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Abstract: This paper is concerned with the Euler equations of a barotropic inviscid

compressible fluid in the three dimensional space R3.

Following the method of decomposition in [4], [5], we show the existence of a smooth

compressible flow on an arbitrary time interval [0, T ] for any Mach number sufficiently

small and almost constant initial densities, when the incompressible limit flow is assumed

to exist up to T as well.

The life span O
(
1/εµ−1

)
for the compressible solution is obtained assuming also that

the incompressible part of the solution itself has a life span of order O(1/εµ−1) and is

O(εµ−1) for suitable µ > 1.

1 – Introduction

In this paper we study smooth solutions to the Euler equations of a barotropic

inviscid compressible fluid in R3 for small Mach numbers.

Setting QT := (0, T )×R3, in a suitable nondimensional form the compressible

Euler equations read as the following initial value problem (ivp):





∂tρ
ε +∇ · (ρεvε) = 0 ,

ρε
(
∂tv

ε + (vε · ∇)vε
)
+ 1ε2∇pε = 0 in QT ,

ρε(0, x) = ρε0(x) ,

vε(0, x) = vε0(x) in R3 .

(1)
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The density ρε = ρε(t, x), the velocity vε = vε(t, x) = (vε,1(t, x), vε,2(t, x), vε,3(t, x))

and the pressure pε = pε(t, x) are unknown functions of the time t and the space

variables x = (x1, x2, x3) and ε > 0 is essentially the Mach number. We as-

sume that the density and the pressure are related by the equation of state

pε = p(ρε) = (ρε)γ for γ > 1; with standard notations we set ∂t =
∂
∂t , ∂i =

∂
∂xi

,

i = 1, 2, 3, ∇ = (∂1, ∂2, ∂3) and v · ∇ = v1∂1 + v2∂2 + v3∂3.

Solutions (ρε, vε) to (1) are sought as a perturbation from an equilibrium state

(ρ̄, 0), where ρ̄ > 0.

If ρε0(x) → ρ̄, as ε → 0, then one expects that ρε → ρ̄ and vε → w, where w

is a solution to the Euler equations of an incompressible ideal fluid flow; namely

there exists π = π(t, x) such that (π,w) is a solution to the 4× 4 system




∇ · w = 0 ,

∂tw + (w · ∇)w +∇π = 0 in QT ,

w(0, x) = w0(x) in R3 ,

(2)

where ∇ · w0 = 0 in R3.

Solutions of (1) can be viewed as the nonlinear coupling of irrotational so-

lutions to (1), with as initial data the initial density and the gradient part of

the initial velocity, and incompressible solutions to (2), with as initial data the

divergence-free part of the initial velocity. In a normal mode analysis, the study

of the interaction between such irrotational and incompressible components of

the solutions to (1) corresponds to studying the nonlinear interaction between,

respectively, the genuinely nonlinear eigenvalues v · ν ± c(ρ) (c(ρ) denotes the

sound velocity, ν is a unit vector) and the double linearly degenerate eigenvalue

v · ν. The analysis of the present paper, through the study of the life span of

solutions, shows that this nonlinear coupling is rather weak.

In three dimensions the global solvability in time of (2) is an outstanding

open problem, even if many numerical computations appear to exhibit blow up

in finite time, due to concentration of vorticity. However, if the solution of (2)

exists up to an arbitrary time T , in view of the above incompressible limit, it

is natural to expect that also the solution to (1) exists up to T , for all Mach

numbers sufficiently small and almost constant initial densities.

After reformulating the problem (1) in an appropriate functional setting, in

the next sections 2, 3 such a result is proved under suitable assumptions on the size

of the initial data (ρε0, v
ε
0). Following [4], [5], we decompose the solution (ρε, vε)

as the sum of irrotational flow, incompressible flow and the remainder giving

the nonlinear interaction between the first two parts. By our assumption on the

incompressible component and the “almost” global existence of the irrotational
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flow shown by Sideris [6], the solvability of (1) follows by showing the existence

of the nonlinear interaction up to T . The result follows by a combination of the

time decay property of the irrotational part and energy estimates.

By the same techniques, a life span of type O(1/εµ−1), with a suitable µ > 1,

is obtained for a compressible flow under stronger hypotheses; namely we assume

that the solution of (2) with initial datum given by the incompressible part of

the velocity vε0 exists on the time interval [0, A/εµ−1], A > 0, and is O(εµ−1).

In order to simplify the forthcoming computations, it is useful to rewrite the

system (1) in an appropriate symmetric hyperbolic form. Namely, following [4],

we make the change of variable

gε(t, x) = log

(
ρε(t, x)

ρ

)
.

Therefore the system (1) reduces to





∂tg
ε + vε · ∇gε +∇ · vε = 0 ,

1
h(gε)

(
∂tv

ε + (vε · ∇)vε
)
+ 1

ε2
∇gε = 0 in QT ,

gε(0, x) = gε0(x) ,

vε(0, x) = vε0(x) in R3 ,

(3)

where

gε0(x) = log

(
ρε0(x)

ρ

)

and h(s) := p′(ρes) = γ(ρes)γ−1. Without loss of generality we assume h(0) =

p′(ρ̄) = 1.

It is also convenient to rescale the variables by

g(t, x) = gε(εt, x) , v(t, x) = εvε(εt, x) .(4)

The system (3) becomes then





∂tg + v · ∇g +∇ · v = 0 ,

1
h(g)

(
∂tv + (v · ∇)v

)
+∇g = 0 in QT/ε ,

g(0, x) = g0(x) ,

v(0, x) = v0(x) in R3 ,

(5)

where

g0 = gε0 and v0 = ε vε0 ,(6)
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or, in the vector form,




A0(u) ∂tu+

3∑
j=1

Aj(u) ∂ju = 0 in QT/ε ,

u(x, 0) = u0(x) in R3 ,

(7)

where u =:

(
g
v

)
, u0 :=

(
g0
v0

)
and

A0(u) :=

(
1 0

0 1
h(g)I

)
, Aj(u) :=

(
vj ej

tej
vj

h(g)I

)
j = 1, 2, 3 .(8)

I denotes the 3×3 identity matrix and e1 := (1, 0, 0), e2 := (0, 1, 0), e3 := (0, 0, 1).

Let us now fix the functional setting to be used through the following.

Given a positive integer m, we write Hm(R3) (Hm for shortness) for the

Sobolev space of order m and ‖.‖m for the related norm; in particular ‖.‖ := ‖.‖0
is the norm in L2(R3), while |.|p denotes the norm in Lp(R3) for 1 ≤ p ≤ ∞,

p 6= 2.

Moreover for T > 0 we define the space Xm(T ) by

Xm(T ) =
m−1⋂

k=0

Ck([0, T ];Hm−k) ,

where Ck([0, T ];B) denotes the space of the k-times continuously differentiable

functions on [0, T ] taking values in a Banach space B. Xm(T ) is, in its turn, a

Banach space with respect to the norm

‖u‖Xm(T ) = sup
t∈[0,T ]

|||u(t)|||m ,

where |||u(t)|||2m =
∑m−1

k=0 ‖∂
k
t u(t)‖

2
m−k.

According to [6], let us denote by Γ the family of operators Γ = {∂t, ∂j ,Ωj ,

Lj , S}
3
j=1 = {Γi}

10
i=0, where Ωj , j=1, 2, 3, are the generators of proper rotations,

S := I(t ∂t +
∑3

j=1 xj∂j), is the scaling operator, while Lj := I`j −Bj , j=1, 2, 3,

are the generators of Lorentz rotations (boosts); the matrices Bj are defined by

Bj :=

(
0 ej
tej 0

)
, j = 1, 2, 3

where 0 denotes the 3× 3 zero matrix and `j = t∂j + xj∂t, j=1, 2, 3.
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For every multi-index α = (α0, α1, ..., α10) we set Γα = Γα00 ...Γ
α10
10 ; moreover

given a positive integer m and a real T > 0 we define Xm
Γ (T ) to be the space of

all the functions w(t) = w(t, x) such that ‖w‖Xm
Γ
(T ) := sup

t∈[0,T ]
Êm[w(t)] is finite,

where:

Êm[w(t)] =
∑

|α|≤m

‖Γαw(t, .)‖ .

Let us remark that the space Xm
Γ (T ) is included into Xm(T ), as the set Γ

contains the derivatives ∂t, ∂j for j = 1, 2, 3.

It is well-known that L2(R3) may be represented as the orthogonal sum

L2(R3) = G⊕H, where the spaces G and H are defined as follows:

H =
{
u ∈ L2(R3); ∇ · u = 0 in R3

}
, G =

{
∇ψ ∈ L2(R3); ψ ∈ H1

loc(R3)
}
.

Writing P for the projection of L2(R3) onto H and Q = I − P , we have P ∈

L(Hm, Hm), for every integer m ≥ 0.

The derivatives ∂kt g
ε
0, ∂

k
t v

ε
0 of the initial data (gε0, v

ε
0) are recursively defined

for every k ≥ 1 formally differentiating equations (3) k− 1 times in t, solving the

resulting equations for ∂kt g
ε, ∂kt v

ε and evaluating them at t = 0 in order to get

an expression involving only the initial data (gε0, v
ε
0) and their derivatives in t up

to the order k − 1. Analogously, we define ∂kt g0, ∂
k
t v0 starting from (5) and the

initial data (g0, v0).

Since Γαw(t, x) consists of a finite sum of derivatives in (t, x) of the compo-

nents wj(t, x), 1 ≤ j ≤ 3, multiplied by monomials in (t, x), we can consequently

define Êk[(g0, v0)] for k ≥ 1.

After making the change of variable

ξ(t, x) =
2

γ − 1

[
exp

(
γ−1

2
g(t, x)

)
− 1

]
,

Sideris proved in [6] (cf. Theorem 2) the existence of a solution to the ivp (5),

written in terms of the variables (ξ, v), in the frame of the functional spaces

Xm
Γ (T ) and for irrotational initial data (ξ0, v0); moreover a lower bound of type

exp (C0/ε)− 1 is obtained for the life span Tε of the solution (ξ, v).

Relying on the result of Sideris, in the next Section 3 we will show the following

theorem about the existence of the solution to the ivp (3) on arbitrary time

intervals, for all sufficiently small Mach numbers and almost constant densities.

Observe that there is no restriction on the size of the initial velocity.
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Theorem 1.1. Let (gε0, v
ε
0) satisfy:

Ê5[ξ
ε
0] ≤ C1 ε , ε > 0 ,(9)

where ξε0 =
2

γ−1

[
exp(γ−12 gε0)− 1

]
and

Ê5[Qv
ε
0] + ‖Pv

ε
0‖4 ≤ C1 , ε > 0 ,(10)

with a positive constant C1 independent of ε.

We assume moreover that the solution (πε, wε) of (2) with initial datum

w0(x) = Pvε0 exists up to a time T > 0 in X4(T ) and fulfills:

‖(πε, wε)‖X4(T ) ≤ Ĉ , ε > 0 ,(11)

for some Ĉ > 0 independent of ε.

Then there exist two constants ε0, C2 > 0 such that for every 0 < ε < ε0 the

ivp (3) with initial data (gε0, v
ε
0) has a unique solution (gε, vε) in X3(T ) and

‖gε‖X3(T ) ≤ C2 ε , ‖vε‖X3(T ) ≤ C2 .(12)

Theorem 1.1 gives the existence of compressible fluid flow (gε, vε) on the time

interval [0, T ], with an arbitrary T > 0 and ε > 0 small, by assuming that the

solution (πε, wε) of the incompressible problem (2) exists up to the same time T

and ‖(πε, wε)‖X4(T ) = O(1) as ε→ 0.

We also obtain for (gε, vε) a life span of type O
(
1/εµ−1

)
, with a suitable

µ > 1, under the hypothesis that the incompressible part (πε, wε) of (gε, vε) has

a life span A/εµ−1 for a given A > 0 and is small for small ε, in the sense that

‖(πε, wε)‖X4(A/εµ−1) = O(εµ−1), ε→ 0.

Proposition 1.1. Let (gε0, v
ε
0) satisfy

Ê5 [ξ
ε
0] ≤ C1 ε, Ê5[Qv

ε
0] ≤ C1, ‖Pvε0‖4 ≤ C1 ε

µ−1, ε > 0 ,(13)

where 1 < µ < 6
5 and C1 is a given positive constant.

Let us assume moreover that there exist constants A,C2 > 0 such that the

solution (πε, wε) of (2) with initial datum Pvε0 exists up to time A/ε
µ−1 in

X4(A/εµ−1) and fulfills

‖(πε, wε)‖X4(A/εµ−1) ≤ C2 ε
µ−1 ,(14)

for any ε > 0 sufficiently small.
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Then we may find 0 < ε0 < 1 and 0 < A′ ≤ A such that the solution uε =

(gε, vε) to (3) with initial data (gε0, v
ε
0) exists up to time A

′/εµ−1 in X3(A′/εµ−1)

for all 0 < ε < ε0 and satisfies

‖gε‖X3(A′/εµ−1) ≤ C3 ε , ‖vε‖X3(A′/εµ−1) ≤ C3 ,(15)

with a suitable C3 > 0 independent of ε.

The paper is organized as follows: in Section 2 we give an enery estimate and

some inequalities which will be used in the following; Theorem 1.1 is proved in

Section 3; Proposition 1.1 is proved in Section 4.

2 – An energy estimate and some useful inequalities

Let w satisfy the symmetric hyperbolic system

A0(u) ∂tw +
3∑

j=1

Aj(u) ∂jw = F in QT(16)

where, for u = (g, v), the matrices Ah(u), h = 0, 1, 2, 3, are defined by (8) and

F =

(
F1
F2

)
has sufficiently smooth components F1 = F1(t, x), F2 = F2(t, x).

We define the energy E(t) by

E(t) = 〈A0(u)w, w〉 ,

where 〈f, g〉 =

∫

R3
f(x) g(x) dx is the inner product in L2(R3).

Provided u = (g, v) is sufficiently smooth, by a standard argument one can

prove that E(t) solves

d

dt
E(t) = 〈divAw,w〉+ 2 〈F , w〉 ,(17)

where divA := ∂tA0 +
∑3

j=1 ∂jAj .

Let us assume now that u = (g, v) satisfies

0 < m−1 ≤ h(g) ≤M in QT ,(18)

for some constants m,M ; notice that h(0) = 1 yields m,M ≥ 1.
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Applying the Cauchy–Schwarz inequality to 〈divAw,w〉, 〈F , w〉 in (17) and

integrating over [0, t], for any 0 < t ≤ T , yield

E(t) ≤ E(0) +

∫ t

0
|divA(s)|∞ ‖w(s)‖

2 ds + 2 max
s∈[0,t]

‖w(s)‖

∫ t

0
‖F(s)‖ ds ;

hence, using E(t) ≥ 1
M ‖w(t)‖

2 and E(0) ≤ m‖w(0)‖2, Gronwall’s inequality gives

(19)

‖w(t)‖ ≤

(
Mm‖w(0)‖+ 2M

∫ t

0
‖F(s)‖ ds

)
exp

(
M

∫ t

0
|divA(s)|∞ ds

)
, 0≤ t≤T .

In the next section, we will specialize the vector F in the right-hand side of (16)

and need to estimate ‖F‖ by means of the L2-norm of u = (g, v) and a certain

number of its derivatives. At this purpose we will make use of some interpola-

tion inequalities coming from a general interpolation formula due to Nirenberg

(cf. [2]). For the sake of completeness the needed inequalities are listed below.

Let us assume u = (g, v) to be a sufficiently smooth solution of (5). From

|∇u|4 ≤ C |u|
1

2
∞ ‖∇u‖

1

2

1 , |∇u|8 ≤ C |u|
3

4
∞ ‖∇u‖

1

4

3 ,

|D2u|4 ≤ C |u|
1

2
∞ ‖∇u‖

1

2

3

(20)

and (5) we obtain

|∂tu|4 ≤ K(1 + |u|∞) |u|
1

2
∞ ‖∇u‖

1

2

1 ,

|∂tu|8 ≤ K(1 + |u|∞) |u|
3

4
∞ ‖∇u‖

1

4

3 ;
(21)

hereafter C is a suitable positive constant independent of u and K denotes differ-

ent positive constants which may depend boundedly on h(.) and its derivatives

up to the order 4.

From the differentiation of (5), (20) and (21) give also

|∇∂tu|4 ≤ K(1 + |u|∞) |u|
1

2
∞ ‖∇u‖

1

2

3 ,

|∂2t u|4 ≤ K(1 + |u|∞)2 |u|
1

2
∞ ‖∇u‖

1

2

3 .

(22)

Similarly as before, from

|D3u| 8
3

≤ C |u|
1

4
∞ ‖∇u‖

3

4

3 ,

|D4u| 5
2

≤ C |u|
1

5
∞ ‖∇u‖

4

5

4

(23)



ON 3D SLIGHTLY COMPRESSIBLE EULER EQUATIONS 309

and differentiation of (5) we get

|D2−k∂k+1t u| 8
3

≤ K(1 + |u|∞)k+2 |u|
1

4
∞ ‖∇u‖

3

4

3 , k = 0, 1, 2 ,

|D4−k∂kt u| 5
2

≤ K(1 + |u|∞)k+2 |u|
1

5
∞ ‖∇u‖

4

5

4 , k = 1, ..., 4 .
(24)

Lastly from

|∇u|∞ ≤ C |u|
5

7
∞ ‖∇u‖

2

7

4(25)

and (5) we derive

|∂tu|∞ ≤ K(1 + |u|∞) |u|
5

7
∞ ‖∇u‖

2

7

4 .(26)

3 – Proof of Theorem 1.1

We argue on the solution u = (g, v) of the rescaled problem (5) or (7) given

by formula (4).

Hereafter it will be convenient to adopt the standard multi-index notation;

namely for α = (α0, α1, α2, α3) we set ∂α := ∂α0t ∂α11 ∂α22 ∂α33 .

For any multi-indices α, β later on we will also write

β ≤ α if βj ≤ αj for j = 0, 1, 2, 3 ; β < α if β ≤ α and β 6= α ;

α! = α0!α1!α2!α3! .

For β ≤ α,
(
α
β

)
= α!

β!(α−β)! =
(
α0
β0

) (
α1
β1

) (
α2
β2

) (
α3
β3

)
.

Given (gε0, v
ε
0) as in (9), (10) we define (g0, v0) by (6) and

ξ0 = 2
γ−1

[
exp

(
γ−1
2 g0

)
− 1

]
.

We easily show that

Ê5 [(ξ0, Qv0)] ≤ C ε , ε > 0 ,

for a suitable constant C. Let us consider the problem





∂tξ1 +∇· v1 + v1 · ∇ξ1 +
γ−1
2 ξ1∇· v1 = 0 ,

∂tv1 +∇ξ1 + v1 · ∇v1 +
γ−1
2 ξ1∇ξ1 = 0 in QT ,

ξ1(0, x) = ξ0(x) ,

v1(0, x) = Qv0(x) in R3 .

(27)
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From Theorem 2 in [6] we may find two positive constants C0, C
′
1 such that (ξ1, v1)

exists up to a time Tε ≥ exp (C0/ε)− 1 in the space X5
Γ(Tε) and satisfies

‖(ξ1, v1)‖X5

Γ
(Tε) ≤ C ′1ε , ε > 0 .(28)

Due to a generalized Sobolev inequality by Klainerman (see [7]), the following

decay estimate is also achieved:

|(ξ1(t), v1(t))|∞ ≤ C ′1 ε(1 + t)−1 , 0 ≤ t ≤ Tε, ε > 0 .(29)

Let us define g1 by the formula

g1(t, x) =
2

γ − 1
log

(
γ − 1

2
ξ1(t, x) + 1

)
.(30)

Then u1 = (g1, v1) is the solution to (5) with irrotational initial data (g0, Qv0).

u1 is also irrotational since v1 = Qv1.

Using formula (30) and the Sobolev embedding theorem it is easy to prove

that (28), (29) yield for u1 = (g1, v1)

‖u1‖X5(Tε) ≤ C ′1 ε , ε > 0(31)

and

|u1(t)|∞ ≤ C ′1 ε (1 + t)−1 , 0 ≤ t ≤ Tε, ε > 0 .(32)

On the other hand by (31), (32) and some of the interpolation inequalities (20)-

(26) we obtain:

∑

|α|=1

(
|∂αu1|4 + |∂

αu1|8 + |∂
αu1|∞

)
+
∑

|α|=2

|∂αu1|4 +
∑

|α|=3

|∂αu1| 8
3

+

+
∑

|α|=4

|∂αu1| 5
2

≤ C ′′1 ε (1 + t)−δ ,
(33)

for δ = 1
5 , 0 ≤ t ≤ Tε, ε > 0 and some C ′′1 > 0 independent of ε.

For a given T > 0, let 0 < ε0 < 1 be such that exp (C0/ε) − 1 ≥ T/ε as

0 < ε < ε0.

Let (πε, wε) be the solution of (2) as in (11), with initial datum wε(0, x) =

Pvε0(x).

Let us define

π(t, x) = ε2 πε(εt, x) , w(t, x) = εwε(εt, x) .
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Then (π,w) solves (2) in the time interval [0, T/ε] with initial datum w(0, x) =

εPvε0(x). From (11) it follows that

∑

|α|≤4
α0=k

‖∂απ(t)‖ ≤ Ĉ εk+2 ,
∑

|α|≤4
α0=k

‖∂αw(t)‖ ≤ Ĉ εk+1, k = 0, ..., 3(34)

for every 0 ≤ t ≤ T/ε.

Following [4] and [5] we seek a solution of (5) in the form

g = g1 + π + g2 , v = v1 + w + v2 ,(35)

for the previously defined (g1, v1) and (π,w).

In order that u = (g, v) solves (7), the remainder u2 = (g2, v2) should satisfy

the following symmetric hyperbolic system





A0(u) ∂tu2 +
3∑

j=1
Aj(u) ∂ju2 = F in QT/ε ,

u2(0, x) = u2,0(x) in R3 ,

(36)

where Ah(u), h = 0, 1, 2, 3, are defined in (8), u2,0(x)=

(
−π(0, x)

0

)
, F =

(
F1

F2

)

and
F1 = v1 · ∇g1 − v · ∇(g1 + π)− ∂tπ ,

F2 =
1

h(g)

{
(v1 · ∇)v1 + (w · ∇)w − (v · ∇) (v1 + w)

+[h(g1)− h(g)]∇g1 + [1− h(g)]∇π
}
.

Let us assume that u = (g, v) fulfills (18) on some interval [0, T ′] with T ′ ≤ T/ε.

Then from (19) we have

(37)

‖u2(t)‖ ≤

(
Mm‖u2(0)‖+ 2M

∫ t

0
‖F(s)‖ ds

)
exp

(
M

∫ t

0
|divA(s)|∞ ds

)
, 0≤ t≤T ′ .

Let α be an arbitrarily fixed multi-index. By applying ∂α to (36) we obtain that

u2,α := ∂αu2 must solve the symmetric hyperbolic system

A0(u) ∂tu2,α +
3∑

j=1

Aj(u) ∂ju2,α = F(α) in QT ′ ,(38)
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where F(α) =

(
F1
(α)

F2
(α)

)
and

F1
(α) := ∂αF1 −

∑

0<β≤α

(
α

β

)
∂βv · ∂α−β ∇g2 ,

(39)

F2
(α) :=

1

h(g)


∂α(h(g)F2) −

∑

0<β≤α

(
α

β

)
(∂βv · ∇) ∂α−βv2

−
∑

0<β≤α

(
α

β

)
∂β(h(g)) ∂α−β ∇g2


 .

Arguing on (38) as from (16) to (19) we obtain an estimate such as (37) for each

derivative u2,α(t). Summing then through all the multi-indices α with |α| ≤ 3

and α0 ≤ 2, the following is derived for |||u2(t)|||3:

(40)

|||u2(t)|||3 ≤

(
Mm|||u2(0)|||3 + 2M

∑

|α|≤3
α0≤2

∫ t

0
‖F(α)(s)‖ ds

)
exp

(
M

∫ t

0
|divA(s)|∞ ds

)
,

for every t ∈ [0, T ′].

From ‖g2(0)‖3 = ‖π(0)‖3 ≤ Ĉε2, v2(0) = 0 and equations (5), we may find a

positive constant K1, independent of ε, such that |||u2(0)|||3 ≤ K1ε
2.

Chosen a positive µ so that 1 < µ < 1 + δ, for the same δ as in (33), let us

define

T1 = sup
{
T ′ > 0 : |||u2(t)|||3 ≤ 2K1ε

µ, if 0 ≤ t ≤ T ′
}
,

T2 = min
{
T1, T/ε

}
.

Notice that, in view of the definition of T2, (32), (34) and the Sobolev embedding

theorem, the assumption (18) is actually satisfied by u on any interval [0, T ′] with

0 < T ′ ≤ T2 and 0 < ε < ε0 for suitable constants m,M ; so (40) holds on [0, T ′].

By (31), (34) we also find K2 such that

|divA(t)|∞ ≤ K2 ε , 0 ≤ t ≤ T ′ ,(41)

for any 0 < T ′ ≤ T2 and 0 < ε < ε0. Indeed from (18) it comes that

|∂tA0(t)|∞ ≤ K ′
2

(
|∂tg1(t)|∞ + |∂tπ(t)|∞ + |∂tg2(t)|∞

)
, 0≤ t≤T ′, 0<ε<ε0
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holds true for some K ′
2 > 0 independent of ε; thus (31), jointly with the Sobolev

embedding theorem, (34) and the definition of T2 give |∂tA0(t)|∞ ≤ K2ε on

0 ≤ t ≤ T ′ ≤ T2. Analogously it may be shown that |∂jAj(t)|∞ ≤ K2ε on [0, T ′]

for j = 1, 2, 3.

On the other hand, (31), (34) and (20)–(26) lead to estimate the norm

‖F(α)(t)‖, for |α| ≤ 3 and α0 ≤ 2, as follows

∑

|α|≤3
α0≤2

‖F(α)(t)‖ ≤ K3 ε
2(1 + t)−δ +K4 ε

2µ +K5 ε |||u2(t)|||3 , 0 ≤ t ≤ T ′ ,(42)

for every 0 < T ′ ≤ T2 and 0 < ε < ε0.

Indeed let us come back to formula (39); by Leibnitz rule it follows that:

∂αF1 = −
∑

β≤α

(
α

β

)
∂βv1 ·∂

α−β∇π −
∑

β≤α

(
α

β

)
∂β(v2+w) ·∂

α−β∇(g1+π)−∂
α∂tπ .

By (31), (34), Hölder’s inequality and the definition of T2 for all β ≤ α the

following estimates hold

‖∂βv1 ·∂
α−β∇π‖ ≤ C̃ε2µ, ‖∂β(v2+w)·∂

α−β∇π‖ ≤ C̃ε2µ, 0 ≤ t ≤ T ′ ,(43)

for every 0 < T ′ ≤ T2.

Using also (33), we obtain

‖∂β(v2 + w) · ∂α−β∇g1‖ ≤ C1 ε
2 (1 + t)−δ , 0 ≤ t ≤ T ′(44)

for every 0 < T ′ ≤ T2 and β ≤ α.

Lastly (34) directly gives

‖∂α∂tπ‖ ≤ Ĉ ε3 ≤ Ĉ ε2µ(45)

for 0 ≤ t ≤ T ′ and 0 < T ′ ≤ T2.

Estimates (43)–(45) yield

‖∂αF1‖ ≤ C1 ε
2 (1 + t)−δ + C2 ε

2µ ,(46)

for 0 ≤ t ≤ T ′ ≤ T2, 0 < ε < ε0, where C1, C2 > 0 do not depend on ε.

Similarly we get

∥∥∥∥∥
∑

0<β≤α

(
α

β

)
∂βv · ∂α−β∇g2

∥∥∥∥∥ ≤ C ′1 ε
2 (1 + t)−δ + C ′2 ε

2µ + C ′3 ε |||g2(t)|||3 ,
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for 0 ≤ t ≤ T ′ ≤ T2, 0 < ε < ε0, which shows, jointly with (46), estimate (42) for

the component F1 of F . By similar computations (42) is proved also for F 2.

Estimating the right-hand side of (40) by means of (41), (42), using Gronwall’s

lemma and t ≤ T/ε give

|||u2(t)|||3 ≤ εµ exp(K ′
1ε t)

(
K ′
2 ε

2−µ +K ′
3 ε

2−µ t1−δ +K ′
4 ε

µ t
)
, 0≤ t≤T ′,(47)

for any 0<T ′≤T2, 0<ε<ε0 and positive constants K ′
1,K

′
2,K

′
3,K

′
4 independent

of ε.

Since t ≤ T/ε and 0 < ε < ε0 give exp(K ′
1ε t) ≤ exp(K ′

1T ), ε2−µ < ε2−µ0 ,

ε2−µ t1−δ < ε1+δ−µ0 T 1−δ and εµ t < εµ−10 T , from (47) we derive

|||u2(t)|||3 < 2K1 ε
µ ,(48)

if 0 ≤ t ≤ T ′ ≤ T2 and 0 < ε < ε0, provided ε0 is taken suitably small. This shows

that T/ε ≤ T1, i.e. u2 = (g2, v2) exists up to T/ε. Consequently, also u = (g, v)

exists up to T/ε.

Then we conclude that the solution uε = (gε, vε) to (3) exists on the time-

interval [0, T ], provided 0<ε<ε0, and here satisfies (12) as a direct consequence

of (31), (34) and (48).

4 – Proof of Proposition 1.1

The proof of Proposition 1.1 essentially relies on the computations in Section 3.

As we did in proving Theorem 1.1 we make the rescaling (4). If (gε, vε) is a

solution to (3) with initial data (gε0, v
ε
0) then u = (g, v) solves the ivp (5) or (7)

with the initial data u0 = (g0, v0) given by (6).

Once again we write the solution u = (g, v) in the form:

g = g1 + π + g2 , v = v1 + w + v2 ,

where u1 = (g1, v1) is the solution of (5) or (7) corresponding to the irrotational

initial data (g0, Qv0), while

π(t, x) := ε2 πε(ε t, x) , w(t, x) := εwε(ε t, x)

and u2 = (g2, v2) solves (36).

Due to (13), by Theorem 2 in [6] u1 satisfies (31)–(33) with life span

exp (C0/ε)− 1. Let 0 < ε0 < 1 be such that exp (C0/ε)− 1 > A/εµ as 0 < ε < ε0.
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In view of (14), (π,w) satisfies now:

∑

|α|≤4
α0=k

‖∂απ(t)‖ ≤ Ĉ εk+1+µ ,
∑

|α|≤4
α0=k

‖∂αw(t)‖ ≤ Ĉ εk+µ , k = 0, ..., 3(49)

for 0 ≤ t ≤ A/εµ.

Moreover from our hypotheses we derive that there exists a constant K1 > 0

such that |||u2(0)|||3 ≤ K1 ε
2. Taken an arbitrary 0 < A′ ≤ A, analogously to the

proof of Theorem 1.1 we define T3 and T4 by:

T3 := sup
{
T ′>0 : |||u2(t)|||3 ≤ 2K1 ε

µ, 0≤ t≤T ′
}
;

T4 := min
{
T3, A

′/εµ
}
.

(50)

Since in any interval [0, T ′] for 0 < T ′ ≤ T4 the solution u = (g, v) satisfies (18),

the a priori estimate (40) holds.

By (25), (26) (for u = u1), (49) and the definition of T4 we may find a constant

K2 > 0 independent of ε0 and A′ such that:

|divA(t)|∞ ≤ K2

(
ε(1+t)−δ + εµ

)
, 0 ≤ t ≤ T ′ ,(51)

for every 0 < T ′ ≤ T4, 0 < ε < ε0 and δ = 1
5 .

Since 1 < µ < 6
5 = 1 + δ, T4 ≤ A′/εµ and ε0 < 1, from (51) it follows

∫ t

0
|divA(s)|∞ ds ≤ K2(ε t

1−δ + εµ t) ≤ K2(A
′1−δεδ

2

0 +A′) , 0≤ t≤T ′ ,(52)

for every 0 < T ′ ≤ T4 and 0 < ε < ε0.

It remains to estimate the norm ‖F(α)‖, for every |α| ≤ 3 and α0 ≤ 2, in the

right-hand side of (40).

Arguing as from (31)–(34) to (42), with (49) instead of (34), leads now to the

following estimate:

‖F(α)‖ ≤ K3 ε
µ+1(1 + t)−δ +K4 ε

2µ ,

hence

∑

|α|≤3,
α0≤2

∫ t

0
‖F(α)(s)‖ ds ≤ K3 ε

µ+1 t1−δ +K4 ε
2µ t , 0 ≤ t ≤ T ′ ,(53)

for 0 < T ′ ≤ T4, 0 < ε < ε0 and positive constants K3,K4 independent of ε, ε0
and A′.
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Estimating the right-hand side of (40) by means of (52), (53) we obtain now:

|||u2(t)||| ≤ K ′
3 e

K2(A
′
1−δεδ

2

0
+A′) εµ(ε2−µ + ε t1−δ + εµ t) , 0≤ t≤T ′≤T4 ,

hence, taking into account 0 < ε < ε0 < 1 and T4 ≤ A′/εµ,

|||u2(t)|||3 ≤ K ′
3 e

K2(A
′
1−δεδ

2

0
+A′) εµ(ε2−µ0 +A

′1−δεδ
2

0 +A′) , 0≤ t≤T ′≤T4(54)

for all 0 < ε < ε0.

This ends the proof, since in view of (54) we may restrict ε0 and A′,

if necessary, in order to obtain that |||u2(t)|||3 < 2K1ε
µ for 0 ≤ t ≤ T ′ ≤ T4

and 0 < ε < ε0. Thus it follows that A′/εµ < T3 which yields that the solution

u2 = (g2, v2) exists up to time A′/εµ. Coming back to the solution uε = (gε, vε)

of (3), this means that uε exists up to time A′/εµ−1; moreover (15) is fulfilled on[
0, A′/εµ−1

]
as a consequence of (31), (49) and (48).
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