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ON THE NUMBER OF CONTROL SETS ON
COMPACT HOMOGENEOUS SPACES

Carlos J. Braga Barros * and Ronan A. Reis ◦

Abstract: This paper gives conditions to determine the number of control sets on

compact homogeneous spaces of a Lie group G. We use a Levi decomposition of G to

reduce the problem to homogeneous spaces of semi-simple Lie groups and, in particular,

to generalized flag manifolds.

1 – Introduction

One of the principal concepts in the study of control systems is the study of

the controllability. Many questions related to the controllability depend, in fact,

of the semigroup of transformations defined by the flow of the control system,

known as the system’s semigroup. Thus, the theory of controllability of control

systems can be abstracted to arbitrary semigroup actions and solved in a more

general setting. The regions of the state space of the control system where the

controllability occurs are called control sets. The control sets for control systems

were mainly studied by Colonius and Kliemann in [4], [5] and [6]. The generaliza-

tion of the concept of a control set for semigroup actions was given by San Martin

and Tonelli (see [11] and [12]). One important branch of investigation is the de-

termination of the number of control sets. The study of the number of control

sets on generalized flag manifolds (a compact homogeneous space which is the
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quotient of a semi-simple Lie group by a parabolic subgroup) was exploited by

Braga Barros and San Martin (see [2], [3], [11] and [12]). In particular, San Mar-

tin [12] had shown that there is only one invariant control set in a flag manifold.

The present article follows this line of questioning. It investigates the number of

control sets on compact homogeneous spaces of Lie groups.

Let G be a connected and simple-connected Lie group. Suppose that L is a

closed subgroup of G. A Levi decomposition of G is given by G = RH where

R is the radical of G and H is semi-simple. The main result of the paper says

that, under certain conditions, the number of control sets on the homogeneous

spaces G/L and H/(H ∩ RL) is the same. In particular, when H ∩ RL is a

parabolic subgroup of the semi-simple Lie group H one has that H/(H ∩RL) is

a flag manifold and the number of control sets on flag manifolds were determined

in [11] (see Proposition 5 bellow). Now, we give the idea of the proof of this

result. First, we construct an associated fiber bundle (see definition bellow) with

projection G/L→ H/(H ∩RL) and typical fiber R/(R ∩ L). Since R is solvable

it is shown that any semigroup with non-empty interior and generating G acts

transitively on the homogeneous space R/(R ∩L). To conclude the proof we use

a result of [1] which says that the transitivity of the semigroup on the fibers over

a control set implies that the number of control sets in the base space and in the

total space is equal.

2 – Control sets and fiber bundles

In this section we recall the concepts of control sets and fiber bundles.

We also relate these two concepts and present the main results that will be used

later in the text.

First, we recall the concept of control sets for semigroup actions (see [1], [11]

and [12] for results on the control sets for semigroup actions). Denote by Diff(M)

the group of diffeomorphisms of the manifold M . We say that S ⊂ Diff(M) is

a semigroup in case S is closed under compositions. For a set S ⊂ Diff(M) and

x ∈M , we use the notation

Sx = {φ (x) : φ ∈ S} .

for the orbit of x under S. From now on, and in the whole paper we assume that S

and S−1 are semigroups satisfying the accessibility property, that is, int(Sx) 6= ∅

and int(S−1x) 6= ∅ for every x ∈M . A control set for S on M is a subset D ⊂M

which satisfies
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1. int(D) 6= ∅,

2. ∀x ∈ D, D ⊂ cl(Sx) and

3. D is maximal with these properties.

As stated above, the control sets are the subsets where the semigroup is ap-

proximately transitive. This approximate transitivity can be improved to exact

transitivity inside a dense subset of D. Let

D0 =
{

x ∈ D : x ∈ int(Sx) ∩ int(S−1x)
}

.

be the set of transitivity of the control set D. In general, D0 may be empty.

However, in case it is not empty, it is open and dense in D. One also has that

for all x, y ∈ D0 there exists g ∈ S such that gx = y (see [1] Proposition 2.2).

The control set D is an effective control set in case D0 6= ∅. We also recall that

a control set is called an invariant control set if it is invariant under the action

of the semigroup S.

In order to continue our discussion we relate the control sets with fiber bundles.

Therefore, it is convenient to recall the concepts of principal bundles and their as-

sociated bundles. We refer [8] and [9] for the theory of fiber bundles with details.

Let G be a Lie group acting on the right and effectively on a manifold Q.

We denote by
Q×G → Q
(q, g) 7→ q.g

the right action of G on Q. We define

Q∗ =
{

(q, q.g) ∈ Q×Q : q ∈ Q and g ∈ G
}

.

Then for every (q, q′) ∈ Q∗ there exists a function τ : Q∗ → G such that

q τ(q, q′) = q′. The function τ is called the translation function and satisfies the

following properties:

1. τ(q, q) = e, here e is the identity of the group;

2. τ(q, q′) τ(q′, q′′) = τ(q, q′′) for every q, q′, q′′ ∈ Q,;

3. τ(q′, q) = τ(q, q′)−1 for every q, q′ ∈ Q.

A right action of G on Q is called principal if it is effective and has a differ-

entiable translation τ : Q∗ → G.

Let Q and M be manifolds. Suppose that the Lie group G acts on the right

on Q and assume that the action is principal. We recall that a principal bundle
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is a quadruplet (Q, πQ,M,G) where πQ : Q→M is differentiable, open and sur-

jective. The space M is the base space, the space Q is the total space, G is the

structure group and πQ is the projection.

Let (Q, πQ,M,G) be a principal bundle and take x ∈M . It is known that the

fiber π−1Q (x) is diffeomorphic to the structure group G and the diffeomorphism is

given by the bijection u : G→ π−1Q (x) defined by u(g) = q.g. Therefore, π−1Q (x) =

Gq = {gq : g ∈ G} with q ∈ π−1Q (x) and the group G acts transitively on the fiber.

Now, we introduce the concept of a bundle associated to the principal bundle.

Let (Q, πQ,M,G) be a principal bundle and assume that the Lie group G acts

on the left and transitively on a manifold F . Then G acts on the right on Q×F

in the following way: for (q, v) ∈ Q×F and g ∈ G we define (q, v)g = (qg, g−1v).

Now, we consider a equivalence relation on Q×F defined by

(q1, v1) ∼ (q2, v2) if and only if ∃ g ∈ G such that q2 = q1g and v2 = g−1v1 .

Let E be the quotient space of Q×F by the relation ∼. We denote an element of

E as qv. We also define the projection πE : E → M by πE(qv) = πQ(q), where

πQ : Q → M is the projection in the principal bundle. The fiber bundle with

total space E, base space M and projection πE is denoted by (E, πE ,M, F,G),

and it is called the bundle associated to the principal bundle (Q, πQ,M,G).

We also say that G is the structure group of the associated bundle. The manifold

F is called the typical fiber of the associated bundle.

Take q0 ∈ Q such that πQ(q0) = x and let f : F → π−1E (x) be the bijection

defined by f(v) = q0v. It follows that f is a diffeomorphism. Therefore the fiber

of the associated bundle is diffeomorphic to F .

Let SQ be a semigroup of diffeomorphisms of Q commuting with the right

action, that is, φ(q.a) = φ(q)a, for every a ∈ G if φ ∈ SQ. Then φ ∈ SQ induces

the diffeomorphism of E defined by Eφ(qv) = φ(q)v. The semigroup SQ of dif-

feomorphisms of Q induces a semigroup SE of diffeomorphisms of E.

Given q ∈ Q we define the subset

Sq = SQ(q) ∩ π
−1
Q (x) , x = πQ(q) .

Through the identification of the fiber over x with G via a ∈ G 7−→ q.a ∈

π−1Q (x), Sq can be viewed as a subset of G

Sq =
{

a ∈ G : ∃φ ∈ SQ, φ(q) = q.a
}

.

It follows that Sq is a subsemigroup of G if Sq 6= ∅. We observe that a ∈ Sq
acts on the typical fiber as v.a = qv.a.
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In the following, we give examples of the concepts defined above where the to-

tal space and the base space of the bundles are homogeneous spaces of a Lie group

G. We recall the concept of an equivariant fibration between homogeneous spaces.

Let G/L1 and G/L2 be homogeneous spaces. A fibration π : G/L1 → G/L2 is

called equivariant if π(xg) = π(x)g for every x ∈ G/L1 and g ∈ G. Now, we go

to the examples.

Example 1. Let G be a Lie group and L1 ⊂ L2 closed subgroups with L1
normal in L2. Consider the map

π : G/L1 → G/L2
gL1 7→ gL2

We have that (G/L1, π,G/L2, L2/L1) defines a principal bundle. The right action

of L2/L1 on G/L1 is defined by

(gL1)(hL1) = ghL1 , g ∈ G, h ∈ L2

and commutes with the right action of G on G/L1. One has π(hL1g) = π(hL1)g

and π is equivariant. If S is a semigroup in G and with intG(S) 6= ∅ then S

induces a semigroup SQ of diffeomorphisms of G/L1

SQ = {φs : s ∈ S} and φs(gL1) = gsL1 .

In this case the semigroup SM is the semigroup of diffeomorphisms of G/L2
induced by S via the action of G on G/L2. One also has that Sq = (gS ∩L2)/L1
if q = gL1 ∈ G/L1. In particular, Sq = (S ∩ L2)/L1 if q is the coset L1.

Example 2. Let G be a Lie group and L1 ⊂ L2 closed subgroups. Define

the map

π : G → G/L2
g 7→ gL2

then (G, π,G/L2, L2) defines a principal bundle. The right action of L2 on G is

defined by

gh , g ∈ G, h ∈ L2 .

We also define
πE : G/L1 → G/L2

gL1 7→ gL2
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then (G/L1, πE , G/L2, L2/L1, L2) is a fiber bundle associated to (G, π,G/L2, L2).

If S is a semigroup in G with intG(S) 6= ∅ then S induces a semigroup SQ of

diffeomorphisms of G

SQ = {φs : s ∈ S} and φs(g) = gs .

In this case the semigroup SM is the semigroup of diffeomorphisms of G/L2
induced by S via the action of G on G/L2. One also has that S induces a

diffeomorphism SE on G/L1 defined

SE = {Eφs : s ∈ S} and Eφs(gL1) = gsL1 .

We have that Sq= gS∩L2 if q = g ∈ G. In particular, Sq= S∩L2 if q = 1 ∈ G.

In the discussion on the number of control sets, a stronger version of accessi-

bility is needed (see Definition 3.1 in [1]). Let D be an effective control set for

SM . We recall that the semigroup SQ is said to be accessible over D if for some,

and hence for all, q ∈ π−1Q (D0), int(SQq) ∩ π
−1
Q (D0) 6= ∅. Similarly, SE is said to

be accessible over D if int(SEu) ∩ π
−1
E (D0) 6= ∅. Now, we show, for equivariant

fibrations, that the accessibility property defined above holds over any effective

control set.

Proposition 1. Let S be a subsemigroup of G with non-empty interior.

Assume that G/L1 and G/L2 are homogeneous spaces of G and π : G/L1→G/L2
is an equivariant fibration. Suppose S induces semigroups SE and SM on E =

G/L1 and M = G/L2, respectively. Then SE is accessible over any effective

control set for SM .

Proof: Let D be an effective control set for SM on G/L2. Take gL2 ∈ D0.

By the definition ofD0 we have that there exists s ∈ int(S) such thatMφs(gL2) =

(gL2)s=gL2. Define φ(hL1)=hsL1, h∈G. Thus φ ∈ SE . Since π is equivariant

one has that π(φ(gL1)) = gsL2 = gL2 and φ(gL1) ∈ π−1(D0). It is enough

to show that φ(gL1) ∈ int(SE(gL1)). This fact is true since φ(gL1) = gsL1 =

gL1s ∈ gL1int(S) ⊂ SE(gL1). Therefore φ(gL1) ∈ int(SE(gL1)).

In the following we present the results on the number of control sets (and

invariant control sets) that are used in the text. This results were shown in [1].

We start with a result on the number of invariant control sets.
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Proposition 2. Let C ⊂M be an invariant control set for SM , and assume

that SQ is accessible over C. Assume also that the fiber F is compact. Then the

number of invariant control sets for Sq in F with q ∈ π−1E (C0) is the same as the

number of invariant control sets for SE on E.

Proof: Theorem 4.4 in [1].

One also has.

Proposition 3. Assume that SM is accessible. Suppose that for every effec-

tive control set C ⊂ M there exists x ∈ C0 and q ∈ π−1Q (x) such that Sq acts

transitively on F . Then π−1E (C) is an effective control set on E if C is an effective

control set inM . Therefore the number of effective control sets on E and onM is

the same. Moreover, the same result is also true if we consider invariant control

sets instead of effective control sets.

Proof: It is Proposition 3.7 in [1] and the fact that invariant control sets

projects into invariant control sets.

A consequence of the last proposition is the corollary bellow.

Corollary 1. Let (Q, πQ,M,G) be a principal bundle such that its structure

group G is compact and connected. Assume that SQ is accessible over any control

set on the base space M . Then π−1Q (C) is an effective control set for SQ on Q if

C is an effective control set in M . Therefore the number of effective control sets

on Q is the same as on M . Moreover, the same result is also true if we consider

invariant control sets instead of effective control sets.

Proof: Corollary 3.8 in [1].

Remark. In the last corollary we may assume that π−1(C0) is connected

instead of assuming that G is connected.

As an immediate application of the corollary we have.

Proposition 4. Let L1 ⊂ L2 be closed subgroups of the connected Lie group

G with L1 normal in L2. Assume that G/L1 is compact and that L2/L1 is

connected. Suppose that the number of control sets on G/L2 is finite. Then the

number of effective control sets on G/L1 is the same as on G/L2.
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Proof: The fact that G/L1 is compact implies that G/L2 and L2/L1 are

compact. Thus the projection G/L1 → G/L2 determines a principal bundle with

compact and connected structure group L2/L1. To finish the proof we apply

Corollary 1.

3 – Flag manifolds

We will be interested on flag manifolds, that is, homogeneous spaces G/H

with G a non-compact semi-simple Lie group and H a parabolic subgroup.

We refer the reader to [16] and [15] for the detailed theory of parabolic subgroups

and flag manifolds. We use the following standard notation and terminology.

Let g be the Lie algebra of G. Take a Cartan decomposition g = k⊕ s with k

the compactly embedded subalgebra. Let a be a maximal abelian subalgebra

contained in s and denote by Π the set of roots of the pair (g, a). Fix a simple

system of roots Σ ⊂ Π. Denote by Π+ the set of positive roots and by a+ the

Weyl chamber

a+ =
{

H ∈ a : α(H) > 0 for all α ∈ §
}

.

Let

n =
∑

α∈¦+

gα

be the direct sum of the root spaces corresponding to the positive roots.

The notations K,N are used to indicate the connected subgroups whose Lie

algebras are k and n respectively. Let W be the Weyl group of G. It is con-

structed either as the subgroup of reflections generated by the roots of (g, a) or

as the quotient W = M ∗/M where M∗ and M are respectively the normalizer

and the centralizer of a in K. A minimal parabolic subalgebra of g is given by

p = m⊕ a⊕ n .

Let P be the minimal parabolic subgroup with Lie algebra p and put B = G/P

for the maximal flag manifold of G. This flag manifold fibers over the other

boundaries of G, which are built from subsets of Σ as follows: Given Θ ⊂ Σ let

n£ be the subalgebra generated by the root spaces g−α, α ∈ Θ and put

p£ = n£⊕ p .

The normalizer PΘ of p£ in G is a parabolic subgroup which contains P . The

corresponding flag manifoldBΘ = G/PΘ is the base space for the natural fibration
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πΘ : B→ BΘ whose fiber is PΘ/P . We denote by WΘ the subgroup of the

Weyl group generated by the reflections with respect to the simple roots in Θ.

A conjugate Ad(g)H, g ∈ G, H ∈ a+ is said to be split-regular in g. Similarly, a

split-regular element in G is a exponential h = exp(H) with H ∈ g split regular.

A split-regular H ∈ g belongs to a unique Weyl chamber in g (a conjugate of a+).

If h0 ∈ A+ = exp a+ then h0 has a finite number of fixed points in B, namely,

the base point P and its orbit under M ∗. The action of M∗ in its orbit factors

throughM so that the fixed points are given by wP , w ∈W =M ∗/M. The same

way, the fixed points in B of a split-regular h = gh0g
−1 with g ∈ G and h0 ∈ A+,

are the points gwP . In what follows we say that gwP is the fixed point of type

w for h.

We consider now a semigroup S ⊂ G with int(S) 6= ∅. In [11] the control sets

for the action of S on the flag manifolds were described by means of the Weyl

group W . In this description we have a mapping

w → Dw

which associates to w∈W a control set Dw in such a way that the set of transi-

tivity (Dw)0 is the set of the fixed points of type w for the split-regular elements

in int(S). There is just one invariant control set D1 (see [12] Theorem 3.1) whose

set of transitivity is the set of attractors for the split-regular elements in int(S).

The subset defined by

W (S) =
{

w ∈W : Dw = D1
}

is a subgroup of W , and for w1, w2 ∈W , Dw1=Dw2 if and only if w1w
−1
2 ∈W (S)

(see [11] Proposition 4.2). As a consequence one has the main result on the

number of control sets in flag manifolds.

Proposition 5. The number of control sets in a boundary BΘ = G/PΘ is

the order of the set of double cosetsW (S)\W/WΘ. In particular, the control sets

on the maximal boundary B are in one-to-one correspondence with the cosets in

W (S)\W .

Proof: See Corollary 5.2 in [11].

4 – The number of control sets

Let G be a Lie Group and L a closed subgroup of G. We assume that Q = G/L

is a compact homogeneous space of G. We also suppose that S is a subsemigroup
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of G with intG(S) 6= ∅. Suppose that S acts on Q as a semigroup of diffeomor-

phisms. In this section we will be interested in determining the number of control

sets of S on a compact homogeneous space G/L where L is a closed subgroup of

the Lie group G. We start discussing the number of invariant control sets for the

action of S on the homogeneous space Q = G/L. Since Q is compact there exist

a finite number of invariant control sets for S on Q (see [5] Proposition 3.3.8).

We denote the number of invariant control sets for S on Q by ic(Q). We also

denote by G0 the identity component of the Lie group G. We note that since G0
is an open normal subgroup of G one has that G0L is open and therefore it is

a closed subgroup of G. It is also immediate that G0 ∩ L is a closed subgroup

of G. The homogeneous space G0/(G0 ∩ L) is the connected component of G/L

and therefore it is compact. Also, the homogeneous space G/G0L is the finite set

of the components of G/L. We reduce the problem of computing the number of

invariant control sets on G/L to the case when G is connected. We denote the

number of invariant control sets for S on Q by ic(Q).

Proposition 6. Assume that S is a subsemigroup of G with intG(S) 6= ∅ and

which generates G in the sense that every element of G is a product of elements

of the set S∪S−1. Let G be a Lie group and G/L a compact homogeneous space.

Then

ic(G/L) = ic(G0/(G0 ∩ L) .

Proof: We consider the fiber bundle with projection G/L → G/G0L and

associated to the principal bundle with projection G → G/G0L. The typical

fiber G0L/L = G0/G0 ∩ L of the associated bundle is compact. Since the base

space G/G0L is finite and S generates G we have that S is transitive on G/G0L.

Applying Proposition 2 to this bundle one has that the number of invariant

control sets in the total space G/L is equal to the number of invariant control

sets in the fiber G0/G0 ∩ L.

Although we don’t know a similar result for the number of control sets it is

reasonable to assume that the Lie group G is connected. Therefore, let G be a

connected Lie group with finite dimensional Lie algebra g. A Levi decomposition

of g is

g = r + s

where r is the radical of g and s = g/r is semi-simple or {0}. Let R = rad(G)

(the radical of G) be the connected Lie subgroup of G whose Lie algebra is r.

We know from [10] Proposition 10.12 that R is a closed, solvable and normal Lie
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subgroup of G. Let H be the semi-simple Lie group generated by exp(ad(s)).

It follows from [14] that G decomposes as the semi-direct product

G = R×H .

It is also shown in [14] Theorem 3.18.13 that if G is simply connected then G

is diffeomorphic to the Cartesian product of R with H and decomposes as the

direct product

G = RH with R ∩H = {1}

where H is closed in G.

From now on, we assume that G is simply connected.

Now, we show that a subsemigroup of a solvable Lie group G with non-empty

interior and generating G is transitive on a compact homogeneous space of G.

Lemma 1. Let G be a solvable Lie group and G/L a compact homogeneous

space. Suppose that S is a subsemigroup of G generating it and with intG(S) 6= ∅.

Then S is transitive in G/L.

Proof: We know from [7] Theorem 1.2 that there exists a probability mea-

sure µ on G/L which is invariant by the action of G. The result follows from

Proposition 6.3 of [13].

Now, we state the main result of the paper.

Theorem 1. Let G be a connected and simply connected Lie Group.

Suppose that S is a subsemigroup of G generating it and with intG(S) 6= ∅.

Take G = RH as a Levi decomposition of G, where R is the radical of G and

H is a semi-simple Lie Group. Suppose that RL is closed and that H ∩ RL is

a parabolic subgroup of H. Then the number of effective control sets of S on

G/L is finite and equals to the number of effective control sets of S on the flag

manifold H/(H ∩RL). In particular, there is only one invariant control set of S

on G/L.

Proof: Since R is normal in G we have that RL is a closed Lie subgroup of

G which contains L. We consider the associated bundle

G/L→ G/RL

with typical fiber RL/L. Since G/L is compact we have that G/RL e RL/L

are compact homogeneous spaces. Now, we show that the homogeneous space
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G/RL = (RH)/(RL) is diffeomorphic to the homogeneous space H/(H ∩RL) of

the semi-simple Lie group H. It follows that (RH)/(RL) = {h(RL) : h ∈ H}.

In fact, an element of (RH)/(RL) is written as rh(RL) with r ∈ R and h ∈ H.

By the normality of R it follows that rhRL = hRL. The diffeomorphism between

G/RL and H/(H ∩RL) is given by the map

G/RL → H/(H ∩RL)

rhRL 7→ h(H ∩RL)
.

Since the typical fiber R/(R∩L) is a homogeneous space of a solvable Lie group

the Lemma 1 implies that S is transitive on R/(R∩L). By the Proposition 3 the

number of effective control sets on H/(H ∩ RL), which is finite, is equal to the

number of effective control sets on G/L. Since there is only one invariant control

set on a flag manifold of a semi-simple Lie group the Proposition 3 also implies

that there is only one invariant control set on G/L.
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