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ON THE RIGIDITY OF HORIZONTAL SLICES
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Abstract: In this paper, we proved a rigidity theorem of the Hodge metric for

concave horizontal slices and a local rigidity theorem for the monodromy representation.

I – Introduction

Let (X,ω) be a polarized simply connected Calabi–Yau manifold. That is,

X is an n-dimensional compact Kähler manifold with zero first Chern class and

[ω] ∈ H2(X,Z) is a Kähler metric. By the famous theorem of Yau [12], there is

a Kähler metric on X in the same cohomological class of [ω] such that its Ricci

curvature is zero.

Let Θ be the holomorphic tangent bundle of X. In [9], Tian proved that the

universal deformation space of the complex structure is smooth. The complex

dimension of the universal deformation space is dimH1(X,Θ). In other words,

there are no obstructions towards the deformation of the complex structure of

Calabi–Yau manifold. A good reference for the proof is in [3].

Take n = 3 for example. A natural question is that to what extent the

Hodge structure, namely, the decomposition of H3(X,C), into the sum of Hp,q’s

(p+ q = 3), determines a Calabi–Yau threefold. Let’s recall the concept of clas-

sifying space in [4], which is a generalization of classical period domain. In the

case of Calabi–Yau threefold, the classifying space D is defined as the set of the
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filtrations of H = H3(X,C) by

0 ⊂ F 3 ⊂ F 2 ⊂ F 1 ⊂ H

with dimF 3 = 1, dimF 2 = n = dimH1(X,Θ), dimF 1 = 2n+ 1, and Hp,q =

F p∩F q
, H = F p⊕F 4−p (p+q = 3) together with a quadratic form Q such that

1) iQ(x, x) < 0 if 0 6= x ∈ H3,0,

2) iQ(x, x) > 0 if 0 6= x ∈ H2,1,

where i =
√
−1.

There is a natural map from the universal deformation space into the classify-

ing space. Intuitively, this is because D is just the set of all the possible “Hodge

decompositions”. Such a map is called a period map. In the case of Calabi–Yau,

the map is a holomorphic immersion. Thus in that case, the infinitesimal Torelli

theorem is valid [4].

It can be seen that D fibers over a symmetric space D1. But such a symmetric

space needs not to be Hermitian. Even D1 is Hermitian symmetric, D still needs

not fiber holomorphically over D1. Although in that case, there is a complex

structure on D such that D becomes homogeneous Kählerian [8].

Griffiths introduced the concept of horizontal distribution in [4]. He proved

that the image of the universal deformation space, via the period map to the

classifying space, is an integral submanifold of the horizontal distribution. A

horizontal slice is an integral complex submanifold of the horizontal distribution.

In this terminology, the universal deformation space is a horizontal slice of the

classifying space. The horizontal distribution is a highly nonintegrable system.

Because of the above result of Griffiths, it is interesting to study horizontal

slices of a classifying space. The local properties of horizontal slices have been

studied in [6] and [5].

In [6], we introduced a new Kähler metric on a horizontal slice U . We call

such a metric the Hodge metric. The main result in [6] is that (see also [5] for

the case n = 3)

Theorem. Let U → D be a horizontal slice. Then the restriction of the

natural invariant Hermitian metric of D to U is actually Kählerian. We call such

a Kähler metric the Hodge metric of U . The holomorphic bisectional curvature

of the Hodge metric is nonpositive. The Ricci curvature of the Hodge metric is

negative away from zero.

In this paper, we study some global rigidity properties of horizontal slices. In

order to do that, we observe that the universal deformation space U carries less
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global information than the moduli spaceM, which is essentially the quotient of

the universal deformation space by a discrete subgroup Γ of Aut(U). The group

Γ is called the monodromy group of the moduli space. The volume of the space

Γ\U is finite with respect to the Hodge metric. This is the consequence of the

theorem of Viehweg [11], the theorem of Tian [10] and the above theorem.

For a horizontal slice U of D, if Γ is a discrete subgroup of U such that the

volume of Γ\U is finite, then a general conjecture is that whether Γ completely

determines the space Γ\U . In the case where n=2, this is correct by the super-

rigidity theorem of Margulis [7]. In general, this is a very difficult problem.

We consider the following weaker rigidity problem: to what extent the complex

structure of the moduli space determines the metrics on the moduli space and

the monodromy representation? To this problem, we have the following result in

this paper.

First, we proved that, if Γ\U is a complete concave manifold, then the com-

plex structure of Γ\U completely determines the Hodge metric of Γ\U . More

precisely, we proved that if for some discrete group Γ of Aut(U), Γ\U is a con-

cave complete complex manifold, then the Hodge metric defined on U is intrinsic.

In other words, the Hodge metric doesn’t depend on the choice of the holomorphic

immersion U → D from which it becomes a horizontal slice.

Theorem 1.1. If the moduli space Γ\U is a concave manifold. Then the

Hodge metric is intrinsically defined.

The second main result of this paper is the local rigidity of the monodromy

representation. The result is in Theorem 5.1. We combine the superrigidity

theorem of Margulis [7] together with some ideas of Frankel [2] in the proof of

the theorem.

Theorem 1.2. (For definition of the notations, see §5) Let Γ\U be of finite

Hodge volume. Suppose further that G0 is semisimple and G0/K0 is a Hermitian

symmetric space but is not a complex ball, where K0 is the maximum compact

subgroup of G0. Then the representation Γ→ G is locally rigid.

The motivation behind the above results is that in the case of K-3 surfaces,

the moduli space is a local symmetric space of rank 2. But even in the case of

Calabi–Yau threefold, little has been known about the moduli space. We wish

to involve certain kinds of metrics (Weil–Petersson metric, Hodge metric, etc)

in the study of the moduli space of Calabi–Yau manifolds. The metrics have

applications in Mirror Symmetry of Calabi–Yau manifolds [13].
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2 – Preliminaries

In this section, we give some definitions and notations which will be used

throughout this paper. Unless otherwise stated, the materials in this section are

from the book of Griffiths [4].

Let X be a compact Kähler manifold. A C∞ form on X decomposes into

(p, q)-components according to the number of dz’s and dz’s. Denoting the C∞

n-forms and the C∞(p, q) forms on X by An(X) and Ap,q(X) respectively, we

have the decomposition

An(X) =
⊕

p+q=n

Ap,q(X) .

The cohomology group is defined as

Hp,q(X) =
{
closed (p, q)-forms

}/{
exact (p, q)-forms

}

=
{
φ ∈ Ap,q(X) | dφ = 0

}/
dAn−1(X) ∩Ap,q(X) .

The following theorem is well known:

Theorem (Hodge Decomposition Theorem). Let X be a compact Kähler

manifold of dimension n. Then the n-th complex de Rham cohomology group of

X can be written as a direct sum

Hn
DR(X,Z)⊗ C = Hn

DR(X,C) =
⊕

p+q=n

Hp,q(X)

such that Hp,q(X) = Hq,p(X).

Remark 2.1. We can define a filtration of Hn
DR(X,C) by

0 ⊂ F n ⊂ Fn−1 ⊂ · · · ⊂ F 1 = H = Hn
DR(X,C)

such that

Hp,q(X) = F p ∩ F q
.

So the set {Hp,q(X)} and {F p} are equivalent in defining the Hodge decomposi-

tion. In the remaining of this paper, we will use both notations interchangeably.
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Definition 2.1. A Hodge structure of weight j, denoted by {HZ , H
p,q}, is

given by a lattice HZ of finite rank together with a decomposition on its com-

plexification H = HZ ⊗ C
H =

⊕

p+q=j

Hp,q

such that

Hp,q = Hq,p .

A polarized algebraic manifold is a pair (X,ω) consisting of an algebraic man-

ifold X together with a Kähler form ω ∈ H2(X,Z). Let

L : Hj(X,C)→ Hj+2(X,C)

be the multiplication by ω, we recall below two fundamental theorems of

Lefschetz:

Theorem (Hard Lefschetz Theorem). On a polarized algebraic manifold

(X,ω) of dimension n,

Lk : Hn−k(X,C)→ Hn+k(X,C)

is an isomorphism for every positive integer k ≤ n.

From the theorem above, we know that

Ln−j : Hj(X,C)→ H2n−j(X,C)

is an isomorphism for j ≥ 0. The primitive cohomology P j(X,C) is defined to

be the kernel of Ln−j+1 on Hj(X,C).

Theorem (Lefschetz Decomposition Theorem). On a polarized algebraic

manifold (X,ω), we have for any integer j the following decomposition

Hj(X,C) =

[n
2
]⊕

k=0

LkP j−2k(X,C) .

It follows that the primitive cohomology groups determine completely the full

complex cohomology.

In this paper we are only interested in the cohomology group Hn
DR(X,C).

Define

HZ = Pn(X,C) ∩Hn(X,Z)

and

Hp,q = Pn(X,C) ∩Hp,q(X) .
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Suppose that Q is the quadric form on Hn
DR(X,C) induced by the cup product

of the cohomology group. Q can be represented by

Q(φ, ψ) = (−1)n(n−1)/2
∫
φ ∧ ψ .

Q is a nondegenerated form, and is skewsymmetric if n is odd and is symmetric

if n is even. It satisfies the two Hodge–Riemannian relations

1) Q(Hp,q, Hp′,q′) = 0 unless p′= n− p, q′= n− q;
2) (

√
−1)p−q Q(φ, φ) > 0 for any nonzero element φ ∈ Hp,q.

Let HZ be a fixed lattice, n an integer, Q a bilinear form on HZ , which

is symmetric if n is even and skewsymmetric if n is odd. And let {hp,q} be a

collection of integers such that p+q = n and
∑
hp,q = rankHZ . Let H=HZ⊗C.

Definition 2.2. A polarized Hodge structure of weight n, denoted by

{HZ , F
p, Q}, is given by a filtration of H = HZ ⊗ C

0 ⊂ F n ⊂ Fn−1 ⊂ · · · ⊂ F 0 ⊂ H

such that

H = F p ⊕ Fn−p+1

together with a bilinear form

Q : HZ ⊗HZ → Z

which is skewsymmetric if n is odd and symmetric if n is even such that it satisfies

the two Hodge–Riemannian relations:

1) Q(F p, Fn−p+1) = 0 unless p′= n− p, q′= n− q;
2) (

√
−1)p−q Q(φ, φ) > 0 if φ ∈ Hp,q and φ 6= 0

where Hp,q is defined by

Hp,q = F p ∩ F q
.

Definition 2.3. With the notations as above, the classifying space D for the

polarized Hodge structure is the set of all the filtration

0 ⊂ F n ⊂ · · · ⊂ F 1 ⊂ H , dimF p = fp

with fp = hn,0+· · ·+hn,n−p on which Q satisfies the Hodge–Riemannian relations

as above.
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D is a complex homogeneous space. Moreover, D can be written as D = G/V

where G is a noncompact semisimple Lie group and V is its compact subgroup.

In general, D is not a homogeneous Kähler manifold.

3 – The canonical map and the horizontal distribution

In this section we study some elementary properties of classifying space and

horizontal slice.

Suppose D = G/V is a classifying space. We fix a point of D, say p, which

can be represented by the subvector spaces of H

0 ⊂ F n ⊂ Fn−1 ⊂ · · · ⊂ F 1 ⊂ H

or the set {
Hp,q | p+ q = n

}

described in the previous section. We define the subspaces of H:

H+ = Hn,0 +Hn−2,2 + · · · ,
H− = Hn−1,1 +Hn−3,3 + · · · .

Suppose K is the subgroup of G such that K leaves H+ invariant. Then we

have

Lemma 3.1. The identity component K0 of K is the maximal connected

compact subgroup of G containing V . In particular, V itself is a compact sub-

group.

Proof: Recall that V ⊂ G ⊂ Hom(HR, HR) is a real subgroup, where

HR = HZ ⊗ R. Without losing generality, we assume V fixes p. Then we have

V F p ⊂ F p

where p = 1, ..., n. This implies that

V F q ⊂ F q

for q = 1, ..., n. So

V Hp,q = V (F p ∩ F q) ⊂ V F p ∩ V F q = Hp,q .

Thus V leaves H+ invariant and thus V ⊂ K.
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In order to prove that K0 is a compact subgroup, we fix some H+, H− ⊂ H.

Note that if 0 6= x ∈ H+, then from the second Hodge–Riemannian relation

(
√
−1)nQ(x, x) > 0 .

So for any norm on H+, there is a c > 0 such that

1

c
‖x‖2 ≥ (

√
−1)nQ(x, x) ≥ c ‖x‖2 .

For the same reason, we have

1

c
‖x‖2 ≥ −(

√
−1)nQ(x, x) ≥ c ‖x‖2

for x ∈ H−.
Let g ∈ K0. For any x, let x = x+ + x− be the decomposition of x into H+

and H− parts. Then

‖gx±‖2 ≤ ±1

c
(
√
−1)nQ(gx±, gx±) = ±1

c
(
√
−1)nQ(x±, x±) ≤ 1

c2
‖x±‖2 .

Thus

‖g‖ ≤ C .

So the norm of the element of K0 is uniformly bounded. Consequently, K0 is

a compact subgroup.

Suppose that K ′⊃K0 is a compact connected subgroup. Suppose k′ is the Lie

algebra of K ′, then if K0 is not maximal, there is a ξ ∈ k′ such that ξ /∈ f0 for the

Lie algebra f0 of K0.

Suppose ξ = ξ1 + ξ2 is the decomposition for which

ξ1 : H
+→ H+, H−→ H− ,

ξ2 : H
+→ H−, H−→ H+ .

Then we have

Lemma 3.2. ξ1, ξ2 ∈ gR for the Lie algebra gR of G.

Proof: First we observe that

Q(H+, H+) = Q(H−, H−) = 0 , n odd ,

Q(H+, H−) = Q(H−, H+) = 0 , n even ,
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by the type consideration. SinceQ is invariant under the action ofG by definition,

we have

Q(ξx, y) +Q(x, ξy) = 0 .

Thus

Q(ξ1x, y) +Q(x, ξ1y) +Q(ξ2x, y) +Q(x, ξ2y) = 0 .

If n is odd then if x ∈ H+, y ∈ H+ or x ∈ H−, y ∈ H− then

Q(ξ1x, y) +Q(x, ξ1y) = 0

so in this case

Q(ξ2x, y) +Q(x, ξ2y) = 0

and if x ∈ H+, y ∈ H− or x ∈ H−, y ∈ H+ then we have

Q(ξ2x, y) +Q(x, ξ2y) = 0

automatically. Thus we concluded

Q(ξ2x, y) +Q(x, ξ2y) = 0

for any x, y ∈ H. So ξ2 ∈ gR and thus ξ1 ∈ gR.

The same is true if n is even.

We define the Weil operator

C : Hp,q → Hp,q , C|Hp,q = (
√
−1)p−q .

Then we have

C|H+ = (
√
−1)n , C|H− = −(

√
−1)n .

Let

Q1(x, y) = Q(Cx, y) .

Then we have

Lemma 3.3. Q1 is an Hermitian inner product.

Proof: Let

x = x1 + x2

be the decomposition of x such that x1 ∈ H+ and x2 ∈ H−.
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If n is odd, then x2 ∈ H+. So Q(x1, x2) = 0; if n is even, then x2 ∈ H−.

So Q(x1, x2) = 0.

If x 6= 0 we have

Q1(x, x) = Q1(x1, x1) +Q1(x2, x2) +Q1(x1, x2) +Q1(x2, x1)

= Q1(x1, x1) +Q1(x2, x2)

= (
√
−1)n

(
Q(x1, x1)−Q(x2, x2)

)
> 0 .

Thus Q1(·, ·) is a Hermitian product on H. Furthermore, it defines an inner

product on HR = HZ ⊗ R.

Now back to the proof of Lemma 3.1, we have

Q1(ξ2x, y) = Q(Cξ2x, y) = −Q(ξ2Cx, y) = Q(Cx, ξ2y) = Q1(x, ξ2y) .

Thus ξ2 is a Hermitian metrics under the metric Q1. Since K ′ is a compact

group, there is a constant C such that

‖ exp(t ξ2)‖ ≤ C < +∞

for all t ∈ R which implies ξ2 = 0.

Lemma 3.4. Let

D1 =
{
Hn,0 +Hn−2,2 + · · · | {Hp,q} ∈ D

}
.

Then the group G acts on D1 transitively with the stable subgroup K0, and D1

is a symmetric space.

Proof: For x, y ∈ D1, let H
p,q
x , Hp,q

y be the corresponding points in D. Since

D is homogeneous, we have a g ∈ G such that

g{Hp,q
x } = Hp,q

y .

So gx = y. This proves that G acts on D1 transitively. By definition, K0 fixes

the H+ of the fixed point p ∈ D. By Lemma 3.1, D1 is a symmetric space.

Definition 3.1. We call the map p

p : G/V → G/K0 , {Hp,q} 7→ Hn,0 +Hn−2,2 + · · ·

the natural projection of the classifying space.
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There are universal holomorphic bundles F n, ..., F 1, H over D, namely we

assign any point p of D the linear space

0 ⊂ F n ⊂ · · · ⊂ F 1 ⊂ H

or in other words, assign every point of D the space H = HZ⊗C, with the Hodge

decomposition

H =
∑

Hp,q .

It is well known that the holomorphic tangent bundle T (D) can be realized

by

T (D) ⊂
⊕

Hom(F p, H/F p) =
⊕

r>0

Hom(Hp,q, Hp−r,q+r)

such that the following compatible condition holds

F p −→ F p−1

↓ ↓
H/F p −→ H/F p−1

We define a subbundle Th(D) called the horizontal bundle of D, by

Th(D) =
{
ξ ∈ T (D) | ξF p ⊂ F p−1

}
.

Th(D) is called the horizontal distribution of D. The properties of the hori-

zontal bundle or the horizontal distribution play an important role in the theory

of moduli space.

Let gR be the Lie algebra of G. Suppose

gR = f0 + p0

is the Cartan decomposition of gR into the compact and noncompact part.

Lemma 3.5. If we identify T0(G) with the Lie algebra gR. Then

E ⊂ p0

where E is the fiber of Th(D) at the original point.

Proof: Suppose

{0 ⊂ fn ⊂ fn−1 ⊂ · · · f1 ⊂ H} or {hp,q}

is the set of subspace representing the point eV of D = G/V . Suppose X ∈ E.
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Then X ∈ E if

X : fk → fk−1 .

Let X = X1 +X2 be the Cartan decomposition with X1 ∈ f0, and X2 ∈ p0. Let

h+ = hn,0 + hn−2,2 + · · ·
h− = hn−1,1 + hn−3,3 + · · ·

be the subspaces of H.

By definition X1 ∈ f0, we see that

X1 : h+→ h+, h−→ h− .

Since X maps fk to fk−1, so does X1. So X1 must leave fk invariant because

X1 sends h+ to h+, and h− to h−.

From the above argument we see that X1 ∈ v, the Lie algebra of V . Thus

the action X on the classifying space is the same as X2. But X2 ∈ p0. This

completes the proof.

On the other hand, ∀h ∈ V, X ∈ E, we have Ad(h)X ∈ E. So there is a

representation

ρ : V → Aut(E), h 7→ Ad(h) .

Suppose T ′ is the homogeneous bundle

T ′ = G×V E

whose local section can be represented as C∞ functions

f : G→ E

which is V equivariant

f(ga) = Ad(a−1) f(g)

for a ∈ V, g ∈ G. Our next lemma is

Lemma 3.6.
T ′ = Th(D) .

Proof: What we are going to prove is that both vector bundles will be

coincided as subbundles of T (D).
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Suppose ξ ∈ T ′gV for g ∈ G where T ′gV is the fiber of T ′ at gV . Then ξ can be

represented as

ξ = (g, ξ1) for ξ1 ∈ E .

So the 1-jet in the ξ direction is (g + ε g ξ1)V for ε small. Such a point is

(g + ε g ξ1) {fp} = (1 + ε g ξ1 g
−1) {F p}

where {F p} = g {fp}.
Suppose ξ2 = g ξ1 g

−1, then

ξ2 F
p ⊂ F p−1 .

Thus ξ2 ∈ (Th)gV (D) and

T ′gV ⊂ (Th)gV (D) .

Thus

T ′ ⊂ Th(D)

and T ′ is the subbundle of Th(D). But since they coincides at the origin, they

are equal.

Corollary 3.1. Suppose Tv(D) is the distribution of the tangent vectors of

the fibers of the natural projection

p : D → G/K

then

Tv(D) ∩ Th(D) = {0} .

Proof:

Tv(D) = G×V v1

where f0 = v + v1 and v1 is the orthonormal complement of the Lie algebra v of

V .

Definition 3.2. Let U be a complex manifold. If U ⊂ D is a complex sub-

manifold such that T (U) ⊂ Th(D)|U . Then we say that U is a horizontal slice.

If

f : U → D

is an immersion and f(U) is a horizontal slice, then we say that (U, f) or U is

a horizontal slice. In a word, a horizontal slice U of D is a complex integral

submanifold of the distribution Th(D).
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Because to become a horizontal slice is a local property, we make the following

definition:

Definition 3.3. Suppose Γ is a discrete subgroup of U and suppose Γ ⊂ G

for D = G/V . Then if U → D is a horizontal slice, we also say that Γ\U is a

horizontal slice.

Corollary 3.2. If f : U → D is a horizontal slice, then

p : U ⊂ D → G/K0

is an immersion, where p : D → G/K0 is the natural projection in Definition 3.1.

4 – A metric rigidity theorem

In this section, we prove that, for concave horizontal slices, the Hodge metric is

intrinsically defined. That is, the Hodge metric does not depend on the immersion

to the classifying space.

To be precise, suppose Γ\U → Γ\D is a horizontal slice. Then we can define

the Hodge metric on Γ\U . But as a complex manifold, the horizontal immersion

Γ\U → Γ\D may not be unique. If a metric defined on Γ\U is independent of

the choice of the immersion, we say such a metric is defined intrinsically.

For the moduli space of a Calabi–Yau threefold, the Hodge metric is defined

intrinsically by the main result in [5]. It is interesting to ask if the property is

true for general horizontal slices.

Definition 4.1. The classifying space D, as a homogeneous complex mani-

fold, has a natural invariant Kähler form ωH . In general, dωH 6= 0. However, if

U → D is a horizontal slice, then dωH = 0 (cf. [6]). The metric ωH |U is called

the Hodge metric.

Definition 4.2. We say a complex manifold M is concave, if there is an

exhaustion function ϕ on M such that the Hessian of ϕ has at least two negative

eigenvalues at each point outside some compact set.

Any pluriharmonic function on a concave manifold is a constant.
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Suppose fi : U → D, i = 1, 2 are two horizontal slices. Suppose we have

Γ ∈ Aut(U),Γ0 ∈ AutD and we have the group homomorphism

ρ : Γ→ Γ0 ,

such that

fi(γx) = ρ(γ) fi(x) , i = 1, 2, γ ∈ Γ, x ∈ U ,

where the action ρ(γ) on D is the left translation.

The main results of this section are the following two theorems:

Theorem 4.1. With the notations as above, suppose that Γ\U has no non-

constant pluriharmonic functions. Then there is an isometry f : f1(U) → f2(U)

such that f ◦ f1 = f2.

Proof of Theorem 4.1: Let D1 = G/K0 be the symmetric space de-

fined in Lemma 3.4. We denote f̃1 : U → G/K0 and f̃2 : U → G/K0 to be the

two natural projections, that is f̃i = p ◦ fi where p is defined in Definition 3.1.

By Corollary 3.2, both maps are immersions. Let

g : U → R , g(x) = d(f1(x), f2(x))

where d(·, ·) is the distance function of G/K0. Thus since G/K0 is a Cartan–

Hardamad manifold, g(x) is smooth if g(x) 6= 0.

Let p ∈ U and X ∈ TpU . Let X1 = (f̃1)∗pX, X2 = (f̃2)∗pX. Let σ be the

geodesic ray starting at p with vector X. i.e.

{
σ′′(t) = 0,

σ(0) = p, σ′(0) = X .

Suppose the smooth function σ(s, t) is defined as follows: for fixed s, σ(s, t) is

the geodesic in G/K connecting f̃1(σ(s)) and f̃2(σ(s)). Furthermore, we assume

that σ(0, t) is normal. i.e. t is the arc length. Define

X̃(s) =
d

ds

∣∣∣∣
s=0

σ(s, t)

be the Jacobi field of the variation. In particular

{
X̃(0) = X1,

X̃(l) = X2 ,
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where l = g(x). Suppose T is the tangent vector of σ(0, t), we have the second

variation formula

XX(g)|p = 〈∇X2
X2, T 〉 − 〈∇X1

X1, T 〉

+

∫ l

0
|∇T X̃|2 −R(T, X̃, T, X̃)− (T 〈X̃, T 〉)2

where ∇ is the connection operator on G/K0 and R(·, ·, ·, ·) is the curvature

tensor.

We also have the first variation formula

Xg = 〈(f̃2)∗X,T 〉 − 〈(f̃1)∗X,T 〉 .

By [6, Theorem 1.1], we know fi (i = 1, 2) are pluriharmonic. That is, we

have the following

∇(f̃i)∗X
(f̃i)∗X +∇(f̃i)∗JX(f̃i)∗ JX + (f̃i)∗ J [X, JX] = 0

for i = 1, 2.

Define

D(X,X) = XXg + (JX) (JX)g + J [X, JX] g .

Using the fact that J is ∇-parallel, we see

D(X,X)g =

∫ l

0
|X̃ ′|2 −R(T, X̃, T, X̃)− (T 〈X̃, T 〉)2

+

∫ l

0
| ˜JX ′|2 −R(T, J̃X, T, J̃X)− (T 〈J̃X, T 〉)2

where J̃X is the Jacobi connecting f̃1(Jσ(t)) and f̃2(Jσ(t)).

Claim: If g(x) 6= 0, then Hessian of g at x is semipositive.

Proof: Let ( ∂
∂z1 , ...,

∂
∂zn ) be the holomorphic normal frame at p ∈ U .

In order to prove g is plurisubharmonic, it suffices to prove that ∂2g
∂zi ∂zi

≥ 0.

But

4
∂2 g

∂zi ∂zi
=

∂2g

∂x2
i

+
∂2g

∂y2
i

= D

(
∂

∂xi
,
∂

∂xi

)
g .

Let X = ∂
∂xi

in the second variation formula. Since the curvature of the

symmetric space is nonpositive,

D

(
∂

∂xi
,
∂

∂xi

)
g ≥

∫ l

0
|X̃ ′|2 − (T 〈X̃, T 〉)2 + |J̃X ′|2 − (T 〈J̃X, T 〉)2
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because the curvature operator is nonpositive. On the other hand

|X ′|2 − (T 〈X̃, T 〉)2 = |X̃ ′− 〈X̃ ′, T 〉T |2 ≥ 0 ,
(4.1)

|JX ′|2 − (T 〈J̃X, T 〉)2 = |J̃X ′− 〈J̃X ′, T 〉T |2 ≥ 0 .

Thus g is plurisubharmonic if g(x) 6= 0.

g2(x) is a smooth function on U . It is easy to see that g2 is a plurisubharmonic

function. But g2 is also Γ-invariant so it descends to a function on Γ\U . Thus

g2 and g must be constant.

Since g is a constant, by Equation (4.1) and the second variational formula,

we have {
X̃ ′− 〈X̃ ′, T 〉T = 0,

R(T, X̃, T, X̃) = 0 .

Moreover, by the first variational formula,

〈X̃, T 〉(0) = 〈X̃, T 〉(l) .

Since X̃ is a Jacobi field, X̃ ′′≡ 0. Furthermore, by the above equations, we have

X̃ ′≡ 0.

This proves that there is an isometry

f̃ f̃1(U)→ f̃2(U) , f̃1(x) 7→ f̃2(x)

which sends f̃1(x) to f̃2(x) and thus we have f̃ ◦ f̃1 = f̃2.

The theorem follows from the fact that fi(U) and f̃i(U) are isometric for

i = 1, 2.

5 – Local rigidity of the group representation

In this section we study the monodromy group representation on a horizontal

slice.

We assume that U is a horizontal slice. Let Γ ⊂ Aut(U) be a discrete group.

Suppose Γ\U is of finite volume with respect to the Hodge metric.

For the sake of simplicity, we assume that Γ is also the subgroup of the left

translation of D = G/V , the classifying space. There is a natural map Γ\U →
Γ\G/K0 where G/K0 is the symmetric space of D = G/V as in Definition 3.1.

Let

G =
{
a ∈ G | a ∈ Aut(U)

}
.
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Let G0 be the identity component of G.
The main theorem of this section is

Theorem 5.1. Let Γ\U be of finite Hodge volume. Suppose further that G0

is semisimple and G0/K0 is a Hermitian symmetric space but is not a complex

ball, where K0 is the maximum compact subgroup of G0. Then the representation

Γ→ G is locally rigid.

By local rigidity we mean that if ρt : Γ→ G is a continuous set of representa-

tions for t ∈ (−ε, ε), then there is an at for any |t| < ε such that ρt = Ad(at) ρ0.

Before proving the rigidity theorem, we make the following assumption.

We postpone the proof of the assumption to the end of this section.

Assumption 5.1. Let K0 be a maximal compact subgroup of G0. Suppose

Γ1 = Γ ∩ G0. We assume that Γ1\ G0/K0 has finite volume with respect to the

standard Hermitian metric on G0/K0. In this case, we will call Γ1 has finite

covolume.

We prove a series of lemmas.

Let

G1 = Γ + G0

be the group generated by Γ and G0 in G.

Let

Γ1 = Γ ∩ G0 .

Lemma 5.1. Let π : U → Γ\U be the projection. Then for any x ∈ U , the

projection of the G0 orbit π(G0x) is a closed, locally connected, properly embed-

ded smooth submanifold of Γ\U .

Proof (cf. [2]): G0x is a closed properly embedded, locally connected smooth

submanifold of U , we claim:

Claim: π−1(π(G0x)) = G1x.

Proof: We know that G ⊂ N(G0), the normalizer of G0 in G. So ∀ ξ ∈ G0,

b ∈ Γ, there is a η ∈ G0 such that b ξ = η b. Thus ∀ g ∈ G1, g = g1g2 where g1 ∈ Γ

and g2 ∈ G0. So

π(gx) = π(g1g2 x) = π(g2x) ∈ π(G0x) .

Thus gx ∈ π−1π(G0x).
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On the other hand, if y ∈ π−1π(G0x), then π(y) ∈ π(G0x), thus by definition,

y ∈ G1x.

Since G1x is a properly embedded, locally connected smooth submanifold of

U and G1x is Γ invariant. The lemma is proved by observing π(G1x) = π(G0x).

In order to prove Theorem 5.1, we use the following famous theorem of Mar-

gulis [7] about the superrigidity of symmetric spaces:

Theorem (Margulis). Suppose that G0 is defined as above. If Γ1 is of finite

covolume, then for any homomorphism

ϕ : Γ1 → Γ1

there is a unique extension

ϕ̃ : G0 → G0

of group homomorphism.

The following lemma is a straightforward consequence of the above theorem

of Margulis.

Lemma 5.2. If x ∈ G0 such that

xy = yx

for all y ∈ Γ1, then x = e.

Proof: Let ϕ : Γ1→ Γ1 by y → xyx−1. Then ϕ has an extension ϕ̃ : G0 → G0.

This extension is unique. So we must have ϕ̃(y) = xyx−1 = y. Since G0 is

semisimple, we have x = e.

Lemma 5.3. Let Γ1 = Γ ∩ G0, then

Out(Γ1)/ Inn(Γ1)

is a finite group.

Here Out(Γ1) denotes the group of isomorphisms of Γ1 and Inn(Γ1) denotes

the group of conjugations of Γ1.

Proof: Let ϕ : Γ1→ Γ1 be an element in Out(Γ1). Since Γ1 has finite

covolume, we know there is a unique extension ϕ̃ : G0 → G0.
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Thus ϕ̃ ∈ Out(G0). Since Out(G0) = Inn(G0) because G0 is semisimple, there

is a b ∈ G0 such that ϕ̃(x) = bxb−1. Define

ϕ̃ : G0/K0 → G0/K0 , aK0 → baK0 .

It is a Γ-equivariant holomorphic map. The lemma then follows from the following

proposition.

Proposition 5.1. Suppose Γ\G/K is of finite volume, then Aut(Γ\G/K) is

a finite group.

Proof: Since Γ\G/K is a Hermitian symmetric space, we know Aut(Γ\G/K)

is the same as Iso(Γ\G/K).

Suppose Iso(Γ\G/K) is not finite. Then we have a sequence of isometries

f1, f2, ... . Let p ∈ Γ\G/K be a fixed point and let V be a normal coordinate

neighborhood of p. The we know that {fi(p)}must be bounded, otherwise there is

a subsequence of fi such that fi(U) will be mutually disjoint. This will contradict

to the fact that Γ\G/K has finite volume, because

vol(Γ\G/K) ≥
∑

vol(fi(U)) = +∞ .

A contradiction. Let q = lim fi(p). For any x ∈ Γ\G/K, if i is large enough such

that d(fi(p), q) < 1, then

d(fi(x), q) ≤ d(fi(x), fi(p)) + 1 = d(x, p) + 1 .

By Ascoli theorem, there is a subsequence of fi such that fi converges to an

f ∈ Iso(Γ\G/K). Thus Iso(Γ\G/K) is not discrete. So there is a holomorphic

vector field X on Γ\G/K.

Suppose X= X i ∂
∂zi in local coordinate, and ‖X‖2 = Gij X

iXj . Suppose the

local coordinate is normal, then

∂k∂l‖X‖2 = RijklX
iX

j
+ ∂kX

i ∂lXi(5.1)

where Rijkl is the curvature tensor of the symmetric space. Thus in particular

∂∂‖X‖2 ≥ 0.

By the theorem of [1], Γ\G/K is a concave manifold. Thus ‖X‖2 is a constant.

On the other hand, from equation (5.1), we have

∆‖X‖2 = Ric(X) + |∇X|2 .

So Ric(X) = 0 and thus X ≡ 0. This is a contradiction.
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From the above proposition, there is an integer n such that an = e for all

a ∈ Out(Γ1)/ Inn(Γ1) .

Let Γ̃ be the subgroup of G1 generated by Γ1 and an where a ∈ Γ. Then we

have an exact sequence

1 → Γ1 → Γ̃ → B̃ → 1(5.2)

where B̃ is the quotient Γ̃/Γ1. For any b∈ Γ̃/Γ1 with b∈ Γ̃, we have bΓ1b
−1⊂Γ1. So

b∈Out(Γ1). But by the definition of Γ̃, b is a trivial element in Out(Γ1)/ Inn(Γ1).

So there is a c ∈ Γ1 such that bc is commutative to Γ1. So there is a homomor-

phism

η : B → Γ̃ , b 7→ b c .

We can thus define a homomorphism

ξ : Γ1× Γ̃/Γ1 → Γ̃

such that

ξ(a, b) = a η(b)

which is an isomorphism. In other words, the exact sequence (5.2) splits.

Lemma 5.4. Let G̃1 = Γ̃ + G0. Then

G̃1 = G0 × B̃ .

Proof: We have

Γ̃ = Γ1 × B̃ .

Define

ϕ : G0×B̃ → G̃1 , ϕ(a, b) = ab .

Then ϕ is an isomorphism.

Thus we know a family of representation of Γ̃ splits to the representation to

the discrete group B̃ and Lie group G0 respectively.

Lemma 5.5. If the representation Γ̃→ G̃1 is locally rigid, then the represen-

tation Γ→ G̃ is also locally rigid.
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Proof: Let ϕt : Γ → G̃ be a local family of representations, t ∈ (−ε, ε).
Then we see that ϕt restricts to a trivial family of representations on Γ̃. That is,

there are at ∈ G̃1 ⊂ G̃ with a0 = e such that ϕt(x) = at ϕ0(x) a
−1
t for x ∈ Γ̃. Let

ξt = Ad(a−1
t )ϕt. Then we know ξt(x) = ϕ0(x) for all x ∈ Γ̃. Now if x ∈ Γ, then

xn ∈ Γ̃. So we have (ξt(x))
n = (ϕ0(x))

n and ξ0(x) = ϕ0(x). Thus ξt(x) = ϕ0(x).

In the rest of this section, we prove Assumption 5.1.

Lemma 5.6. G1 is a closed subgroup of G.

Proof: We know that G1 ⊂ G. Let xm ∈ G1 such that xm → x for x ∈ G.

Then x ∈ Aut(M) so x ∈ G. Thus for sufficient large m, xm and x are in the

same component. In particular, we have x ∈ G1.

Lemma 5.7. Let p ∈ U , we have

inf
q∈G1\G0

d(qp,G0p) > 0 .

Proof: Suppose the assertion is not true, then we have {qm} ∈ G1 and

gm∈ G0 such that

d(qm p, gm p)→ 0 , m→ +∞
or

d(g−1
m qm p, p)→ 0 , m→ +∞ .

It is easy to check that G0p is a homogeneous manifold, with compact stable

group.

Thus, there are km∈ K0, a compact subgroup of G0 such that

g−1
m qm km → e .

So by passing a subsequence if necessary, we know

g−1
m qm → g ∈ K0 ⊂ G0 .

This contradicts the fact that G0 is open.

Let x, y ∈ U . Let

L1= G0x , L2 = G0y

be the two G0 orbits. We can define

f(p) = d(p, L2)

be the distance of a point p ∈ L1 to L2.
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Lemma 5.8. f(p) is a constant.

Proof: Let p, q ∈ L1. Then there is a g ∈ G0 such that q = gp. We have

d(q, L2) ≤ d(q, ξ) = d(gp, ξ) = d(p, g−1ξ) .

This proves

d(q, L2) ≤ d(p, L2) .

On the other hand, we also have

d(q, L2) ≤ d(p, L2) .

Thus d(q, L2) = d(p, L2) and f(p) is a constant.

Define the distance between two orbits L1, L2 by d(L1, L2) = f(p). If L1 6= L2,

d(L1, L2) > 0.

Let a ∈ G1/G0. Then aL defines another orbit. So we have a map

G1/G0 → R , a 7→ d(aL,L) .

We know that d(aL,L) > 0 for a 6= 0. Furthermore we have

Lemma 5.9.

ε = inf
a6=0

d(aL,L) > 0 .

Proof: This is a consequence of the previous two lemmas.

For any orbit G0p, Γ\G0p is a closed, properly embedded submanifolds

(Lemma 5.1). We fix one of them, say L.

Let

W =

{
x ∈ U | d(x, L) < ε

100

}

where ε is defined in the previous lemma. Then for any a ∈ G1\G0, aU ∩ U = ∅.
In particular

Γ\W = Γ1\W
in Γ\U .

Now that

vol(Γ\U) ≥ vol(Γ\W ) = vol(Γ1\W ) .

For any p ∈ Γ1\U , there is a unique q ∈ L such that

d(p, q) = d(p, L) .
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Now we can prove the following proposition which implies the assumption:

Proposition 5.2. If vol(Γ\U) < +∞, then

vol(Γ\L) < +∞ .

Proof: Let f(p) = d(p, L). Then by the coarea formula

vol(Γ1\U) =

∫ ε

0

(∫

f=c

1

|∇f |

)
dc .

But |∇f | ≤ 1. So

vol(Γ1\U) ≥
∫ ε

0
vol(f= c) dc

so at least there is a c s.t.

vol(f= c) < ∞ .

Note that dim{f= c} = dimU− 1. The proposition then follows from the

induction.
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