(4.9) Usa = {0 € LHQ)" | 0> ac.inQ},
(4.10) Usa = {0 € LAQ)" | 91 <0<ty ae in O},

corresponding to the cases (4.1), (4.2) and (4.3) respectivly. We have the following
convergence result of optimal control.

Theorem 4.3. Let Mp given by (3.8). For 0 € Uyq, let (u,p) € HH(Q)™ x
L3(Q) be the solution of (2.2). Let Jy be the cost functional defined by

1 1 N
(4.11) To(6) = f/ BVuVude + = (Mpu, u) + —/ 6% du .
2 Jo 2 2 Ja

Then 67 satisfy the condition of optimality
(4.12) 06 € Uyg and JQ(GS) = Hml/iln Jo(e) .
€

ad

Further we have the convergence of the minimal costs, i.e.

(4.13) lim J.(02) = Jo(05) -
E—>

Proof:

Step 1: It is clear from the definition of Uyq, that if 0 € Uyq then x.0 € U,
Further, since 8% — 6% weakly in L?(Q)" and U,q is a closed convex set, we have
96 € Uyg.

Step 2: Let (uf, pf) be the solution of the state equation (1.3) corresponding
to 0. = 6. Using the convergence (4.6) of Lemma 4.1, we get

ur — u* weakly in  Hg(Q)",
Pepr —p*  weakly in L3(9) ,
where (u*, p*) is solution of (2.2) with § = #* in the right-hand side.

(4.14)

Step 3: Let (we, q.) € H}(Q:)" x L3(€:) be the solution of the state equation
(1.3) with the control x.0, 6 € U,q, that is
Vg —Aw: = f+x:0 in Q,
(4.15) divw. = 0 in Q.,
we = 0 on 0f) .
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Since x. 0 — 6 weakly in L?(2)", it follows that w. — w weakly in Hg ()" and
P?(g.) — q weakly in L3(2) where (w,q) satisfy the following Brinkmann-type
problem

Vg—Aw+ Mw = f+60 in Q,
(4.16) divw = 0 in Q,
w =0 on 0f2,

(see Proposition 3.3). Further, using Theorem 3.4 for 6 fixed, we have

(4.17) BYVw.Vw, dv — / BVwVuw dz + (Mpw, w) .
Q. Q

Thus

(4.18) J-(xe0) — Jo(0) .

Once again, using Theorem 3.4 but now for 6. = 0%, we get

(4.19) /Q BVu:Vul dz — /QBVu* Vu* dx + (Mpu*, u*) .

Step 4: Passing to the limit in the inequality
(4.20) Je(xe0) > Ja(eg) :

and using Lemma 4.2, we get

1 N 1
(4.21) Jy(0) > = | BVu*Vu* dx + limsup —/ (05)? dz 4+ = (Mpu*, u*) .
2 Q e—0 2 QE 2
Thus taking # = 6* in the above inequality, we have
(4.22) limsup/ (6%)? dx S/(@*)Z dx .
e—0 < Q

Moreover since 52/ — 0% weakly in L?(€2), we get
(4.23) liminf [ (%)% dx > / (6*)? dz .
e—0 Qe Q

Thus using (4.22) and (4.23), we derive

e—0

(4.24) tiy [ (62)? e = /Q (6)? dz .

We deduce (4.13). Now (4.12) follows from (4.21) and (4.24). n
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5 — Case of smaller holes

We now assume that the size of the holes is smaller than the critical size, i.e.
(5.1) lim o, = 400,
e—0
in other words,
(5.2) ae << "2 for m > 3, a.= expfl/cf and C.<<e? forn=2.

Since the size of the holes satisfies (5.1), the hypothese (H3) is replaced by

(see [1])

(5.3) wi — e strongly in H'(Q)" and 7§ — 0 strongly in L2(Q) .

Remark 5.1. Hypothese (5.3) is stronger than Hypothese (H3). o
We have the following result

Proposition 5.2. Let the size of the holes satisfy (5.1). Assume that (H1),
(H2), (H4)-(H6) and (5.3) hold. Let (uc,p:) and (ve,p.) be the unique solution
of (3.9). Then up to subsequences

0. —~ 0  weakly in L2(Q)"

(5.4) u. — u  strongly in H}(Q)",
U — v strongly in H(Q)"
and
(55) { Pe(p.) —p  strongly in L3(Q),
Pe(pl) —p'  strongly in LE(Q2),

where (u,p) and (v,p’) are solution of the Stokes problem

Vp—AQAu = f+6 in 9,
Vp' + Av = div(BVu) in 9,
(5.6) N S
divu = dive = 0 in €,
u=v =0 on 0N .

Proof: To prove this result, we use the same arguments as in the proof of
Proposition 3.3.
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Step 1: The fact that M = 0 was established by Allaire [1] and also the
following convergence result

Uz — U strongly in H}(Q)",
(5'7) { e gly 0( )

P¢(p.) —p strongly in L3(9) .
Following Allaire [1], we show now that u%, defined by (3.7), is equal to zero.
Since Hypotheses (H1), (H2), (H4)-(H6) and (5.3) are satisfied, all the results of
Proposition 3.3 hold. But from (5.3) and Theorem 3.6, we deduce that u% =0

and hence Mp = 0. This proves that (u,p) and (v, p’) satisfy the Stokes equations
(5.6).

We complete the proof by showing the strong convergence of o, in H{ ()"
and of P°(p.) in L3(Q).

Step 2: Using the convergences (3.10) and (3.11) of vz and P®(p.) respec-
tively and defining v by (5.6), we have the following convergence (using classical
arguments)
(5.8) Uz — v strongly in H} ()",
' Pe(pl) — p/  strongly in L3(9) .
This ends the proof. n

We now give a convergence result of the optimal control. Let U, C L?(£2.)"
given by (4.1)~(4.3) and U,q C L?*(Q)" by (4.8)-(4.10). We have the following
result

Theorem 5.4. Let 0% be the optimal control for the Stokes problem (1.3)
and let the cost functional be given by (1.4). Then

(5.9) 0r — 05  weakly in L*(Q)"
and 6 is the optimal control for the problem

Vp—Au = f4+6 in Q,
(5.10) divu = 0 in Q,
u =0 on 0f),

with the following cost functional

1 N
(5.11) Jo(0) = 7/ BVuVu dxr + —/ 0% dx .
2 Ja 2 Ja
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Proof: By Lemma 4.1, we have (5.9). Now using Theorem 4.3 with the ma-
trices M and Mp equal to zero, we have immediately the results. This completes
the proof. m

Remark 5.5. In the case where o, — 0 (i.e. when the holes are larger),
we have that u. — 0 strongly in H*(Q)", hence Vuz — 0 strongly in L?(2)"*™.
Then it is obvious that we have the following convergence of energy

BVu. Vu, dx:/BVuNgVﬂgdx — 0.
Q. Q

Unfortunately, we could not succeed to conclude concerning the optimal control
problem in this case. o
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