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WEIGHTED NORM INEQUALITY
FOR THE POISSON INTEGRAL ON THE SPHERE

BENJAMIN BORDIN, TARA A.A. FERNANDES and SERGIO A. TOZONI

Abstract: We obtain, for each p, 1 < p < 0o, a necessary and sufficient condition
for the Poisson integral of functions defined on the sphere S™, to be bounded from a
weighted space LP(S™, Wdo) into a space LP(B, ), where o is the Lebesgue measure on

S™ and v is a positive measure on the unit ball B of R?t1,

Introduction

In this paper we consider a homogeneous space X = G/H where G is a locally
compact Hausdorff topological group and H is a compact subgroup of G which is
provided with a quasi-distance d and with a measure p induced on X by a Haar
measure on the topological group G. If x € X and r > 0, B(z,r) will denote the
ball {y € X : d(z,y) < r} in X. We also write X = X x [0, 00) and if B = B(x,r)
we write B = B(z,r) x [0,r].

We define the maximal operator M by

1
Mf(x,r) = sup —————
1) = S B )
for all real-valued locally integrable function f on X and (z,7) € X. Ifr=0
the above supremum is taken over all s > 0 and M f(z,0) = f*(x) is the Hardy-
Littlewood maximal function.

/ |f (W)l dp(y)
B(z,s)

A weight is a positive locally integrable function W (z) on X and we will write
W(A) = [, Wdp. We say that W is a weight in the class Ao (X) if there exist
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positive constants Cyy and ¢ such that

u) <oy (WD)
1(B) W(B)
for all ball B = B(z,r), x € X, r > 0, and all Borel subsets A of B. We observe
that the above inequality is equivalent to a similar one where p appears instead of
W and conversely (see [5, 1]). We write LP(W) = LP(X, W (z) du(z)), 1 <p<oo.
Let 1 < p < oo, p’ such that 1/p+ 1/p’ = 1, let 8 be a positive measure
on the Borel subsets of X and W a weight on X. In Section 2 we introduce a
maximal operator of dyadic type ./\/lg, where b is an integer, using partitions of
dyadic type for the homogeneous space X introduced in Section 1.
In Section 3 we prove the following theorem.

Theorem 3.1. Let G be a compact or an Abelian group, let 1 < p < o0
and let W be a weight on X such that W' € A, (X). Then the following
conditions are equivalent:

(i) There exists a constant C > 0, such that, for all f € LP(W),
[ Mi@ P s < € [ 17@P W) du)
X X

(ii) There exists a constant C > 0, such that, for all balls B = B(z,t),
0<1t < o0,

LMV )@ 0P dste ) < € [ WP @) dute) < oo
B B

The above result for X = R"™ was proved in Ruiz-Torrea [7]. A similar result
for the fractional maximal operator was obtained in Bernardis-Salinas [1]. The
condition (ii) of Theorem 3.1 implies the condition

B(B)?

u(B) (/B W (@) dﬂ(l‘)>1/p/ < C < oo

for all balls B. It was proved in Ruiz-Torrea [8] that the above condition

is a necessary and sufficient condition for M to be a bounded operator from
LP(X, W (z)du(z)) into weak —LP(X, 3). In the particular case W (z) = 1, the
condition (ii) of Theorem 3.1 is equivalent to the Carleson’s condition for the
homogeneous space X:

B(B) < C u(B)

for all balls B and for a constant C' > 0.
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Now, if z € R™! we write |z| = (z - 2)"/? and d(x,y) = |= — y|, where z - y
is the usual scalar product of z and y in R"*!. Here S™ will denote the unit
n-sphere {y € R""! : |y| = 1} in R"™! o the normalized Lebesgue measure on
S™ and h: [1 —/2,1] — [0,2] will be the function defined by h(r) = v2(1 — 7).

The Poisson kernel for the sphere S™ is given by

1 1-r?

Pry(z) = wn ry — a1

for x,y € S™ and 0 < r < 1, where w, is the area of the sphere S™. For a
real-valued integrable function f we denote by w¢(ry) the Poisson integral

us(ry) = [ Pof@)f(a) dota)
and we define the maximal function u} by

up(ry) = sup |ug(sy)], 0<r<1, yes".
0<s<r

If B is the open ball B(z,t) ={x € S": |z —z| <t}, 0 <t <2, we define
B={sz: h'(t)<s<1l,ze€B} if 0<t<V2;
B={sx:0<s<1, x€B} if Voa<t<2.

We observe that B is a truncated cone in the ball B = {y € R**! : |y| < 1} in
R if 0 < ¢ < /2 and a cone if V2 <t < 2.
In Section 4 we prove the following result.

Theorem 4.1. Let 1 < p < oo, let W be a weight on S™ such that
Wi ¢ A (S™) and let v be a Borel positive measure on S™. Then the following
conditions are equivalent:

(i) There exists a constant C' > 0, such that, for all f € LP(W),
Lriwrae) < ¢ [ @ W) do) .

(ii) There exists a constant C > 0, such that, for all balls B = B(z,t),
0<t<2,

Ll @ dvty) < € [ W @) do(@) < o

We point out that the Theorem 4.1 for W = 1 and n = 1 was proved in
Carleson [2].
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1 — Preliminaries

In this section we introduce some notations, definitions and basic facts.

Let G be a locally compact Hausdorff topological group with unit element e,
H be a compact subgroup and 7 : G — G/H the canonical map. Let dg denote a
left Haar measure on GG, which we assume to be normalized in the case of G to be
compact. If A is a Borel subset of G we will denote by |A| the Haar measure of A.
The homogeneous space X = G/H is the set of all left cosets 7(g) = gH, g € G,

provided with the quotient topology. The Haar measure dg induces a measure u
on the Borel o-field on X. For f € L1(X),

J 1@ du@ = [ rom(g)ds.

We observe that the group G acts transitively on X by the map (g, w(h)) —
grm(h) = w(gh), that is, for all x,y € X, there exists g € G such that gr = y. We
also observe that the measure p on X is invariable on the action of G, that is, if
feLYX),geGand R,f(z) = f(g7'z), then

/X () du(z) = /X Ryf(z) dulz) .

Definition 1.1. A quasi-distance on X is a map d : X x X — [0, 00) satis-
fying:
d(xz,y) = 0 if and only if z = y;
d(z,y) = d(y,z) for all z,y € X;
d(gz,gy) = d(z,y) for all g € G, z,y € X;

there exists a constant K > 1 such that, for all z,y,z € X,

d(x,y) < Kld(z, 2) + d(z,9)] ;

(v) the balls B(z,r) = {y € X : d(z,y) <r}, z € X, r > 0, are relatively
compact and measurable, and the balls B(1,r), r > 0, form a basis of
neighborhoods of 1 = 7(e);

(vi) there exists a constant A > 1 such that, for all » > 0 and =z € X,

u(B(x,2r)) < Au(Ba,r)) . o
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In this paper X will denote a homogeneous space provided with a quasi-
distance d.

Given a quasi-distance d on X, there exists a distance p on X and a positive
real number «y such that d is equivalent to p? (see [5]). Therefore the family of
d-balls is equivalent to the family of p?-balls and p7-balls are open sets.

It follows by Definition 1.1(iii) that B(gz,r) = gB(x,r) for all ¢ € G,
x € X and r > 0, and hence u(B(gx,r)) = wu(B(z,r)). Thus we can write
X =U;>19jB(z,7) where (g;) is a sequence of elements of G and consequently
w(B(z,7)) > 0. In particular, X is separable.

Lemma 1.1. Let b be a positive integer and let A = 8K®. Then for each
integer k, —b < k < b, there exist an enumerable Borel partition AZ of X and a
positive constant C depending only on X, such that:

(i) forall Q € .Ai, —b < k < b, there exists xq € () such that
B(zg,\*) € Q C B(zg, \*™)

and
p(B(zg, \*)) < Cu(@) ;

(ii) if b <k <b, Q1 € A}, Q2 € A} and Q1 N Q2 # 0, then Q2 C Q1,
and

0 < u(@1) < Cu(Q2) ;

(iii) for all x € X and r, A"t < r < A, there exist Q € A% for some
~b <k <bandg e G such that d(gz,z) < N1 B(z,r) C gQ and

Q) < Cu(B(z,7)) .

Proof: The properties (i) and (ii) follow by Lemma 3.21, p.852 of [9] and
by Definition 1.1.

Let us prove (iii). Given z € X and A0l < < AP let —b < k < b such that
M=l < < A*. There exists an unique Q € AZ such that x € (). Consider xg as
in (i) and g € G such that 2 = gzg. If a is an integer such that 2471 <\ < 29,
then by (i) we have

B(z,7) C B(gzg, \) C gQ C B(z, \*)
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and hence by Definition 1.1(vi) we have

p(B(xq,2°A"))
Au(B(2q, "))
AQGU(B($7 r)) -

Q)

IN AN IA

We also have that d(gz,z) = d(z,2¢0) < \¥1. a

Let (2, F, v) be a o-finite measure space, let (Fy)xez be an increasing sequence
of sub-o-fields of F, and for each k € Z, consider a real-valued Fj-measurable
function fr. We say that the sequence (fx)rez is a martingale with respect to
the sequence (Fy)kez if, for all k € Z and all A € F, such that v(A) < oo, we

have that
[telav<oo, [ fudv=[ froiav.
A A A

Now, consider a o-finite measure v on the Borel o-field of X and let Fj be the
o-field generated by the partition A®, for —b < k < b, by A", for k > b and by
Ab for k < —b. If f € LY(X,v),

folz) = BfIF)@) = 3 (ﬁ /Q f(y)dV(y)) Yole), —b<k<b;

QeAb

and fr = fp for k > b, fr = f_p for kK < —b, then (fx)rez is a martingale with
respect to the sequence (Fj)rez. We define the maximal operator MY, for all
feLY(X,v) by

b = su r) = su L 14 .
ML) = ELIII Ae) = o o JREGIEZ

where A° = J_j<p<p A

The next result can be found in Dellacherie-Meyer [3], number 40, p. 37.

Theorem 1.1. If1 <p < oo and f € LP(X,v), then

IMEf Il pox ) < PN Fllie(x) -
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2 — A maximal operator of dyadic type

Let b be a fixed positive integer. Given Q € A = |J_y<p<; A%, where A? are
the partitions of X in Lemma 1.1, @ will denote the subset Q x [0, (1(Q))]
of X = X x [0,00), where o : [0,00) — [0, 00) is the function defined by a(r) =
w(B(1,r)), I =x(e).

If f is a real-valued locally integrable function on X, we define, for each
(x,r) € X,

Mifer) = s —cos [ 170 duty)

:L‘EQEAb /’L(Q)
w(Q)Za(r)

If 1(Q) < a(r) for all Q € A® such that x € Q, we define MY f(z,r) = 0.

Lemma 2.1. Let W be a weight and let A be a measurable subset of X.
If1 < p < oo and Wy, ¢ Lp/(W), then there exists a positive function
f € LP(W) such that

[ f@)dnia) = 0.

Proof: Let ¢ be the linear functional on LP(W) given by ¥(g) = [, gdp.
Since W~y & LY (W), it follows by the Riesz representation theorem that
1 is not continuous. Therefore, there exists € > 0, such that, for each positive
integer m, there exists g, € LP(W) such that ||gm || rw) < 27 and [¢(gm)| > €.
We set f,(z) = |g1(x)| + - - + |gm(z)| and then, for all m,k > 1,

| frnsk = Fmlleeowy < Ngmtallorowy + - + lgmakllLeny < 277

Hence (fy,) is a Cauchy sequence in LP(W) and therefore there exists f € LP(W)
such that f,, — f in LP(W). On the other hand

O(fm) = (g + -+ [U(gm)| = me .

But f, T f a.e. and thus by the monotone convergence theorem we obtain

[ £ = i (5 = o0

Theorem 2.1. Given a weight W on X, a positive measure 3 on )N(, and
1 < p < o0, the following conditions are equivalent:
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(i) There exists a constant C' > 0, such that, for all f € LP(W) and all
positive integer b,

JME )P dBe,r) < € [ 17@)P W) duta)
X X

(ii) There exists a constant C' > 0, such that, for all Q € A" and all positive
integer b,

Jo M ) ] dBter) < € [ W ) duta) < o0

Proof: The proof of (i)=(ii) is exactly as the proof of (i)=-(ii) in Theorem
3.1.
Proof of (ii)=-(i): Let us fix f € LP(W) and for each k € Z, let Q, be the set

Q= {(x,r) e X: MYf(x,r) > Qk} :

For each k € Z, we denote by CJ the family formed by all Q € A? such that

1 )
e = /Q F@)] duy) > 2* .

Since for every Q € A%, —b < k < b, there exists Q' € Az_ﬂ such that Q C Q’,
then every element ) € C} is contained in a maximal element Q' € C2. We
denote by C the family {Q;C : j € Ji} formed by all maximal elements Q € C}.
Since Ai is a partition of X and all elements of C} are maximal, we can conclude
that the sets f,j € Ji, are pairwise disjoint. Therefore the sets @f, 7 € Jg, are
also pairwise disjoint and,

Q= QY.

JjE€Jk

Now, for each k € Z and each j € J, let
B} = QF\ Qyr -

Then the sets EJ’“ and E! are disjoint for (k,j) # (h,4) and

{@r): Mif@,r) >0} = U@\ %) = U U EBF

kEZ kEZ jeJy,
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Therefore

Jiise P aste.r) = 3 [ (Mif(enp date.n
< 2”26 (&) (25

k.j
2y AE) ( (gk) L. |f<x>|du<:c>) .

Now, we introduce the following notations:

(2.1)

IN

V@) =W @), vla) = [ via)data)

v(OFY\ P . p
Vg = 5(Ejk) (uif}%) sy Gkg = <y(22k) /Qk |ZE£;| v(x) du(x)) ,

Y:{(k:,j): keZ, jeJk}, F()\):{(k,j)eY: gk7j>)\}.

Let v be the measure on Y such that y({(k,7)}) = 7%, and let g be the function
defined on Y by ¢((k,7)) = gk ;. We have that

Vi,j Gkj = ﬂ(Ek)< (;k)/ |f ($)|dﬂ($)>

and hence it follows by (2.1) that

/),Z[Mi’zf(x,r)]”dﬁ(xw) < 23 v, 0y
k,j

=2 [Tyro)ax
- 2P/0m< > ’m) dA

(k,g)€r(N)

[e'e] k p
(2.2) = 2P/0 > / < Eg%) dB(z,r) dX\ .

(k,J)ET(N)

For each A\ > 0, let {Q? : i € I\} be the family formed by all maximal elements
of the family

ot waeront = {5 b [ e > )




258 BENJAMIN BORDIN, IARA FERNANDES and SERGIO TOZONI

If QF € Q} and (z,r) € B}, then x € Qf, u(Q}) > a(r) and thus

b B v(QN@Y _ v(Q))
Malvxg)mr) = swp @) 2 @)

n(Q)=a(r)
Therefore, if Qf C Qf‘ we obtain
ky\ P
ey (Migki) alar) < [ [Mixg) @] st
j J j

Taking into account that the sets Ejk are disjoint, it follows from (2.2), (2.3) and
by the hypothesis that

/)? MO f ()P dB(w,r) < 2P / DY / (x| dBa.r)

i€l (kg)ED(N)

Qkca}
< 2p/ ZI:/ Mb( VXQ)\ x r)} dp(xz,r)
x5 [
(2.4) :C2P/0°Ou(( U Q) n(z) .
k,j)ET(A

It follows by the definition of the maximal operator M? in Section 1 and by the
definition of I'(A) that

(2.5) U @fF c {:): eX: M (@) (z) > /\1/”}.

(k.3)€T(A)

Then, by (2.4), (2.5) and Theorem 1.1,

A,[Mgf(x,r)]pdﬁ(x,r) < Ccor /OOOV ({m (Mg (’%) (x))p> A}) i
= o2 [ (w (L) @) v dute)
f

vy [ @D
CrY [ @ dn)

= CPE) [ If@)FW@) dala)

IN



THE POISSON INTEGRAL ON THE SPHERE 259

Remark 2.1. Let us fix g € G and let g7t AL = {g71Q : Q € AY}, g1 AP =
{g7'Q : Q € A’}. Then for each —b < k < b, g*IAz is a partition of X and
Lemma 1.1 and Theorem 1.1 in Section 1 also hold, with the same constants,
when we change .AZ for g_lAZ. If f is a real-valued locally integrable function
on X, we define

MBI () = sup <;%éu@nw@y

zGQGgilAb lu
n(Q)=a(r)

Then
ME(Ryf)(g,7) = MY f(x,7)

where R, f(z) = f(g'z). The Theorem 2.1 also hold, with the same proof, when
we change the operator M} for ./\/lg’g and the family A® for g=1 A% o

3 — The boundedness of the operator M

Given a positive integer b and a real-valued locally integrable function f on
X, we define for (z,7) € X,

Mofr) = s [ () daty)
B(z,s)

max{A\~b=1 r}<s<Ab M(B(x7 8))

We define M f(z,7) = 0 if r > A\’ and we observe that M°f(z,r) T Mf(x,r) if
b1 oo forall (z,r) € X.
Let us denote

Gb:{gEG: d(gz,z) < X for aHSUEX} :

If d(gl, 1) = d(gz,z) for all z € X and g € G, in particular if G is an Abelian
group, then
Gy={geG: dgn,1) <N},

and hence G} is relatively compact in G and 0 < |Gj| < 0o (see [4]).

Lemma 3.1. Let b be a positive integer, g € G, let MZ’g be the maximal
operator defined in Remark 2.1, let f be a real-valued locally integrable function
on X and let (xz,r) € X. Then

(3.1) MZ’g (x,r) < CMf(z,7) .
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If G is a compact or an Abelian group, then
C
(3.2) M) < o /G M f(x,r) dg .
b

The constants C' in (3.1) and in (3.2) depend only on X and if X is compact we
can change G, for G.

Proof: Let us fix (z,7) € X and g € G. If u(Q) < a(r) for all Q € A® such
that € ¢g~'Q, we have Mg’gf(x,r) = 0. Thus to prove (3.1), it is enough to
consider Q € AY, —b < k < b, such that € ¢7'Q and u(Q) > a(r). By Lemma
1.1(i) there exist g € Q such that Q C B(zg, \*'1) and p(B(zq, \¥t1)) <
Cu(Q). For t = 2K\*! we have B(g~'zg, \¥™) C B(x,t) and hence

a(t) = p(B(z, 1)) > p(B(g~ g, A*)) > w(@) > alr) .
If 2971 < K < 2% it follows by Definition 1.1(vi) that
u(B(z,t)) < A" pu(B(ag, A")) < A Cu(g™'Q) .

Therefore

1

17'Q) /ng [f@)ldu(y) <

and hence we obtain (3.1).

Let us fix (z,7) € X. If r > AP we have MPf(x,7) = 0 and thus we can
suppose r < A’. Given s such that, A\™°~! < s < A’ and s > r, by Lemma 1.1(iii),
there exist @ € A% for some —b < k < b and g € Gy, such that B(x,s) C g~'Q
and 1(Q) < Cu(B(z,s)). Then

C

1 / b
Ty F)ldp(y Si/ fWlduly) < C MG f(z,r

HB ) Jiga TN WO = g71G) Jyag MW ) = C M er
since pu(Q) > u(B(z,s)) > a(r). Therefore, integrating both sides of the above
inequality on G}, we have that

1 c oY
HTT) o O dn) < o [ MG sar) dy

and hence we obtain (3.2). u

Aa+1C

W(B(z, 1) /B@,t) |f(y)| du(y) < ATLOMS(2,r)

Proof of Theorem 3.1: First we prove the implication (i)=-(ii). Suppose
that there exists B = B(z,t), 0 < t < oo such that

/ WP (@) du(z) = oo .
B
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Then W lyp ¢ LPI(W) and thus, by Lemma 2.1, there exists a positive function
f € LP(W) such that

[ J@)dnia) = oo

Therefore given (z,7) € X, there exists s > r such that B C B(xz, s) and hence
Mf(x,r) = co. Since (3 is a positive measure, we have a contradiction of the
condition (i). Thus

/ WP (2) du(z) < oo .
B

To obtain the inequality in (i) it is sufficient to choose f(x) = W1=P(z) x5(z)
in the hypothesis.
Let us prove (ii)=(i). We fix a positive integer b, g € G and Q € A}, —b <
k < b. Then, by Lemma 1.1(i) there exist zg € @ such that Q@ C B(zg, \**1)
and p(B(zg, \Ft1)) < Ou(Q). We write B = B(g 'z, \F1), @' = ¢7'Q and
v =W Since v € Ay (X), there exist positive constants C,, and , depending
only on v, such that
nQ')
n(B)

v(@’))‘ﬁ

< @(V(B)

Therefore

1(B)
Q')
Then by the hypothesis and (3.1) we obtain

1/6
W(B) < O (H00) v@) < cvi@).

A
S

/~ [MZ,Q(WLP'XQ/)(Q:, r)}p dp(z,r) <

L[Mxs)@.n)]” s, r)
Q B

(B)
Cy /Q W (@) dp(a)

N
&
N

IA

Since the constant C4 depends only on p, W and 3, then by Theorem 2.1 and
Remark 2.1, there exists a constant Cy such that,

33 [IME@nPdsar) < O [ 1F@F W) dut)

for all f € LP(W) and all g € G. Then, it follows by (3.2), (3.3) and by Jensen’s
inequality that

/g (M, )P dB(z,7) < /},{V (éi' [ iy f(x,r)dg)pdﬁ(m,r)
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IN

d
cr /G b JME s asar) e

2 Cs /X F (@) [P W () dp(z) -

IN

The result follows by the Monotone Convergence Theorem. n

Remark 3.1. (a) For W = 1, the condition (ii) of Theorem 3.1 is given by

(3.4) LMo @] ase.n) < cum)

B

for all balls B. Let us fix B = B(z,t), 0 <t < co. Then, it follows as in the
proof of inequality (3.1) of Lemma 3.1 that there exists a constant C' > 0 such
that

C< M(XB)(Qf,T’) <1

for all (z,7) € B. Therefore, from (3.4) we obtain
C"3(B) < [IM(xs)(@. )’ dB(a.r) < Cu(B).
Then, the condition (3.4) implies the condition:
(35) B(B) < Cp(B)
for a constant C' > 0 and all balls B. But, from the condition (3.5) we obtain
[ M) @) ds(a,r) < B(B) < Cu(B).

and therefore the conditions (3.4) and (3.5) are equivalent. The condition (3.5)
is the Carleson condition for the homogeneous space X (see [8]).

(b) Let B = B(z,t), 0 <t < oo and v = W', Then

< M(vxg)(z,r)

for all (z,r) € B. Therefore, from the condition (ii) of Theorem 3.1 we obtain

B(B)VP = (u(B)> /g(:g;ydﬁ(%ﬂ} 1/p

v(B)
< o (MB) [ [imonsya i asie.n)

 (42) s

IA
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Then, the condition (ii) of Theorem 3.1 implies the condition:
BB

u(B) (/B W (@) dﬂ(w))l/plg c

for a constant C' > 0 and all balls B. It was proved in Ruiz-Torrea [8] that the

condition (3.6) is a necessary and sufficient condition for M to be a bounded
operator from LP(X, W (z)du(z)) into weak - LP(X, 3). o

(3.6)

4 — The boundedness of the Poisson integral

Let ¢ : [0, 71" 1 x[0,27] — S™ be the function defined by £(6) = £(04,...,0,) =
(1,...,Zp4+1), where

i—1 n
x1 = cos f1; xi:coseinsinﬁj, 2<i<n;  xTpy1 = Hsian .
j=1 j=1

We identify S™ x [0, 1] with the ball B = {y € R™*!: |y| < 1} using the application
(y,r) — ry. If fis a real and integrable function on S™ we define Mf(y) =

My h(lyl)) for y € B, y #0, y' = y/lyl.
In Rauch [6] it was proved that

wi(y') = sup |up(ry)| < Co Mf(y'), o €8", felL'(s").

0<r<1

The inequality in the following lemma generalizes the above inequality.

Lemma 4.1. There exists a constant C > 0 such that, for all real-valued
integrable function f on S™ and ally € B, 0 < |y| < 1, we have

up(y) < CMf(y) .

Proof: We may assume y = r1l = r(1,0,...,0), 0 <r < 1. Let us denote
0=01,...,00), 0 = (0a,...,0,), w(@)=sin""20---sinh,  and

W) p(Onr) = Paed) = - Lo

wn (1 —2rcosfy +r2)nt+h)/2 "

Then
27
0

wp(rl) :/(:del / (01, 7) F(£(0)) sin™ 6, w(6') dby, .
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If 0 < r < 1/2, we have that p(f1,r) < 2""!/w, and hence

2n+1

urG0)| < =— [ @) dofa) < 2 M f(0)

Wn

Now, let us suppose 1/2 < r < 1. If m(r) = arccosr(2 — r), then, integrating by
parts with respect to 61, we obtain

I, = Py (x) f(x) do(x)

/S"\B(]l,h(r))
™ 2m

< plmr) [(doy o [ 1FEO)] st 0y w(t)) db,
0 0

m(r) ™ T
+ pm(r),r) /0 o /O by - /0 7)) s 0y w(@) do,

—I-/mﬂ(r) op(61,7) l/:l(/oﬂdezﬂ'/()2ﬂ|f(§(t,9'))|51nn_lt w(®) dGn)dt] a0,

= I} 4+ 12410

00,

‘We have that

1 1—7r -
B = iy Jo F@ldote) < M pen)
Since )
Yl (1 ) < o(B(L, () < L1 )

n2n-1 - n

then for 1/2 <r < 1, it follows that

2 2t g ——

B<——— [ f@lde(e) £ TR fG)
B(1L,h(r))

T wp(l—r)n nwy

Using properties of the Poisson kernel and integration by parts, we obtain

s 0 _
/ Op(0y,7) /lsinn’ltdt T — (1—1 d ) <1
0 891 0 Wn—1 (1 + T)” Wn—1
and thus 1
IE’ < ﬂf(r]l) .
Wn—1

Therefore, there exists a constant D > 0, such that

I, < I} 4+ 12+ 12 < DMf(rl)
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for all 1/2 <r < 1. Consequently

2 1
gD g [ M@ o) + 1
2ntl w1 1 _
= STELATT Joany N (@) + DHAC)
n+1
< %Mf(r]l)JrDMf(r]l) = CMf(rl) . u

Proof of Theorem 4.1: The Proof of (i)=-(ii) is exactly as the proof of
(i)=(ii) in Theorem 2.1 and Theorem 3.1.

Let us prove (ii)=(i). Let f be a real-valued positive integrable function on
S™. There exists a constant C' > 0, depending only on n, such that

¢
a(B(y',h(r)))
forall0 <r <1, y € S"and x € B(y/, h(r)). Therefore

! L X o\
W) 2 S Ee oo (@ 4@

P'ry’ («T) >

and hence

(4.2) uy(ry') > CMf(ry)

Consider the function k: B — S” defined by k(z) = (z/|z],h(|z|)), = # 0,
k(0) = (1,0), 1 = (1,0,...,0). Then applying Theorem 3.1 to X = S™ and to
the image measure 3 of v by k, 3(A) = v(k~1(A)) and using the inequalities (4.1)
and (4.2), we obtain the wanted proof. m
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