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WEIGHTED NORM INEQUALITY
FOR THE POISSON INTEGRAL ON THE SPHERE

Benjamin Bordin, Iara A.A. Fernandes and Sergio A. Tozoni

Abstract: We obtain, for each p, 1 < p < ∞, a necessary and sufficient condition

for the Poisson integral of functions defined on the sphere Sn, to be bounded from a

weighted space Lp(Sn,Wdσ) into a space Lp(B, ν), where σ is the Lebesgue measure on

Sn and ν is a positive measure on the unit ball B of Rn+1.

Introduction

In this paper we consider a homogeneous space X = G/H where G is a locally

compact Hausdorff topological group and H is a compact subgroup of G which is

provided with a quasi-distance d and with a measure µ induced on X by a Haar

measure on the topological group G. If x ∈ X and r > 0, B(x, r) will denote the

ball {y ∈ X : d(x, y) < r} in X. We also write X̃ = X× [0,∞) and if B = B(x, r)

we write B̃ = B(x, r)× [0, r].

We define the maximal operator M by

Mf(x, r) = sup
s≥r

1

µ(B(x, s))

∫

B(x,s)
|f(y)| dµ(y)

for all real-valued locally integrable function f on X and (x, r) ∈ X̃. If r = 0

the above supremum is taken over all s > 0 and Mf(x, 0) = f ∗(x) is the Hardy-

Littlewood maximal function.

A weight is a positive locally integrable functionW (x) on X and we will write

W (A) =
∫
AWdµ. We say that W is a weight in the class A∞(X) if there exist
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positive constants CW and δ such that

µ(A)

µ(B)
≤ CW

(
W (A)

W (B)

)δ
,

for all ball B = B(x, r), x ∈ X, r > 0, and all Borel subsets A of B. We observe

that the above inequality is equivalent to a similar one where µ appears instead of

W and conversely (see [5, 1]). We write Lp(W ) = Lp(X,W (x) dµ(x)), 1≤p<∞.

Let 1 < p < ∞, p′ such that 1/p + 1/p′ = 1, let β be a positive measure

on the Borel subsets of X̃ and W a weight on X. In Section 2 we introduce a

maximal operator of dyadic type Mb
d, where b is an integer, using partitions of

dyadic type for the homogeneous space X introduced in Section 1.

In Section 3 we prove the following theorem.

Theorem 3.1. Let G be a compact or an Abelian group, let 1 < p < ∞
and let W be a weight on X such that W 1−p′ ∈ A∞(X). Then the following

conditions are equivalent:

(i) There exists a constant C > 0, such that, for all f ∈ Lp(W ),
∫

X̃
[Mf(x, r)]p dβ(x, r) ≤ C

∫

X
|f(x)|pW (x) dµ(x) .

(ii) There exists a constant C > 0, such that, for all balls B = B(z, t),

0 ≤ t <∞,
∫

B̃
[M(W 1−p′χB)(x, r)]

p dβ(x, r) ≤ C

∫

B
W 1−p′(x) dµ(x) < ∞ .

The above result for X = Rn was proved in Ruiz-Torrea [7]. A similar result

for the fractional maximal operator was obtained in Bernardis-Salinas [1]. The

condition (ii) of Theorem 3.1 implies the condition

β(B̃)1/p

µ(B)

(∫

B
W 1−p′(x) dµ(x)

)1/p′

≤ C < ∞

for all balls B. It was proved in Ruiz-Torrea [8] that the above condition

is a necessary and sufficient condition for M to be a bounded operator from

Lp(X,W (x) dµ(x)) into weak −Lp(X̃, β). In the particular case W (x) ≡ 1, the

condition (ii) of Theorem 3.1 is equivalent to the Carleson’s condition for the

homogeneous space X:

β(B̃) ≤ C µ(B)

for all balls B and for a constant C > 0.
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Now, if x ∈ Rn+1, we write |x| = (x · x)1/2 and d(x, y) = |x − y|, where x · y
is the usual scalar product of x and y in Rn+1. Here Sn will denote the unit

n-sphere {y ∈ Rn+1 : |y| = 1} in Rn+1, σ the normalized Lebesgue measure on

Sn and h : [1−
√
2, 1]→ [0, 2] will be the function defined by h(r) =

√
2(1− r).

The Poisson kernel for the sphere Sn is given by

Pry(x) =
1

ωn

1− r2
|ry − x|n+1

for x, y ∈ Sn and 0 ≤ r < 1, where ωn is the area of the sphere Sn. For a

real-valued integrable function f we denote by uf (ry) the Poisson integral

uf (ry) =

∫

Sn
Pry(x)f(x) dσ(x) .

and we define the maximal function u∗f by

u∗f (ry) = sup
0≤s≤r

|uf (sy)| , 0 ≤ r < 1, y ∈ Sn .

If B is the open ball B(z, t) = {x ∈ Sn : |x− z| < t}, 0 < t ≤ 2, we define

B̄ = {sx : h−1(t) ≤ s ≤ 1, x ∈ B} if 0 < t ≤
√
2 ;

B̄ = {sx : 0 ≤ s ≤ 1, x ∈ B} if
√
2 ≤ t ≤ 2 .

We observe that B̄ is a truncated cone in the ball B = {y ∈ Rn+1 : |y| ≤ 1} in

Rn+1 if 0 < t ≤
√
2 and a cone if

√
2 ≤ t ≤ 2.

In Section 4 we prove the following result.

Theorem 4.1. Let 1 < p < ∞, let W be a weight on Sn such that

W 1−p′ ∈ A∞(Sn) and let ν be a Borel positive measure on Sn. Then the following

conditions are equivalent:

(i) There exists a constant C > 0, such that, for all f ∈ Lp(W ),
∫

B
[u∗f (y)]

p dν(y) ≤ C

∫

Sn
|f(x)|pW (x) dσ(x) .

(ii) There exists a constant C > 0, such that, for all balls B = B(z, t),

0 < t ≤ 2,
∫

B̄
[u∗
W 1−p′χB

(y)]p dν(y) ≤ C

∫

B
W 1−p′(x) dσ(x) < ∞ .

We point out that the Theorem 4.1 for W ≡ 1 and n = 1 was proved in

Carleson [2].
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1 – Preliminaries

In this section we introduce some notations, definitions and basic facts.

Let G be a locally compact Hausdorff topological group with unit element e,

H be a compact subgroup and π : G 7→ G/H the canonical map. Let dg denote a

left Haar measure on G, which we assume to be normalized in the case of G to be

compact. If A is a Borel subset of G we will denote by |A| the Haar measure of A.

The homogeneous space X = G/H is the set of all left cosets π(g) = gH, g ∈ G,
provided with the quotient topology. The Haar measure dg induces a measure µ

on the Borel σ-field on X. For f ∈ L1(X),

∫

X
f(x) dµ(x) =

∫

G
f ◦ π(g) dg .

We observe that the group G acts transitively on X by the map (g, π(h)) 7→
gπ(h) = π(gh), that is, for all x, y ∈ X, there exists g ∈ G such that gx = y. We

also observe that the measure µ on X is invariable on the action of G, that is, if

f ∈ L1(X), g ∈ G and Rgf(x) = f(g−1x), then

∫

X
f(x) dµ(x) =

∫

X
Rgf(x) dµ(x) .

Definition 1.1. A quasi-distance on X is a map d : X ×X 7→ [0,∞) satis-

fying:

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(gx, gy) = d(x, y) for all g ∈ G, x, y ∈ X;

(iv) there exists a constant K ≥ 1 such that, for all x, y, z ∈ X,

d(x, y) ≤ K[d(x, z) + d(z, y)] ;

(v) the balls B(x, r) = {y ∈ X : d(x, y) < r}, x ∈ X, r > 0, are relatively

compact and measurable, and the balls B(11, r), r > 0, form a basis of

neighborhoods of 11 = π(e);

(vi) there exists a constant A ≥ 1 such that, for all r > 0 and x ∈ X,

µ(B(x, 2r)) ≤ Aµ(B(x, r)) .
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In this paper X will denote a homogeneous space provided with a quasi-

distance d.

Given a quasi-distance d on X, there exists a distance ρ on X and a positive

real number γ such that d is equivalent to ργ (see [5]). Therefore the family of

d-balls is equivalent to the family of ργ-balls and ργ-balls are open sets.

It follows by Definition 1.1(iii) that B(gx, r) = gB(x, r) for all g ∈ G,

x ∈ X and r > 0, and hence µ(B(gx, r)) = µ(B(x, r)). Thus we can write

X =
⋃
j≥1 gjB(x, r) where (gj) is a sequence of elements of G and consequently

µ(B(x, r)) > 0. In particular, X is separable.

Lemma 1.1. Let b be a positive integer and let λ = 8K5. Then for each

integer k, −b ≤ k ≤ b, there exist an enumerable Borel partition Ab
k of X and a

positive constant C depending only on X, such that:

(i) for all Q ∈ Ab
k, −b ≤ k ≤ b, there exists xQ ∈ Q such that

B(xQ, λ
k) ⊂ Q ⊂ B(xQ, λ

k+1)

and

µ(B(xQ, λ
k+1)) ≤ Cµ(Q) ;

(ii) if −b ≤ k < b, Q1 ∈ Ab
k+1, Q2 ∈ Ab

k and Q1 ∩ Q2 6= ∅, then Q2 ⊂ Q1,

and

0 < µ(Q1) ≤ Cµ(Q2) ;

(iii) for all x ∈ X and r, λ−b−1 ≤ r ≤ λb, there exist Q ∈ Ab
k for some

−b ≤ k ≤ b and g ∈ G such that d(gx, x) ≤ λk+1, B(x, r) ⊂ gQ and

µ(Q) ≤ Cµ(B(x, r)) .

Proof: The properties (i) and (ii) follow by Lemma 3.21, p. 852 of [9] and

by Definition 1.1.

Let us prove (iii). Given x ∈ X and λ−b−1 ≤ r ≤ λb, let −b ≤ k ≤ b such that

λk−1 ≤ r ≤ λk. There exists an unique Q ∈ Ab
k such that x ∈ Q. Consider xQ as

in (i) and g ∈ G such that x = g xQ. If a is an integer such that 2a−1<λ ≤ 2a,

then by (i) we have

B(x, r) ⊂ B(gxQ, λ
k) ⊂ gQ ⊂ B(x, λk+1)
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and hence by Definition 1.1(vi) we have

µ(Q) ≤ µ(B(xQ, 2
aλk))

≤ Aaµ(B(xQ, λ
k))

≤ A2aµ(B(x, r)) .

We also have that d(gx, x) = d(x, xQ) ≤ λk+1.

Let (Ω,F , ν) be a σ-finite measure space, let (Fk)k∈Z be an increasing sequence

of sub-σ-fields of F , and for each k ∈ Z, consider a real-valued Fk-measurable

function fk. We say that the sequence (fk)k∈Z is a martingale with respect to

the sequence (Fk)k∈Z if, for all k ∈ Z and all A ∈ Fk such that ν(A) < ∞, we

have that ∫

A
|fk| dν <∞ ,

∫

A
fk dν =

∫

A
fk+1 dν .

Now, consider a σ-finite measure ν on the Borel σ-field of X and let Fk be the

σ-field generated by the partition Ab
−k for −b ≤ k ≤ b, by Ab

−b for k ≥ b and by

Ab
b for k ≤ −b. If f ∈ L1(X, ν),

fk(x) = E[f |Fk](x) =
∑

Q∈Ab
k

(
1

ν(Q)

∫

Q
f(y) dν(y)

)
χQ(x), −b ≤ k ≤ b ;

and fk = fb for k ≥ b, fk = f−b for k ≤ −b, then (fk)k∈Z is a martingale with

respect to the sequence (Fk)k∈Z. We define the maximal operator M b
ν , for all

f ∈ L1(X, ν) by

M b
νf(x) = sup

k∈Z
E[|f | | Fk](x) = sup

x∈Q

Q∈Ab

1

ν(Q)

∫

Q
|f(y)| dν(y) .

where Ab =
⋃
−b≤k≤bAb

k.

The next result can be found in Dellacherie-Meyer [3], number 40, p. 37.

Theorem 1.1. If 1 < p <∞ and f ∈ Lp(X, ν), then

‖M b
νf‖Lp(X,ν) ≤ p′‖f‖Lp(X,ν) .
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2 – A maximal operator of dyadic type

Let b be a fixed positive integer. Given Q ∈ Ab =
⋃
−b≤k≤bAb

k, where Ab
k are

the partitions of X in Lemma 1.1, Q̃ will denote the subset Q × [0, α−1(µ(Q))]

of X̃ = X × [0,∞), where α : [0,∞) → [0,∞) is the function defined by α(r) =

µ(B(11, r)), 11 = π(e).

If f is a real-valued locally integrable function on X, we define, for each

(x, r) ∈ X̃,

Mb
df(x, r) = sup

x∈Q∈Ab

µ(Q)≥α(r)

1

µ(Q)

∫

Q
|f(y)| dµ(y) .

If µ(Q) < α(r) for all Q ∈ Ab such that x ∈ Q, we define Mb
df(x, r) = 0.

Lemma 2.1. Let W be a weight and let A be a measurable subset of X.

If 1 < p < ∞ and W−1χA 6∈ Lp
′
(W ), then there exists a positive function

f ∈ Lp(W ) such that ∫

A
f(x) dµ(x) = ∞ .

Proof: Let ψ be the linear functional on Lp(W ) given by ψ(g) =
∫
A g dµ.

Since W−1χA 6∈ Lp
′
(W ), it follows by the Riesz representation theorem that

ψ is not continuous. Therefore, there exists ε > 0, such that, for each positive

integer m, there exists gm ∈ Lp(W ) such that ‖gm‖Lp(W ) ≤ 2−m and |ψ(gm)| ≥ ε.

We set fm(x) = |g1(x)|+ · · ·+ |gm(x)| and then, for all m, k ≥ 1,

‖fm+k − fm‖Lp(W ) ≤ ‖gm+1‖Lp(W ) + · · ·+ ‖gm+k‖Lp(W ) < 2−m .

Hence (fm) is a Cauchy sequence in Lp(W ) and therefore there exists f ∈ Lp(W )

such that fm → f in Lp(W ). On the other hand

ψ(fm) ≥ |ψ(g1)|+ · · ·+ |ψ(gm)| ≥ mε .

But fm ↑ f a.e. and thus by the monotone convergence theorem we obtain

∫

A
f dµ = lim

m→∞
ψ(fm) =∞ .

Theorem 2.1. Given a weight W on X, a positive measure β on X̃, and

1 < p <∞, the following conditions are equivalent:



256 BENJAMIN BORDIN, IARA FERNANDES and SERGIO TOZONI

(i) There exists a constant C > 0, such that, for all f ∈ Lp(W ) and all

positive integer b,

∫

X̃
[Mb

d f(x, r)]
p dβ(x, r) ≤ C

∫

X
|f(x)|pW (x) dµ(x) .

(ii) There exists a constant C > 0, such that, for all Q ∈ Ab and all positive

integer b,

∫

Q̃

[
Mb

d(W
1−p′χQ)(x, r)

]p
dβ(x, r) ≤ C

∫

Q
W 1−p′(x) dµ(x) < ∞ .

Proof: The proof of (i)⇒(ii) is exactly as the proof of (i)⇒(ii) in Theorem

3.1.

Proof of (ii)⇒(i): Let us fix f ∈ Lp(W ) and for each k ∈ Z, let Ωk be the set

Ωk =
{
(x, r) ∈ X̃ : Mb

df(x, r) > 2k
}
.

For each k ∈ Z, we denote by C0
k the family formed by all Q ∈ Ab such that

|f |Q =
1

µ(Q)

∫

Q
|f(y)| dµ(y) > 2k .

Since for every Q ∈ Ab
k, −b ≤ k < b, there exists Q′ ∈ Ab

k+1 such that Q ⊂ Q′,

then every element Q ∈ C0
k is contained in a maximal element Q′ ∈ C0

k . We

denote by Ck the family {Qk
j : j ∈ Jk} formed by all maximal elements Q ∈ C0

k .

Since Ab
k is a partition of X and all elements of Ck are maximal, we can conclude

that the sets Qk
j , j ∈ Jk, are pairwise disjoint. Therefore the sets Q̃k

j , j ∈ Jk, are
also pairwise disjoint and,

Ωk =
⋃

j∈Jk

Q̃k
j .

Now, for each k ∈ Z and each j ∈ Jk, let

Ek
j = Q̃k

j \ Ωk+1 .

Then the sets Ek
j and Eh

i are disjoint for (k, j) 6= (h, i) and

{
(x, r) : Mb

df(x, r) > 0
}

=
⋃

k∈Z

(Ωk \ Ωk+1) =
⋃

k∈Z

⋃

j∈Jk

Ek
j .
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Therefore
∫

X̃
[Mb

df(x, r)]
p dβ(x, r) =

∑

k,j

∫

Ek
j

[Mb
df(x, r)]

p dβ(x, r)

≤ 2p
∑

k,j

β(Ek
j ) (2

k)p

≤ 2p
∑

k,j

β(Ek
j )

(
1

µ(Qk
j )

∫

Qk
j

|f(x)| dµ(x)
)p

.(2.1)

Now, we introduce the following notations:

ν(x) =W 1−p′(x), ν(A) =

∫

A
ν(x) dµ(x) ,

γk,j = β(Ek
j )

(
ν(Qk

j )

µ(Qk
j )

)p
, gk,j =

(
1

ν(Qk
j )

∫

Qk
j

|f(x)|
ν(x)

ν(x) dµ(x)

)p
,

Y =
{
(k, j) : k ∈ Z, j ∈ Jk

}
, Γ(λ) =

{
(k, j) ∈ Y : gk,j > λ

}
.

Let γ be the measure on Y such that γ({(k, j)}) = γk,j and let g be the function

defined on Y by g((k, j)) = gk,j . We have that

γk,j gk,j = β(Ek
j )

(
1

µ(Qk
j )

∫

Qk
j

|f(x)| dµ(x)
)p

and hence it follows by (2.1) that

∫

X̃
[Mb

df(x, r)]
p dβ(x, r) ≤ 2p

∑

k,j

γk,j gk,j

= 2p
∫ ∞

0
γ(Γ(λ)) dλ

= 2p
∫ ∞

0

(
∑

(k,j)∈Γ(λ)

γk,j

)
dλ

= 2p
∫ ∞

0

∑

(k,j)∈Γ(λ)

∫

Ek
j

(
ν(Qk

j )

µ(Qk
j )

)p
dβ(x, r) dλ .(2.2)

For each λ > 0, let {Qλ
i : i ∈ Iλ} be the family formed by all maximal elements

of the family

{
Qk
j : (k, j) ∈ Γ(λ)

}
=

{
Qk
j :

1

ν(Qk
j )

∫

Qk
j

|f(x)|
ν(x)

ν(x) dµ(x) > λ1/p
}
.
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If Qk
j ⊂ Qλ

i and (x, r) ∈ Ek
j , then x ∈ Qk

j , µ(Q
k
j ) ≥ α(r) and thus

Mb
d(νχQλ

i
)(x, r) = sup

x∈Q∈Ab

µ(Q)≥α(r)

ν(Q ∩Qλ
i )

µ(Q)
≥

ν(Qk
j )

µ(Qk
j )

.

Therefore, if Qk
j ⊂ Qλ

i we obtain

∫

Ek
j

(
ν(Qk

j )

µ(Qk
j )

)p
dβ(x, r) ≤

∫

Ek
j

[
Mb

d(νχQλ
i
)(x, r)

]p
dβ(x, r) .(2.3)

Taking into account that the sets Ek
j are disjoint, it follows from (2.2), (2.3) and

by the hypothesis that
∫

X̃
[Mb

df(x, r)]
p dβ(x, r) ≤ 2p

∫ ∞

0

∑

i∈Iλ

∑

(k,j)∈Γ(λ)

Qk
j
⊂Qλ

i

∫

Ek
j

[
Mb

d(νχQλ
i
)(x, r)

]p
dβ(x, r)

≤ 2p
∫ ∞

0

∑

i∈Iλ

∫

Q̃λ
i

[
Mb

d(νχQλ
i
)(x, r)

]p
dβ(x, r)

≤ C 2p
∫ ∞

0

∑

i∈Iλ

∫

Qλ
i

ν(x) dµ(x)

= C 2p
∫ ∞

0
ν




⋃

(k,j)∈Γ(λ)

Qk
j


 dµ(x) .(2.4)

It follows by the definition of the maximal operator M b
ν in Section 1 and by the

definition of Γ(λ) that

⋃

(k,j)∈Γ(λ)

Qk
j ⊂

{
x ∈ X : M b

ν

( |f |
ν

)
(x) > λ1/p

}
.(2.5)

Then, by (2.4), (2.5) and Theorem 1.1,

∫

X̃
[Mb

df(x, r)]
p dβ(x, r) ≤ C 2p

∫ ∞

0
ν

({
x :

(
M b

ν

( |f |
ν

)
(x)

)p
> λ

})
dλ

= C 2p
∫

X

(
M b

ν

( |f |
ν

)
(x)

)p
ν(x) dµ(x)

≤ C 2p(p′)p
∫

X

|f(x)|p
(ν(x))p

ν(x) dµ(x)

= C 2p(p′)p
∫

X
|f(x)|pW (x) dµ(x) .
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Remark 2.1. Let us fix g ∈ G and let g−1Ab
k = {g−1Q : Q ∈ Ab

k}, g−1Ab =

{g−1Q : Q ∈ Ab}. Then for each −b ≤ k ≤ b, g−1Ab
k is a partition of X and

Lemma 1.1 and Theorem 1.1 in Section 1 also hold, with the same constants,

when we change Ab
k for g−1Ab

k. If f is a real-valued locally integrable function

on X, we define

Mb,g
d f(x, r) = sup

x∈Q∈g−1Ab

µ(Q)≥α(r)

1

µ(Q)

∫

Q
|f(y)| dµ(y) .

Then

Mb
d(Rgf)(gx, r) =Mb,g

d f(x, r)

where Rgf(x) = f(g−1x). The Theorem 2.1 also hold, with the same proof, when

we change the operator Mb
d for Mb,g

d and the family Ab for g−1Ab.

3 – The boundedness of the operator M

Given a positive integer b and a real-valued locally integrable function f on

X, we define for (x, r) ∈ X̃,

Mbf(x, r) = sup
max{λ−b−1,r}≤s≤λb

1

µ(B(x, s))

∫

B(x,s)
|f(y)| dµ(y) .

We define Mbf(x, r) = 0 if r > λb and we observe that Mbf(x, r) ↑ Mf(x, r) if

b ↑ ∞ for all (x, r) ∈ X̃.

Let us denote

Gb =
{
g ∈ G : d(gx, x) ≤ λb+1 for all x ∈ X

}
.

If d(g11, 11) = d(gx, x) for all x ∈ X and g ∈ G, in particular if G is an Abelian

group, then

Gb =
{
g ∈ G : d(g11, 11) ≤ λb+1

}
,

and hence Gb is relatively compact in G and 0 < |Gb| <∞ (see [4]).

Lemma 3.1. Let b be a positive integer, g ∈ G, let Mb,g
d be the maximal

operator defined in Remark 2.1, let f be a real-valued locally integrable function

on X and let (x, r) ∈ X̃. Then

Mb,g
d f(x, r) ≤ CMf(x, r) .(3.1)
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If G is a compact or an Abelian group, then

Mbf(x, r) ≤ C

|Gb|

∫

Gb

Mb,g
d f(x, r) dg .(3.2)

The constants C in (3.1) and in (3.2) depend only on X and if X is compact we

can change Gb for G.

Proof: Let us fix (x, r) ∈ X̃ and g ∈ G. If µ(Q) < α(r) for all Q ∈ Ab such

that x ∈ g−1Q, we have Mb,g
d f(x, r) = 0. Thus to prove (3.1), it is enough to

consider Q ∈ Ab
k, −b ≤ k ≤ b, such that x ∈ g−1Q and µ(Q) ≥ α(r). By Lemma

1.1(i) there exist xQ ∈ Q such that Q ⊂ B(xQ, λ
k+1) and µ(B(xQ, λ

k+1)) ≤
Cµ(Q). For t = 2Kλk+1 we have B(g−1xQ, λ

k+1) ⊂ B(x, t) and hence

α(t) = µ(B(x, t)) ≥ µ(B(g−1xQ, λ
k+1)) ≥ µ(Q) ≥ α(r) .

If 2a−1 < K ≤ 2a, it follows by Definition 1.1(vi) that

µ(B(x, t)) ≤ Aa+1µ(B(xQ, λ
k+1)) ≤ Aa+1Cµ(g−1Q) .

Therefore

1

µ(g−1Q)

∫

g−1Q
|f(y)| dµ(y) ≤ Aa+1C

µ(B(x, t))

∫

B(x,t)
|f(y)| dµ(y) ≤ Aa+1 CMf(x, r)

and hence we obtain (3.1).

Let us fix (x, r) ∈ X̃. If r > λb we have Mbf(x, r) = 0 and thus we can

suppose r ≤ λb. Given s such that, λ−b−1 ≤ s ≤ λb and s ≥ r, by Lemma 1.1(iii),

there exist Q ∈ Ab
k for some −b ≤ k ≤ b and g ∈ Gb, such that B(x, s) ⊂ g−1Q

and µ(Q) ≤ Cµ(B(x, s)). Then

1

µ(B(x, s))

∫

B(x,s)
|f(y)| dµ(y) ≤ C

µ(g−1Q)

∫

g−1Q
|f(y)| dµ(y) ≤ CMb,g

d f(x, r)

since µ(Q) ≥ µ(B(x, s)) ≥ α(r). Therefore, integrating both sides of the above

inequality on Gb, we have that

1

µ(B(x, s))

∫

B(x,s)
|f(y)| dµ(y) ≤ C

|Gb|

∫

Gb

Mb,g
d f(x, r) dg

and hence we obtain (3.2).

Proof of Theorem 3.1: First we prove the implication (i)⇒(ii). Suppose

that there exists B = B(z, t), 0 < t <∞ such that
∫

B
W 1−p′(x) dµ(x) = ∞ .
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Then W−1χB 6∈ Lp
′
(W ) and thus, by Lemma 2.1, there exists a positive function

f ∈ Lp(W ) such that ∫

B
f(x) dµ(x) = ∞ .

Therefore given (x, r) ∈ X̃, there exists s ≥ r such that B ⊂ B(x, s) and hence

Mf(x, r) = ∞. Since β is a positive measure, we have a contradiction of the

condition (i). Thus ∫

B
W 1−p′(x) dµ(x) < ∞ .

To obtain the inequality in (ii) it is sufficient to choose f(x) = W 1−p′(x)χB(x)

in the hypothesis.

Let us prove (ii)⇒(i). We fix a positive integer b, g ∈ G and Q ∈ Ab
k, −b ≤

k ≤ b. Then, by Lemma 1.1(i) there exist xQ ∈ Q such that Q ⊂ B(xQ, λ
k+1)

and µ(B(xQ, λ
k+1)) ≤ Cµ(Q). We write B = B(g−1xQ, λ

k+1), Q′ = g−1Q and

ν =W 1−p′ . Since ν ∈ A∞(X), there exist positive constants Cν and δ, depending

only on ν, such that

µ(Q′)

µ(B)
≤ Cν

(
ν(Q′)

ν(B)

)δ
.

Therefore

ν(B) ≤ C1/δ
ν

(
µ(B)

µ(Q′)

)1/δ

ν(Q′) ≤ C1 ν(Q
′) .

Then by the hypothesis and (3.1) we obtain

∫

Q̃′

[
Mb,g

d (W 1−p′χQ′)(x, r)
]p
dβ(x, r) ≤ C2

∫

B̃

[
M(νχB)(x, r)

]p
dβ(x, r)

≤ C3 ν(B)

≤ C4

∫

Q′
W 1−p′(x) dµ(x) .

Since the constant C4 depends only on p, W and β, then by Theorem 2.1 and

Remark 2.1, there exists a constant C5 such that,

∫

X̃
[Mb,g

d f(x, r)]p dβ(x, r) ≤ C5

∫

X
|f(x)|pW (x) dµ(x)(3.3)

for all f ∈ Lp(W ) and all g ∈ G. Then, it follows by (3.2), (3.3) and by Jensen’s

inequality that

∫

X̃
[Mbf(x, r)]p dβ(x, r) ≤

∫

X̃

(
C6

|Gb|

∫

Gb

Mb,g
d f(x, r) dg

)p
dβ(x, r)
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≤ Cp
6

∫

Gb

∫

X̃
[Mb,g

d f(x, r)]p dβ(x, r)
dg

|Gb|
≤ Cp

6 C5

∫

X
|f(x)|pW (x) dµ(x) .

The result follows by the Monotone Convergence Theorem.

Remark 3.1. (a) For W ≡ 1, the condition (ii) of Theorem 3.1 is given by
∫

B̃

[
M(χB)(x, r)

]p
dβ(x, r) ≤ C µ(B)(3.4)

for all balls B. Let us fix B = B(z, t), 0 < t < ∞. Then, it follows as in the

proof of inequality (3.1) of Lemma 3.1 that there exists a constant C > 0 such

that

C ≤M(χB)(x, r) ≤ 1

for all (x, r) ∈ B̃. Therefore, from (3.4) we obtain

Cpβ(B̃) ≤
∫

B̃
[M(χB)(x, r)]

p dβ(x, r) ≤ C µ(B) .

Then, the condition (3.4) implies the condition:

β(B̃) ≤ Cµ(B)(3.5)

for a constant C > 0 and all balls B. But, from the condition (3.5) we obtain
∫

B̃
[M(χB)(x, r)]

p dβ(x, r) ≤ β(B̃) ≤ C µ(B) ,

and therefore the conditions (3.4) and (3.5) are equivalent. The condition (3.5)

is the Carleson condition for the homogeneous space X (see [8]).

(b) Let B = B(z, t), 0 < t <∞ and ν =W 1−p′ . Then

C
ν(B)

µ(B)
≤ M(νχB)(x, r)

for all (x, r) ∈ B̃. Therefore, from the condition (ii) of Theorem 3.1 we obtain

β(B̃)1/p =

(
µ(B)

ν(B)

)[∫

B̃

(
ν(B)

µ(B)

)p
dβ(x, r)

]1/p

≤ C

(
µ(B)

ν(B)

)[∫

B̃
[M(νχB)(x, r)]

p dβ(x, r)

]1/p

≤ C ′
(
µ(B)

ν(B)

)
ν(B)1/p .
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Then, the condition (ii) of Theorem 3.1 implies the condition:

β(B̃)1/p

µ(B)

(∫

B
W 1−p′(x) dµ(x)

)1/p′

≤ C(3.6)

for a constant C > 0 and all balls B. It was proved in Ruiz-Torrea [8] that the

condition (3.6) is a necessary and sufficient condition for M to be a bounded

operator from Lp(X,W (x) dµ(x)) into weak - Lp(X̃, β).

4 – The boundedness of the Poisson integral

Let ξ : [0, π]n−1×[0, 2π]→ Sn be the function defined by ξ(θ) = ξ(θ1, . . . , θn) =

(x1, . . . , xn+1), where

x1 = cos θ1; xi = cos θi

i−1∏

j=1

sin θj , 2 ≤ i ≤ n; xn+1 =
n∏

j=1

sin θj .

We identify Sn×[0, 1] with the ball B = {y ∈ Rn+1 : |y| ≤ 1} using the application
(y, r) 7→ ry. If f is a real and integrable function on Sn we define Mf(y) =

Mf(y′, h(|y|)) for y ∈ B, y 6= 0, y′ = y/|y|.
In Rauch [6] it was proved that

u∗f (y
′) = sup

0≤r<1
|uf (ry′)| ≤ CnMf(y′) , y′ ∈ Sn, f ∈ L1(Sn) .

The inequality in the following lemma generalizes the above inequality.

Lemma 4.1. There exists a constant C > 0 such that, for all real-valued

integrable function f on Sn and all y ∈ B, 0 < |y| < 1, we have

u∗f (y) ≤ CM f(y) .

Proof: We may assume y = r11 = r(1, 0, . . . , 0), 0 ≤ r < 1. Let us denote

θ = (θ1, . . . , θn), θ
′ = (θ2, . . . , θn), ω(θ

′) = sinn−2 θ2 · · · sin θn−1 and

p(θ1, r) = Pr11(ξ(θ)) =
1

ωn

1− r2
(1− 2r cos θ1 + r2)(n+1)/2

.(4.1)

Then

uf (r11) =

∫ π

0
dθ1 · · ·

∫ 2π

0
p(θ1, r) f(ξ(θ)) sin

n−1 θ1 ω(θ
′) dθn .
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If 0 ≤ r ≤ 1/2, we have that p(θ1, r) ≤ 2n+1/ωn and hence

|uf (r11)| ≤
2n+1

ωn

∫

Sn
|f(x)| dσ(x) ≤ 2n+1M f(r11) .

Now, let us suppose 1/2 ≤ r < 1. If m(r) = arccos r(2− r), then, integrating by

parts with respect to θ1, we obtain

Ir =

∣∣∣∣∣

∫

Sn\B(11,h(r))
Pr11(x) f(x) dσ(x)

∣∣∣∣∣

≤ p(π, r)

∫ π

0
dθ1 · · ·

∫ 2π

0
|f(ξ(θ))| sinn−1 θ1 ω(θ′) dθn

+ p(m(r), r)

∫ m(r)

0
dθ1

∫ π

0
dθ2 · · ·

∫ 2π

0
|f(ξ(θ))| sinn−1 θ1 ω(θ′) dθn

+

∫ π

m(r)

∣∣∣∣
∂p(θ1, r)

∂θ1

∣∣∣∣

[∫ θ1

0

(∫ π

0
dθ2 · · ·

∫ 2π

0
|f(ξ(t, θ′))| sinn−1t ω(θ′) dθn

)
dt

]
dθ1

= I1r + I2r + I3r .

We have that

I1r =
1

ωn

1− r
(1 + r)n

∫

Sn
|f(x)| dσ(x) ≤ M f(r11) .

Since
ωn−1
n 2n−1

(1− r)n ≤ σ(B(11, h(r))) ≤ 2n ωn−1
n

(1− r)n

then for 1/2 ≤ r < 1, it follows that

I2r ≤
2

ωn(1− r)n
∫

B(11,h(r))
|f(x)| dσ(x) ≤ 2n+1 ωn−1

nωn
M f(r11) .

Using properties of the Poisson kernel and integration by parts, we obtain

∫ π

0

∣∣∣∣
∂p(θ1, r)

∂θ1

∣∣∣∣

(∫ θ1

0
sinn−1 t dt

)
dθ1 =

1

ωn−1

(
1− 1− r

(1 + r)n

)
≤ 1

ωn−1

and thus

I3r ≤
1

ωn−1
M f(r11) .

Therefore, there exists a constant D > 0, such that

Ir ≤ I1r + I2r + I3r ≤ DMf(r11)
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for all 1/2 ≤ r < 1. Consequently

|uf (r11)| ≤
2

ωn

1

(1− r)n
∫

B(11,h(r))
|f(x)| dσ(x) + Ir

≤ 2n+1 ωn−1
nωn

1

σ(B(11, h(r)))

∫

B(11,h(r))
|f(x)| dσ(x) + DMf(r11)

≤ 2n+1 ωn−1
nωn

Mf(r11) +DMf(r11) = CMf(r11) .

Proof of Theorem 4.1: The Proof of (i)⇒(ii) is exactly as the proof of

(i)⇒(ii) in Theorem 2.1 and Theorem 3.1.

Let us prove (ii)⇒(i). Let f be a real-valued positive integrable function on

Sn. There exists a constant C > 0, depending only on n, such that

Pry′(x) ≥
C

σ(B(y′, h(r)))

for all 0 ≤ r < 1, y′ ∈ Sn and x ∈ B(y′, h(r)). Therefore

uf (ry
′) ≥ C

σ(B(y′, h(r)))

∫

B(y′,h(r))
f(x) dσ(x)

and hence

u∗f (ry
′) ≥ CMf(ry′)(4.2)

Consider the function k : B → S̃n defined by k(x) = (x/|x|, h(|x|)), x 6= 0,

k(0) = (11, 0), 11 = (1, 0, . . . , 0). Then applying Theorem 3.1 to X = Sn and to

the image measure β of ν by k, β(A) = ν(k−1(A)) and using the inequalities (4.1)

and (4.2), we obtain the wanted proof.
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