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Abstract: We study the large deviation function and small time asymptotics near
the diagonal for the heat equation associated to Geometric Fokker—Planck equations

(GFK) on the cotangent bundle ¥ = T"X of a Riemannian smooth compact connected

variety X.
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1 — Introduction

The purpose of this paper is to study the large deviation function and small
time asymptotics near the diagonal for the heat equation associated to Geo-
metric Fokker-Planck equations (GFK) on the cotangent bundle ¥ = T*X of a
Riemannian smooth compact connected variety X. These equations are the ki-
netic version on T*X of Laplacian operators defined on X. They can be view as
generalized Kolmogorov equations, and are hypoelliptic operators on T*X. The
basic example of GFK is the hypoelliptic Laplacian introduce by J.-M. Bismut
in [Bis04b], and applications to Ray—Singer metrics are given in [BL05]. There
exist many papers devoted to the study of Fokker—Planck equations acting on
functions (O-forms) in the case of flat metric on the Euclidean space R™ and
with a potential, both from the PDE and probabilistic point of view. We refer
mainly to the recent PDE study by B. Helffer, F. Herau, F. Nier, J. Sjostrand and
C. Stolk [HN03], [HN04], [HSS04] and the references therein.

In this introductive paper to the subject, we give some basic PDE analysis
results on GFK operators acting on differential forms on a compact Riemannian
variety X with coefficients in a fiber bundle F over X. This auxiliary fiber
bundle F' is a potential term in the equation, but will play no role in our study.
In the definition 1.3 of GFK, we have introduce a real positive constant 7 in front
of the harmonic oscillator part of the GFK. This constant h is a characteristic
frequency. The reader may always take A = 1, since we will not here study the
operator limits 4 — 0 or A — +o00. However, the introduction of the constant
h makes the discussion of the Hamilton—Jacobi equation more clear in section 3.
The reader will find the study of the limit A — +o0o in the case of the the
hypoelliptic Laplacian in [BLO5].

The paper is organized as follows. In the first section, we define what are
Geometric Fokker—Planck operators. In the second section, we give weighted
estimates of Agmon type on the resolvant of GFK operators (see theorem 2.4).
These estimates are far to be the best possible: first we just follow the Kohn proof
of Hérmander theorem in suitable Sobolev spaces, so we do not make a precise
analysis of the hypoellipticity of the GFK, and secondly, we use only the real
part of the spectral parameter in the estimate. However, these estimates show
that the property of finite speed of propagation for the resolvant of a GFK is
related to an Hamilton-Jacobi equation on the cotangent 7%(77X) of the phase
space T*X (see (2.14)). In the third section, we study some basic properties of
this Hamilton—Jacobi equation which describe the propagation property for the
GFK. This Hamilton—Jacobi equation is the counterpart for GFK operators of
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the geodesic flow on T*X which describe the propagation property for Laplace
equations, and is associated with the following action for trajectories s —xz(s) € X

lal*  hjo?
o= 24
o 2n 2

ds

where v, a are the velocity and acceleration. This action has been introduced
in the study of the hypoelliptic Laplacian by J.-M. Bismut in [BisO4b]. The
corresponding Fuler—Lagrange equations are given in theorem 3.2. The associated
Hamiltonian function on 77 (7T%X) is

H(z,0) = 2(1¢"P ~ o) + (lc™)

with z = (z,p) € T*X and where ¢ = (¢, () € T}(T*X) is the canonical de-
composition of ¢ in horizontal and vertical components. The function —H(z, ()
is a principal symbol of the GFK operator A(h,z,0,) evaluated at ( = —0,.
The correspondence between critical trajectories for the action Z; and integral
curves of the Hamiltonian of H is given in theorem 3.3. The structure of the
large deviation function D(t, z, ') which describe the decay of the heat kernel is
given in theorem 3.14, and its relations to the solution of the Hamilton—Jacobi
equation for the resolvant is given in theorem 3.17. In subsection 3.6, the reader
will find the behavior of the geometry of the phase space T*X associated to the
action Z, in the simplest but non trivial case of flat metric. Finally, in the last sec-
tion we give the asymptotic, near the diagonal, of the kernel of the heat equation
in theorem 4.1.

1.1. Geometry

Let (X,g) be a Riemannian compact connected manifold of dimension n.
Let TX and T*X the tangent and cotangent bundles to X. We shall denote
by (x,p) points in T*X, by 7 the projection of T*X on X, by g the canonical
isomorphism from 7'X to T*X given by the metric, and by (.|.) the scalar metric
product on TX or T*X.

If (x1, ..., z,) are local coordinates defined in an open subset U of X, we shall
denote by (x1, ..., Zn; p1, ..., pn) the coordinates on T*X |y such that p; = (p, %).

For u = Zuj% € T, X one has
J

[ul = (ulu) = Xgi;(2) u'v!
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and the square of the length of the covector p = Xp;dx; € Ty X at a given point
x is
p” = (plp) = 9™ (x) pip;
where (g%7) = g~1. We shall often use the Einstein convention relative to indices
summation.
Let T be the tangent bundle on ¥ = T*X. We introduce the following
splitting of T'X

(1.1) T =T o TVY

where the vertical tangent space TVY is the tangent space to the fibration 7*X — X,
thus is span by the vector fields

0

ol —
apj

and the horizontal space THY is span by the vector fields
0 0

%= g T I3, Pa

apg
where I'z ; denotes the Christoffel symbols

Bi ™ 9 ox; Ozg Oz,

so that the Levi-Civita connection V¢ on TX is

0 0
VLO Fk
—_— fry S =,
8?:2- <8x]> b axk

If u(z) = Euj(x)% is a section of the tangent bundle 7X, then (p,u) = Su/p;
J
is a function on ¥, and one has the identity

ei(<p, u)) = <p, Vgiz@ .

From the identity

. . 1 0g*J

i,k I —

) F . = — oy

g k1 PiPj 2 Om PiDj

one gets that the vector fields e; are tangent to the subvarieties |p|> = Cte, and
that the Hamiltonian field of the function [p|?/2 on the symplectic manifold ¥ is
equal to

(1.2) Hyp2j2 = B¢ pje; € TS .
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Set I'=3T"; dz;. Let us recall that the Riemann curvature tensor R is the 2-form
with values End(T'X) given by
R=XR;da’ A da®

or'y, BFj
= — — —= ', Tl .
Rj,k 8%, O + [ Js k]

For u(x) = Euj(a:)a%j, v(z) = Evj(x)a%j, one has

R(u,v) = SRy wio* = VEOVLIC _yLOGLO _ V{JC} € End(TX)

U,V
and the Riemann tensor R satisfies the symmetries identities

R(u,v) = —R(v,u)

1.3
(1.3) (R(u, v)w]z) = —(w|R(u,v))

where the second identity is consequence of (uv —wvu — [u,v]) (w|z) =0 and
u(w|z) = (VECw|2) + (w|VECZ). Then the commutator [e;,ex] = ejer — exe;
of the vector fields ej, ey, is the vertical vector field on ¥ given by the formula

G,
. ex] = TR — Ty
[6] Ck] 7,k,08 Pa apﬂ

where pa% € End(T*X) acts as pa%(ijéj) = paé?, so that

(1.4) [ej,ek] =t gk

We shall equip 7Y with the Riemannian metric such that the splitting (1.1) is
orthogonal, the induces metrics on THY, TV'Y being the canonical ones defined
by the isomorphisms T % ~ T, X and T )X ~ T X.

Let F— X be an hermitian bundle on X and V¥ a connection on F. Let Y
be the first order operator acting on sections of the fiber bundle ¥ xx F on X
given in local coordinates by the formula, where (f*(z)); is a local basis of F'

(1.5) Y (Sai(z,p)f' () = 2{IpP*/2,a:} f' + Egl’jpjaivg%(fi)

where {.} denotes the Poisson bracket on the symplectic manifold ¥. Then the
principal symbol of Y is the vector field H p|2/2- Let

N(T*S) @ T*F
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be the fiber bundle on ¥ = T*X of differential forms on the cotangent bundle T*X
with coefficients in F. For any real s, exp(sY!) is an isomorphism of ¥ xx F,
and for any section w of A*(T*¥) @ 7*F, the Lie derivative Lie(Y!)(w) is defined
by the formula

(1.6) Lie(Y")(w) = - exp(sY )" (@)l -
If e, é; is the dual basis of e;, é7, given by
e =du; , éj = dpj — I'j pa dxy,
then one has the formula
(1.7) Lie(YT) (Bwieley) = Y ¥ (wf)eles + Ewljﬁie(sz/g) (eléy) .

Let h be a function on ¥, and Z = H}; the Hamiltonian vector field of h.
The action of the Lie derivative Lie(H},) on 1-forms is given by the formula

Lie(Hy) (aj dxj + B dp;) = o dj + B3} dp;

0%h 0%h
" Ih. o _
(1.8) oj = {hash+ 0x; 0pr, " 0w Oy, B
0%h 0%h
AT - .
The matrix
0%h B 0%h
0z 0 0z 0
N, — x Op x O0x
0%h B 0%h
Op Op Op Ox

is skew adjoint for the symplectic structure. With the choice h = |p|?/2 and our
choice of basis e’ = dx;, éj = dp; — F;’k Pa dxy;, which preserves the fact that e’
is homogeneous of degree 0 in p, and é; homogeneous of degree 1, on gets that

N = Mp|2 /2 has the following homogeneity relative to p
" N(e') = N7 (@) pac' + N () &
N (&) = N2 (x) pappe’ + Ny7(x) paty -

We equip the fiber bundle A*(T*Y) @ #*F over ¥ with the hermitian met-
ric induced by the one’s of AY(T*X) and F. We define the connection V on
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A (T*Y) ® 7*F as the connection induced by the relations

Va7 = VB (1) + £ VC(E)
(1.10) Veu(£'e5) = VA, (£ + £ VE (@)

Vi (fied) = 0

Ver(f'é) =0

where V5¢(e/) is the Levi-Civita connection on 7*X, and V5Y(é;) is the Levi-
Tl Lk
Civita connection on T'X with the identification é; = 0.

1.2. Spaces and operators
Let w be a section of A*(T*Y) ® 7*F. We write in local coordinates
w=Ywielé;

where w{(x,p) are sections of the fiber bundle ¥ xx F on X. We define the
vertical number operator Ny by the formula

(1.11) Ny (Swieléey) = Swi |J]efey .
We define the following L? structures on the space of sections of A*(T*Y) ® 7*F.
Definition 1.1. Let dz dp be the canonical volume form on . Let (p) be the

function on X, (p) = (1 + ]p|2)1/2. For w(z,p) = Xo<j<nwj(z,p), Nv(wj) = jw;
we define the weighted norm

w(z,p)|2 = Slw;*(z,p) ()Y .

Then we define the spaces L? and L2, of sections of A*(T*Y) ® 7*F, as the set of
w such that

(1.12) wwzjw%mmm<m

(1.13) ol = = [l op) dodp < o0 .0

Let us remark that by (1.5), (1.6), and (1.9) we get that the first order operator
Lie(YF) can be written on the form, with N(z,p) € End(A*(T*Y) @ n*F)

Eie(YF) = V{|p|2/2’.} + N

(1.14)
1) N (@) |l < Cf|lw]lu -
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Definition 1.2. Let M (z,p) be a smooth section of End(A*(T*Y) ® n*F),
and d € R. Then M (x,p) is a symbol of degree d (resp. a weighted symbol of
degree p) if for all a, 3, there exist C, g such that

(1.15) Ve VEM|| < Cap ()
and respectively in the weighted case
(1.16) IVeVEMllw < Cap ()

where ||M|,, is the norm of M relative to the weighted norm | . |,. O

Let us recall that the vertical derivative d,; is defined by the formula
(1.17) O, (Swieley) =20y, (w])e'ey .
We define the vertical harmonic oscillator O by the formula

O(Zwieléy) = 2O(w) el

1
(1.18) O =3 [=Ap +Ip* + 2Nv = n)]
82
Ap = Egi,j (Jj) 78])7; 8pj .

Let M&l (x,p), M(x,p) € End(A*(T*Y)®7*F), be weighted symbols of degree
0 and /& > 0 a real constant.

Definition 1.3. A Geometric Fokker—Planck operator is an operator A act-
ing on sections of A*(T*Y) ® ©*F of the following form

A =hO+ Lie(YT) + M

(1.19) . ,
M = Z(‘?ijé + Xp;M{ + M .o

A fundamental example of Geometric Fokker—Planck operator is the hypoel-
liptic Laplacian introduced by J.-M. Bismut in [Bis04b], and we refer to [Bis04a]
for an introduction to the subject.

Observe that a GFK operator A is a second order differential operator, par-
tially elliptic in p, involving only first order derivatives in x. Observe also that
the vertical derivatives 8, and the commutators [y, ,{[p[*/2,.}] span the tan-
gent space to Y, and thus, by Hérmander theorem, a GFK operator A is always
hypoelliptic, and the heat operator d; + A is also hypoelliptic.
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Let p be the linear map, defined by the formula, where Ny (w;) = jwy,
p(So<jn wi(z,p)) = So<j<n wi(z,p) (P) .
Then, if A is a GFK operator, the conjugate operator
-1 .
pAp=2A4A,

is of the form

A, =hO + Vip2/2,3 M

(1.20) . .
M = %8, M3 + Sp;M] + M

where now the matrices ngl(a:, p), M(z,p) are symbols of degree 0. Moreover,
on has the obvious

() = llelfe -
In the rest of the paper, we will always work with conjugate GFK A,, with
the notation A = A,, and therefore, we will only use the standard L? structure
on sections of A*(T*Y) ® n*F.

In the analysis of GFK operators, we will use the following rules to evaluate
the degree of an operator acting on sections of A*(T*Y) @ n*F

Oz; is of order 1

pj, Op; are of order 1/2 .

Observe that with this definition, for any GFK operator A of the form (1.20),
one has obviously
O is self adjoint on L? and of order 1

191 VipP/2,.) = Egi’jpjvei is of order 3/2
(1.21) and has skew adjoint principal part on L?

Vip/2.3 T Vipz/2,.y and M are of order at most 1/2 .

Observe that a modification of the connection V¥ on the fiber bundle F will
just modify the lower order term M in (1.20).
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2 — Resolvant estimates

In all this section, we denote by A a GFK operator of the form (1.20).
Let V' be an open subset of C. We shall denote by A € V' a spectral parameter.
We decompose A according to

Let ®(z,p, A) be a smooth function on ¥ x V. We introduce the conjugate oper-
ator

Agp = e®Ae™® = A+ Bg
(2.1) (8,®)2 0P

1
Be = h| — —5—+ (0,2|0,) + 5A]f,<1> —{Ip|*/2, @} — =M} o,

where we use the notations
0P 00
= Ygij — —
" Op; Op;

0P
(Op®[0y) = Xgi; 87%8131' .

(0p®)?
(2.2)

Then we have the following integration by part formula, with w = e®u

/((A—)\)w1|w2) e*® dx dp :/((Aq>—)\)u1|u2) dx dp

h
=3 /(8pu1]8qu) dx dp +/(C¢,u1|U2) dx dp

(2.3)

where the operator C' is given by
Cp=Cf +Cqy +C°

Ci=p+ [Z(W + 2Ny —n — (apcb)?) — {yp|2/2,q>}]

_ , 1 0D
C<I> = —if+ h[(8p<I>]8p) + QAPCI):| + V{|p|2/27_} — EMOJ %
J

(2.4)

C° = 20, M§ + Sp;M{ + M .

The matrices Mg71(x, p), M (z,p) are symbols of degree 0 independent of @, \.
The purpose of this section is to get L? and Sobolev estimates on the resolvant

(Acp — )\)_1.
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2.1. Pseudodifferential calculus

In this subsection, we recall the basic facts on pseudodifferential calculus,
and associated Sobolev spaces that we shall use in the study of the conjugate
operator Ag.

In view of (2.4), it is natural to attribute the following degree to the real and
imaginary part of the spectral parameter A

w is of order 1

B is of order 3/2

and also to assume the following property for the first order derivatives of the
phase function ®: for any «,~, there exist C,  such that for all K and all A € V'
one has

ei e ((,p, N)| < Cay ()1 ()% + 1)) /2

€47 00, (9,2, )| < Caury (o) ((9)? + 1) 2

Observe that the vector fields e; are of order 1, while the vector fields d,, are
of order 1/2, so the 2 lines in (2.5) are not at the same level of homogeneity.
We shall denote by S(A*(T*Y) @ 7*F') the Schwartz space of smooth sections u
of A*(T*¥) ® n*F such that for any k, a,, there exist C} o~ such that for any
x,p one has

(2.5)

[(p)* Ve oy u(z, p)|| < Crap -

We denote by S’'(A*(T*X) @ 7*F') the Schwartz space of tempered distributions
sections of A*(T*Y) @ m*F.

We first introduce a Littlewood—Paley decomposition in the radial variable |p|
for sections of the fiber bundle A*(T*Y) @ 7*F. Let g € |1,2[ and ¢(r) € C§°(R)
such that ¢(r) = 1 for |r| < % and ¢(r) =0 for |r| > 1. Let x(r) = ¢(r/2) — ¢(r);
then x has support in [=,2]. For j € N, let x;(r) = x(277r); then one has

L= ¢(r) + Y _x;(r) -
=0

One has (p) > 1 so we have for u € &, ¢({p))u = 0 and we get the Littlewood—
Paley type decomposition of v € 8’ in the form

(26) u = ;53'(16)
§i(u) = x(277(p)) u .
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For j > 1 the tempered distribution ;(u) has support in the annulus

(2.7) C; = {p) € [2/ro, 2]}
and Jo(u) has support in the ball {|p|> < 3}. One has Cj;2NC; = ¢.

Definition 2.1. For any u € &', we define U = P, U; by the formula

(2.8) Uj(x,q) = §;(u)(x,27q) . 0

Then for any j € N, one has U; € &', Uy has support in the ball B = {|q|? < 3}

and for j > 1, all the U, have support in the fixed annulus R = {\q|2 € [%—%, 4]},
7o

and one recover u by the formula
(2.9) u(z,p) = Z Uj(z,277p) .
j=0

Let By = {|g|? < 5} so that all U; are supported in By. Let Y be the projective
compactification of T*X. We denote by y the coordinates on Y, and by dy a
volume form on Y equal to dz dq on By. Let (.|.) a smooth extension to the fiber
bundle A*(T*Y) @ n*F on Y, of the L? scalar product on the restriction to By of
A (T*Y)@7*F. We denote by Sy the space of smooth section of A*(T*Y) @ n*F.

Definition 2.2. Let Dy be a second order selfadjoint positive operator on
Y acting on Sy. For j € N, set

(2.10) Aj = (2‘“’ + |u)® + 27|82 + Dy)l/z.

For s € R, and U(y) € Sy we define the Sobolev norm |U|; » s by

(2.11) Uljns = 272 |ASU | L2yy -

We have introduce the normalisation factor 2/™/2 so that we have
‘Uj(x’q)‘j,)\,(] = ‘5j(u)($’p)}L2(z,p) :

For u(x,p) € S we define the Sobolev norm |[Ju||) s by

o0
(2.12) lalR e =D 10l As -
j=0
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We denote by H3 the completion of S for the ||.|| s norm. Remark that |U|; s

depends on the choice of the operator Dy, but that |U]| DL are

g and ‘U’Df,,j,)\,s
uniformly in j, A equivalent. In particular, the Hilbert spaces H3 are independent
of Dy. Remark also that, as a vector space, H3 is independent of ), and that
the norms ||u||y s are uniformly equivalent for fixed s, and X in a fixed compact

subset of C. o

Remark 2.3. H{ = H is the space of L? sections of A*(T*%) ® 7*F, and
u € 'Hj iff one has u, Ve,u, (p)Vp,u and ((p)% + |p| + %)u € ‘H. Remark also
that the H3 are the usual Sobolev spaces for p and |A\| bounded, and that for any
given A, the injection of ’Hi/ in H5 is compact for s’ > s. o

We denote by 7 €]0,1] a parameter, linked to j by the relation 7 =277,
We will work with classical pseudodifferential operators with weight A on Y.
A symbol of degree d is a smooth function with 7, A\ as parameter on T*Y,
a(y,(, 7, A), with values in End(A*(T*Y) ® n*F'), such that for any «,~, there
exist Cy~ (independent of 7, \) such that for any (y,() and 7 € ]0,1], A € V one
has

d—|v|

0500 aly, ¢, 7 N)| < Cay (77 + [+ 721812 + [P

We denote by S¢ the set of symbols of degree d. A smoothing operator on Y is
a family of operators B(7, \) with 7, A as parameters, such that for any s, ¢ there
exist Cs; independent of 7, A such that one has

‘B(T, )\)U|5 S Cs,t |U’t

Ul = [ (7t + 12 + 721812 + Dy) "0

We associate to a symbol a in local coordinates and trivialisation an operator
A(1,\) = Op(a) by the usual formula

A5 10,mA) Uly) = 2m)7>" [ aly, ¢ m 0 0(C) de

We denote by £ the associated set of pdo’s of degree d on Y. One has A € £¢
iff for any small compact subset K of Y, any cutoff function 6(y) near K, there
exist a cutoff & equal to 1 near the support of 8, and a € S?% such that one
can write in local coordinates and trivialisation A(7,\)0 = 0’'OP(a)f + B(1,\)
with B smoothing. For A € £%we denote by o(A) the principal symbol of A.
If A= Op(a), o(A) is the class of a in the quotient space S%/S%1.
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For E; € E% and RS gd/ one has FgEy € 5d+d/, U(EdEd/) = O'(Ed) O’(Ed/).
Moreover, if Eg = Op(e), Eg = Op(€'), one has [Eq, Ey|— OP([e, €/| + 1{e,€'}) €
£972 where {e,e’} € S denotes the Poisson bracket. Operators in £ are
uniformly in 7, A bounded on L?. We obviously have

A= (r7 |ul? + 7282+ Dy)' 2 T8 e &

and if A(y, dy) is a differential operator on Y of degree d, with smooth coefficients
independent of 7, \, then A(y, d,) € £ since all derivatives in ¢ of order |y| > d
of its symbol vanish identically.

2.2. Hypoelliptic estimates

In this subsection, we assume that there exist ¢y > 0 such that
(2.13) V C {Re(\) < —co}

and that the phase function ®(x,p, \) is real and satisfies the following elliptic
estimate: there exist g > 0 such that for all (z,p) and all A\ € V, the following
inequality holds true

h
(2.14) et 5 (1P =(0,2)%) = {IpI*/2, @} > eo((p)* + 1) -
ForseR, A eV, let
Ds,A(Aé) = {U S 'Hi, A@(u) S Hi} .

The following theorem is the main hypoelliptic estimate that we shall use in
this paper.

Theorem 2.4. Let ® be a real phase function such that (2.5) and (2.14)
hold true. Then, if ¢y is large enough, for any s € R, any A € V, and any u € &',
(Ap — MNu € H3 implies u € H§+1/4, and there exist a constant Cs independent

of A € V such that the following inequality holds true

(2.15) lullxsti/a < Cs[(Aa =N (w)]], -

Moreover, S is dense in Dg \(Ag), i.e for all u € D, x\(Ag), there exist a sequence
uy, € S such that lim(|lu — ks + | As(u — ug)||s) = 0.

Finally, let 01,65 be two functions on Y. which are symbols of degree 0 in the
sense of definition 1.2, such that Fy = support(61), Fo = support(6s) are disjoints,
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and such that for ro large enough, there exist 2 closed disjoints subset of 3,
G1,Ga, conic in p, such that F; N {[p| > ro} C Gj. Let u € &' be such that
(Ap — A)(u) = v € H3, satisfies ;v = v. Then for any t, there exist Cy such that
the following inequality holds true for all A € V

(2.16) |62ul[x: < Cy v

A -

Proof: This result is proved in a slightly different context in [BLO5]; we will
just recall the main steps of the arguments used in [BL05] and the modifications
necessary to handle the dependence in the phase function ®. The proof of theo-
rem 2.4 will be complete at the end of this subsection.

The main step is to get estimates on each term of the Littlewood—Paley de-
composition. Let ®, be the rescaled phase function

O (x,q,\) = B(x, 7 ¢, \) .
Then @, satisfies the following estimates, with a constant g equivalent to the one
of (2.14), uniformly in y = (z,q) € By, A € V and 7 € |0, 1], where B, is equal

to the ball By when 7 € ]1/2,1], and is equal to the annulus R when 7 € 0, 1/2]

|0%e (@7 (y,\))| < Calr™2 + )/

(2.17) 10204, (7 (y,\))| < CarH 772+ )2
h, _ _ _
pt 5 (770l = (70,27)%) = 7 H{lal*/2, @2} > eo(r 7+ i)

where we still denote by e the vector field

0
= — 1'\0( .

In particular, one has
(2.18) en(®,)p, € EY?2 ., TV (BB, € EY? .

Let Qg - be the operator deduce from Ag by the change of variables (z,p) —
(z,q9=Tp)
Qo [U(x,q)] = Ae [U(x, 7p)] (z,q/7) -
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Then we have
Q<I>,T = AT + B<I>,7'
Ar = hOr + 7'V yjg2/2,3 + M-

1
O, =— [—TQAq + T_2|q|2 + 2Ny — n)}

2
(2.19) My =750, M + 7 "Sq;Mj + M
0,0, )2 1
Bg ;= hr? [—((12) + (9,9-|0,) + 2Aq(1)r]

OP
— 7 {|q?/2,®,} — TEM] 5 T,
q;

Let 6y(x,q,7) be a smooth function with compact support in By, equal to 1
in a neighborhood of: the ball B if j = 0, the ring R if j > 1, vanishing near
g =0if j > 1, and independent of j > 1. Let R¢ = R the operator on Y

R = 6p(Qar— )b -

Then the decomposition of R in its self adjoint part R’ and its skew adjoint part
R" is of the form, where E; denotes any element in £¢

R=R+R'
(2'20) R =R + R R' — R" + R
— D > — 1 (]
with
h
R{ = 6 [2 [—TQAq + 7'_2|q|2] +pu+71Ey + TE06Q:| 6o
0y®;)? 0%,
Ry = 6y [—m?(qz) — 7 Hq?/2,®.} + 7 o EO] 0o
(2.21) b

6’ = 6y |:T_1{’q‘2/2, } — Zﬁ + T_lE() + TE()aq:| 0o

1 D,
% = 6 hr? (6q<I>T|8q) + *Aqq)f + TLEO 0y .
2 8qj

From (2.18), (2.21), and [{|q[?/2,.}, 4|, € &% we deduce

[,
[R,Eq) € 7€V, + (72 + p)/2 ¢
(2.22) Ry, TRy € &'
R € (2 4+ w2 %V, + £ .
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We will use the notation

2 i p=m, A= 7,1/477171/4(7_7177171/2 i m’1/4)1/2
(2.23)

2 fp=my, A= (2my) TV (@m e YR

Observe that one has
(2.24) m;>14c, A <V2(1+¢) Y.

Theorem 2.5. Let ¢y large enough. Then for any s, there exist a constant C
such that for any j € N and any U(y) € Sy (with support in the ball B if j=0
and in the annulus R otherwise) the following inequality holds true for all A € V

—j 2 217712 —217712
m;|2 ]VQU|j,)\,s +mj|U|j,/\,s +'Aj |U\j,,\,s+1/4

(2.25)

+A;1|2_quU|§,)\,s+l/8 < CS‘RU|?,)\7S :

Proof: We will denote by C (resp. Cs) various constant independent of
€10,1], A € V,s (resp. 7 € ]0,1], A € V). We denote by A the positive self
adjoint operator

A= ("4 | + 7|87 + Dy)

and we set
Ul = AUz, Ul =|Ulo .

Observe that the factor 277/2 in the definition 2.2 of the norm | . lin,s is both on
the left and on the right hand side of (2.25), so we can forget it.

We start observing that for ¢y large enough, we have the following continuity
and coercivity estimates.

Lemma 2.6. Let ¢y large enough. There exist C such that for all U with
support in B; the following inequalities hold true

(RUI)| < C|IrGUPR + (72 +p) U
(2.26)
570

o (T U < C(RUD) .

hr?
7|VqU\2 +
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Proof: This is an easy consequence of (2.21), and of the hypothesis (2.17)
on the phase function ®: by the integration by part formula (2.4), we get

hr? _ _
Re(RUIU) 2 2= (VU +eo(r 24+ [UF = C[(r24) 2 U + 79, |U]

and we conclude for the lower bound on (R'U|U), using (2.24). We obtain the
upper bound on |(R'U|U)| by the integration by part formula (2.4) and the a priori
estimates (2.5) on the phase function ®. The proof of lemma 2.6 is complete. u

In the sequel, we will always assume that cg is such that lemma 2.6 holds
true. In particular, lemma 2.6 gives for any U supported in B,

I7V,U| < Cm™Y2|RU|

(2.27)
U < Cm™Y|RU|.

Lemma 2.7. There exist C such that for all U with support in B, the fol-
lowing inequality holds true

|R"U|2_1/2 < C’(T_lm_1 +7‘m_1/2) |RUJ? .

Proof: Let E = A~!'R". From (2.22), one has
E e 1 4 m!2r ety + £7Y

and

IR'UI, ), = (NV2R'U|AY?R'U) = (R'U|EU)

One has
(R'U|EU) = (RU|EU) — (R'U|EU)

and from (2.26) and |V|_1 < Cm~|V]| we get
EU| < C(r'm™ +m  +m™¥?)|RU| < Cr7'm Y RU .

Now, observe that R’ is selfadjoint and non negative by (2.26), so by Cauchy—
Schwarz we get

2|(RU|EU)| < 7 Y(R'U|U)| + 7|(R'EU|EU)| .
From (2.26), we have

T YRU|U)| =77 Re(RUIU)| < 7 HRU||U| < 77 'm Y RU? .
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Finally, we write

7(R'EU|EU) = Re(tERU|EU) + Re([R, TEJU|EU) .
By (2.21) we obtain

TE=7A'R’ € E24m!PrE7V, © (1+7°m!/?)E"
and thus we get

|Re(rERU|EU)| < C|RU|(1+7*m'/?)|EU| < C(r~'m™ + rm~1/2) |RU|?
and from (2.22), we get
[R,7E] € (1+72m!/?) (7€°V, + m*/2€%)
which implies
|([R,7E)U | EU)| < C(r'm™3/2 + rm~Y) |RU|? .

The proof of lemma 2.7 is complete. u

Lemma 2.8. There exist C such that for all U with support in B, the fol-
lowing inequality holds true

|Ulyya < CAIRU| .

Proof: Let R be the skew adjoint operator defined in (2.21). Our lemma
will be consequence of the main algebraic commutation relation which is the core
of the hypoellipticity, namely that we have near B;

(2.28) [0y, TRY] — Xg**0,, € £V, +£° .
By lemmas 2.6, 2.7, and (2.22) one has
TIRGU |12 < T|R"U|_1/2 + 7|RGU| 12
(2.29) < 0(73/2(7_2m_1+m_1/2)1/2 +Tm_1/2) IRU|
C 2 (rtm~ 2 4m~VY) |RU|

IN

We first verify that the following inequality holds true

(2:30) [0, TROIU| 5, < CrVim Y4 ("= 2~ VH12 |RU| = CA|RU.
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We have, with E_; /5 = A=32[0,,, TRy € £71/2
2
|[BQI¢7TR6/]U‘_3/4 = ([aquR/O/]U | E—1/2U)
and
— (8qkTR6/U ’ E_l/QU) = (TRSU | 8qu_1/2U)

= (B*,)y7RoU |04,U) + (rRGU | [0y, B_1/2)U)
(2.31) — (TR§0g,U | E_y )5U)

= (04U TRyE_1)5U)

= (0gU | E_1o7RGU) + (04U | [T Ry, E_15]U)

and we conclude that (2.30) holds true using (2.29) and [9;,, E_; 9] € £
[TRG, E_q)9] € E71/2 4 7260V, We next observe that lemma 2.8 is equivalent to

(m +7|B) Ul 374 + |0:U| _3/4 + 104U 34 < CA|RU| .
From the obvious |[A=3/4U| < m~3/4|U|, we get by (2.27)
m|U|_sa + |0,U| 3/ < Cm™3/*(14+77"'m™'/%)|RU| < CA|RU| .
From (2.28) and (2.30) we get
10:U] 34 < CA|RU] .
Finally, using (2.21) we get
BoiTB80 = —mR" +60|{|a*/2, .} + Eo + r2Eody) 60
and therefore from lemma 2.7 we get
718U 34 < c(mfl/‘*(flm*wTm*1/2)1/2+A);RU| < CA|RU| .
The proof of lemma 2.8 is complete. =

From (2.26) we get, for any § > 0 and U with support in B; that the following
inequality holds true

(2.32)  |TV,U]> < CRe(A"VERU |AVRU) < C<5|A1/8RU\2+(1S|A1/8U|2>.

Let 6(x,q,j) be a smooth function with compact support in By, equal to 1 in a
neighborhood of: the ball B if j = 0, the ring R if j > 1, vanishing near ¢ = 0 if
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j > 1, and independent of j > 1. We can apply the previous estimates to OAU.
From lemma 2.8 we get for any s

IAY49ASU| < CA|ROAU| .

One has
AYVAGAST = ASHY49U + AVA[9, AU

ROAU = A*ROU + R[0, A*]U + [R, A°)0U .

The essential support of [0, A®] doesn’t intersect the support of U, so for any s, o,
there exist Cs , such that

110, AU < Cun|ULs .

From 0U = U, |V|_o, < m®|V| for a > 0, and [R, A®] € £57V, + m!/2£% we thus
get that for any s, there exist Cs such that

(2.33) U241 < CA2<|RU|§+CS|TVqU|§+CSm|U|§) :

If we apply now (2.32) to ASTY/3U, using the same commutation argument, we
get

TV U215 < c5(|RUy§ + OV UPR + csmyU\z)
(2.34) .
+ O3 (U2 1+ Cr AUE) + Cor? UL, s -

Adding A2 (2.33) and ! (2.34), with the choice § = C1.A with C; large, we
get

(2.35) AP g+ AT VU R ys <
< CIRU[ + Col VU3 + Com|U S + CoAT U2,y s -

Applying (2.27) to OA°U we obtain

(2.36) mrV U +m U2 < C(IRUP + CulrVU L2 + ComlU ) .

Adding (2.35) and (2.36) we get

m|TVqU|§ + m2\U|§ + AiQ‘U|§+1/4 + Ail‘TVqUﬁH/S <

2.37
(2:37) < CIRU + CLlrVyUP + CamlU2 + CoA™ 22U,y
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We can now end the proof of theorem 2.5 by a simple contradiction argument;
suppose that for some value of s, (2.25) is untrue. Then there exist sequences
T, = 277%, Uy, A\, such that the left hand-side of (2.25) (with j = j, and U = Uy,)
is equal to 1 and lim |R(Ug)|s = 0. By (2.37), the sequence ji is necessarily
bounded, so we may suppose that jp = j is constant, and the sequence Ay is
necessarily bounded, so we may forget the A dependence. Then all the Uy have
their support in B, 7 is fix, the sequence Uy is bounded in the space W5t1/8 =
{u € HoH1/4, Vyu € H*+1/8}, thus we may suppose that Uy, is strongly convergent
in W*, and from the inequality (2.37), we get that its limit satisfy Uy, # 0. By
(2.37), we get for any U € Sy with support in B; and any o

(2.38) U210+ VU2 418 < Ca(’RU\i + VU2 + ‘U’¢27+1/8>
and by iteration of (2.38)

Lemma 2.9. Let 7 be fixed, and K a compact subset of the interior of B.
For any o, and any distribution U € D'y with support in K, RU € H° imply
Uc HtY4 v, U € HH/8 and (2.39) is valid.

Proof: This is a standard consequence of the inequality (2.39) Let U, € £~
be bounded in £° with scalar principal symbol, such that for U € D'y with
support in K, ¥.(u) has support in B, and lim._,o V.(u) = uw. From [R,¥.] =
A:V, + B: with A., B. bounded in £°, and using (2.39) we get with U, = V.U
for all t, N

’U€’t2+1/4 + ‘VqUa‘?Jrl/S < Ct,N(’RU‘f + ‘U’?—N + ’AEVQU’? + ’BeU‘%> .

By induction, we conclude that the set of ¢ such that U € H™/4 vV, U € H*1/8
and (2.39) is valid for o = ¢ contains |— 0o, 0| n

One has RUy = 0, so lemma 2.9 imply that Uy is smooth, and we get by
(2.26) Uy, = 0: contradiction. The proof of theorem 2.5 is complete. n

Let us recall that by (2.6)
w=3 0i(w),  0(u) =xC(p)u.
j=0

Let v = (Ao — A)u, and Uj;, V; associated to u,v by (2.8).
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The operator x; = x(277(p)) commutes with {|p|?/2,.}, so we have
[Ao =, xj] = Mop(277(p)) 277V, + 277 (277 (p)) Mo + 277 6(277 (p)) h O, ®

where M, are symbols of degree 0 in p, and ¢(r) is compactly supported.
We thus get for some constant C, M, if u, Vyu, (Ae — A)u € Hi

|RUj|¢ < C(|Vjle + wi )

(2.40) - -
wyj = E|j—k|§M<2 Sy ? | Ule + 2 %Wqu!t) :

Let ot j = |Vj|¢; under the hypothesis of theorem 2.4, one has a; » j € [%. Let

(241) By = m;/2|27jquj‘t—i_mj‘Uj‘t+A]‘_1|Uj|t+1/4+"4j_1/2|27jquj‘t+1/8‘

From theorem 2.5 and (2.40) we get with
ou; =279 (m?/gAj + A;/Q) < Cc27Y
(2.42) Biag < Ci|RU;|y < Cy (at,A,j + B k<M Opk ﬁt—l/&)\,k) :

We conclude that the set of ¢ € R such that 3, ; € 12 contains | — oo, 5], and in

particular u € 'Hiﬂ/ 4, so Ag is hypoelliptic in the scale H3. Let

WA ={u, Bspg €} llullwg = 18sll -
From (2.42), we get
lullwg < Co((1(Aw = Aullns + llullpe-a/s)
and by iteration for any N,
ullhws < C's,N(H(A<1> — Nul[xs + HU/HW;—N> .

By a contradiction argument like in the proof of theorem 2.5, using (Ag —A)u =0
= u € § and the fact that the integration by part formula (2.3) and the hypoth-
esis (2.14) gives (Ag — N)u =0 = u = 0 if ¢ is large enough, we get

(2.43) [ullws < Csll(As — Mullxs

which implies (2.15). Observe that (2.43) is much more precise that the estimate
(2.15) of theorem 2.4. The assertion on the density of S in D, \(As) can be
shown by the same argument that we use in the proof of lemma 2.9.
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Finally in order to prove (2.16), let S = (Ap — )7L Let 0 = (61(2), ..., On(2))
be a collection of smooth functions #;(z) on ¥ which are symbols of degree 0 in
the sense of definition 1.2 and such that 6; = 1 on the support of ;1. We denote
by Ad) (S) the iterated commutator

AdY(8) = [GN,...[GQ,[Gl,S]]...] .

One has

[01,5] = —=S[01, Ap—A]S = S[A+Bg, 01]5
_Ap
2

(2.44)

[A+Bg,01] = h([ ,91} + (8p(1)ap91)> + {|p|2/2,91} + EMg Op; 61 -

Therefore, we get
(2.45) Dj = [A+B<1>, 9]'] = h(8p<1>|8p0j) + hM,Lij + Ml,j

where the M, ;’s are symbols of degree k£ with support include in the support
of df;. From [Dj,0,,] = 0 for j # m, one gets

(2.46) AdY(S) = % SD; SD;,---SDj, S .

Lemma 2.10. The operator (Ap—\)Ad) (S) is bounded from H3, to Hi+N/8
and the following inequality holds true

(2.47) |(Ap—X) Ady < Clv|las -

(5) UH)\,erN/S

Proof: In view of (2.46), it is enough to verify

(2.48) [DSV[xs41/8 < Cllvllas -

Let u = Sv and w = Du. One has v = (Ag — A)u. From w = Du, and (2.45)
we get

Wile < C(m)?Ujl + 2771277 V,Ujle) -

From (2.24), one gets obviously
A1/8 m;/? < C(m] +A]_1A1/4)

AL/8 9~ < C(m;/2+A;1/2A1/8)
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so we get

[wllxs+1/8 < Cllullwg

and (2.43) implies
I1DSV|[xs41/8 < Cllollas -

Therefore, (2.47) holds true. The proof of lemma 2.10 is complete. u

The proof of (2.16) is now obvious: one has u = Sv, v = 0, and for any N,
with a convenient choice of 6, one has fou = 02 Ad) (S)v = 025(Ag — ) AdLY (S)v.
The proof of theorem 2.4 is complete. n

By theorem 2.4, (2.16), applied with the phase function ® = 0, the dis-
tribution kernel (A — X\)7!(z,2’) of the resolvant (A — X\)~! is well defined for
uw = —Re(\) > ¢g, and is smooth outside the diagonal z = 2’. Let us give an
elementary result of finite speed of propagation for the resolvant (A — \)~!, with
—Re(X) = p large, which shows that a GFK is almost local in [p|, and satisfies
with respect to |p| = y the same bounds that the resolvant of the 1-d harmonic
oscillator

h

5(—83 +17) .
This was already clear in the strategy of proof of theorem 2.4 and is consequence of
the fact that the Hamiltonian field H 2/, is tangent to the level surface |p| = Cte.

The condition (2.14) for a phase function ® = f(|p|?/2, 1) depending only on
pl, = —Re(A) is

df \ 2
u(%) —u—% < —e(p+u).
Let J = [ug,u1], 0 < up < uy < oo. For € €]0,min(1, 3)[ the solution f of the
Hamilton—Jacobi equation

(2.49) u(%y = u+ % —e(p+u)

vanishing for v € J is equal to

fjvg(y2/2,u) = /yo\/(1—5)32 + 2u<%—5) ds for y2/2 < y%/? = ug
(2.50) Y

y 1
Fre(y® /2, 1) :/ \/(1—6)82+2u(ﬁ—6) ds for y?/2> yi/2 =y .
Y1
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Lemma 2.11. Let J = [yo,y1] C [0,00], 7 > 0 be given. There exist o, and
for any § > 0, and any «, 3,d/, 3, there exist C such that the following inequality
holds true for p > pg and

Z="p), w<| <y ; z=(x,p), dist(|p,J)>r
(2.51) |ve v2 nghz/vfj SA=NTz )| <

< Cexp(— [fJ,O(|P’2/2aM) - 5\/@}) ’

Proof: By theorem 2.4, using (2.16), we have just to verify that for any
§ > 0, there exist a phase function ® = f(|p|?/2, i) such that (2.14) holds true,
with f(u, 1) such that

W (Vidl)| < Cutu

and such that
F@P/2,1) <0 for |yl €J

F@2/2.0) = fro(y?/2,0) — 0/ +y2/2  for dist(|yl, J) >r/2 .

This can be done easily by regularization of the function y € R — f;.(y?/2, 1)

(2.52)

near its singular points y = 0, y = yg, ¥ = y1, with € > 0 small enough with
respect to . One has

. h 9 .
(2.53) 5 Faopl/2,0) = dist(lpl.J) . m

3 — Hamilton—Jacobi

Let s € [0,1] — z(s) € X be a trajectory on X. The velocity at a given s is
the tangent vector v(s) € Ty X

and the acceleration a(s) is the tangent vector a(s) € T X

a(s) = Vysyv(s) -
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In a coordinate system x = (z1, ..., ), one has
=X
v(s) ds Ox;
d?z; o odxidrp\ O
=% (5 +I%,—L—== .
a(s) <ds2 TGS ds > ox;
With the identification of TX and T*X given by the metric, then (z(s),v(s)) is
identified with (z(s),p(s) = g(v(s))) and one has

(3.1)

(3.2)

and the identity
d d.f[fl ~i
(3.3) £(z(s),p(s)) = ZE e; + Xbi(s) €' = Hpp/o + b(s)
where H,2 /o € THY is the Hamiltonian vector field of [p|?/2 and b(s) € TV X.
Let L(z(s)) be the Lagrangian function

a52 U82
(3.4) L@@»::'ég h'g”.

Then £ defines a function L on the affine subvariety 7% = H,32/5 + T VY of
TS =THL o TVE

[b* | hlpl®

3.5 L ;0) = —
( ) (:L‘7 p7 ) 2h 2 )

The Legendre transform of L is the Hamiltonian function H (z, p; () on T*¥ given

by, with (V' = (|pvy

H(x,p;¢) = sup |:C(H|p‘2/2 +b) — L(z,p; b)]
(3.6) beTVY

h
= §(|CV!2—\P|2) + C(Hpj2/2) -

In local coordinates (z, p; &, n) with ( = £ dx 4+ ndp, one has

beTVy .

h . . 1 agm‘
(3.7) H(z,p;§,m) = 3 Y(gi;min; — 9" pipj) + Z<g” &ipj— 3 0z PP m) -

Observe that the Hamilton-Jacobi equation associated to (2.14) with e = 0 is
precisely

(38)  Hp0.2,0,8) = 5(@,8)~[pP) + {p*/2. 8} = .
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3.1. Symplectic Geometry

Let z=(z,p) €%, (2,() = (z,p,§n) € T*Y, and (dz={dr +ndp the
canonical 1-form on 7*Y. We shall denote by m, the projection T*Y — 3
and by {.,.}« the Poisson bracket on the symplectic manifold 7*¥. One has

(3.9) % = T"is o'y
and we shall denote by e the canonical map from 7, % to T/ X given by
e(z,O)(u) =Cw), veTHS wuw=dr().

In local coordinates, one has e(z, () = Xe;(z, ()dx;, where the e;” are the functions
on T*Y
ei(l.:pv fa 77) = gl + Fg,ipa 77,3 .

Let |n|? be the square of the length of the vertical component 7 = ¢V = (|pvy
of ¢

> = Sgign‘ .
Observe that we have the following identities
(3.10) {Inf et =0, {pf e} =0.
We still denote by (.|.) the scalar product on 7*X and T'X
(pla) =g" pigj . (ulv) = Bgiju'v?
and by (.|.) the pairing between T*X and T'X, so that
(elm) =ein' . (pln) =pin’ .

Then the Hamiltonian H is the function on 7*%
h
H = 2 (Inl* = pl*) + (le)

or equivalently if ¢ = (¢, ¢") is the decomposition of ¢ in the splitting (3.9)

h
(3.11) H(z,¢) = S (1< = [p*) + (pIC™) -
Let
s = (Z(Sv Zy C)? 5(87 2, C))
the flow of the Hamiltonian of H(z,() on T*%. For any function F(z,(), one has

d

gF(Z(s,z,C), 2(s,2,0)) = {H,F}.(Z(s,2,¢), E(5,2,0)) .
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Lemma 3.1. The following identities hold true
{H, [p[*/2}. = h(p|n)

(H, ()} = ~H + oo

(3.12)
{H, [n]*/2}. = hpln) — (eln)
{H, (ple)}. = hieln)
{H, (eln)}- = h(ple) = le[* + (p| R(s™"(p),m))
(3.13)

{H,le|*/2}. = <p\R(g_1(p),g_1(e))n> :

Proof: These identities are obtained by computation in local coordinates,
using in particular (1.4) and (3.10). =

We shall now investigate the correspondence between the critical points for
the action defined by the Lagrangian function L(z,b) on 7% and the integral
curves of the Hamiltonian function H(z,() on T*3. If F(z,() is a function on
T*%, we will denote by Hr the Hamiltonian vector field of the function F', and
by exp(tHp) the associated flow.

Set zo = (xo,p0), let z = (z,p) be a given point in X, and take T > 0. Let
t € [0,7] — x(t) be a trajectory on X such that zp = (xg,p0) = (2(0), g(v(0)))
and z = (z,p) = (x(T),g(v(T))). Then the Euler-Lagrange equations for the
action Zp(zo, z)

T T a 2 v 2
(3.14) Zr(z0,2) :/0 L(x(t))dt :/0 | ;trz| +h| ét” dt

that is, the equations satisfied by critical points of the functional z(t) — Zr (20, 2),
are given in local coordinates by

d? , d . . hd _
— —(gi " — (2 g;m T, a0 (g 0" =
' = S —8gi’j adad +2g; 8F}’k am ik ) + h —agi’j viod
2h \ O L oxy 2\ Oz ’

Observe that (3.15) is a fourth order ordinary differential equation on x(t), and
that any solution of these equation with a € L?[0,7T] and v € L*°[0, T is smooth.
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Let x(t) be a critical point for the action Zp(zg, z). Let t — z(t) (x(t),p(t)) =
(2(t), g(v(t))) be the corresponding trajectory in ¥, and (2(t), & = Hp2/2+b(1))
the section of 7% over z(t) associated to these trajectory. Then z(¢) is a critical
point connecting zg to z for the action

T T 2 2
(3.16) Jr(z0, 2) :/0 L(Z(t),b(t)) dt :/0 |b;ti)i| 4 h‘pgtﬂ dt

and from (3.15) we get the corresponding Euler—Lagrange equations in local co-
ordinates

2
L)+ 2 BN ) + e () =

6Fk i 1 Oghi h 0g™I
<‘8ml > <2ha bibi+ 5 gy PiPI ) -

For c(t) € T}y % = Ty X, and u(t) € T[S =~ T,y X we shall denote by

D c € T‘f )E and D “ € TI{ )E the covariant derivatives

(3.17)

Dc L, Du  oLC
D= Ve pr = Vet

so that we have

In local coordinates, with ¢ = ch and u = Yu'e;, one has

Dc de; j k
(ﬁ%:£’mmv

Du du*
—) = INPRTRL
(Dt)i + kWY

We have
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Theorem 3.2. Let z(t) be a critical point for the action fOT L(z(t),b(t)) dt.
The Euler-Lagrange equations for z(t) in terms of v(t) = g~'(p(t)), covariant
derivatives of b and of the Riemann curvature tensor R are

D Db 9 dz
(3.18) —EE+<Z)’R(U,.)U>+E, b=0, V=
Proof: (3.18) is an obvious consequence of (3.17) and b = %. "

Theorem 3.3. Let z(t) be a critical point for the action fOT L(z(t),b(t)) dt.
Let
t— (2(),¢() , <) = (¢"(®),¢"(1)
be the curve on T*% such that
1 Db

¢ (t) = np(t) — 7 ;€ LewX
1

Cv(t) = ﬁg_l(b@)) S T:(:(t)X .

Then t — (2(t),((t)) is an integral curve of the Hamiltonian of H, that is
(2(t),((t)) satisfies the Hamilton—Jacobi equations

(3.19)

dz OH

— = ——(2(),¢(1)
(3.20) di 06

)

s CORION

Proof: This result is a special case of Pontryagin duality. Observe that
due to the constraint % € 7%, the correspondence (3.19) involves first order
derivatives of b.

We get from (3.18) and (3.19)

D¢H -1
D7t = ? <b|R(U, )U>

DH
<p!l§t>=0'

In formula (3.6), the supremum in b € TVY is reached for b = hg(¢"), and one
has

(3.21)

OH 0 oL
55 (50 = 5o (C(Hypp2)) = 5 (2. kg ()

oH

afC(Z,C) = Hpp2jo + hg(¢") .

(3.22)
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From (3.22) and (3.19), the first line of (3.20) is obvious. We will get that
the second line holds true by a computation in local coordinates. One has
(2(t),¢(t)) = (z(t),p(t),&(t),n(t)) and the decomposition of {(t) in its horizontal

and vertical components
Eda' +fdp; = (et + (Vg
is '
(3.23) ' = &+ Tipan’
) CVJ — 77]'

and thus we get

(Y= D0 | etimw)) - (22 - <pr(§“ + L) G >> ] e
(3.24)

(&) %
One has

~(Ene) = el + (oI Ty )

and from (3.7) we get that the decomposition of %—g(z, ¢) in his horizontal and
vertical components is

< (ZC)> _587@77778791

ar; ;0 " 0
3'25 ]__‘ ’Uzi — F v RN
(329 + (ol(G + 0 ) o 52— (CHI0)) 5
OH v _ ;
(26.0) = ~hot o™ @) 4Tt
If (3.19) is satisfied, one has
| Db
I S AN o T |22
o= g (G = L' = |7 ()~ Tl @] = o
and thus the vertical component of the second line of (3.20) holds true, and we

get that the horizontal component holds true using (1.3), (3.18), (3.21) and the
identities

(b[Ris(v)) = (plRuii(g _1(5))>

h 8g17J

The proof of theorem 3.3 is complete. n

] .



GEOMETRIC FOKKER-PLANCK EQUATIONS 501

Lemma 3.4. Let § > 0 small. Let z(t) = (x(t),p(t)) be the solution of the
differential equation (3.18) with data x, pg, bo, b1 = %]tzo. Let (2°(t),p°(t)) =
exp tHy /Q(xo,po). Then, in geodesics coordinates centered at xg one has the
following formulas, where O is uniform in the set |ht|? + |tpo| + |[t2bo| + |t3b1| < 6

2°(t) = tpo + O(t|po]*)

3.26
(3.26) P°(t) = po+ O(t*|po]?)

2(t) — 2°(t) = O(t3|bo| + t3]b1))
(3.27)

p(t) = p°(t) = O(t|bo| + £*]b1])
and with

R = (|tho| + |2b1]) (Rt + |po| + |tho| + |2b1])°

t 1o
z(t) = x0 4 pot + bot>/2 + b1t3 /6 + K> <b0 + b1> + O(t*(R+pol*))

24 120
p(t) = po + bot + b1t?/2 + K2 ( b ﬁ+b1ﬁ + O (R + [pol*))
(3.29) 0+ 0o 0% Y 0
b(t) = b + bit + h*(bot?/2 + b1t3/6) + O(tR)
Db
B (1) = b+ 12 (bt +01£/2) + O(R) .

Proof: In geodesic coordinates centered at g, one has g(z¢) =1d, Vg(xg) =0,
so (3.26) and (3.27) are obvious. Using

[T () 0 (0)] < € Ja(t) = ol [p(®)] = O(t(\pol + Itbol + [261])°)

one gets (3.28) by an easy computation, writing (3.18) on the form, with
bi(t) = 57

(3.29)
O — bu(t) + O (160 (ol + Itbol + 12011)?)
ot 0 0
ob
S = 126(0) + O(¢1b1(8)] (Ipol+Itbol+112b]) + [b(®)] (ol +[tbo|+|#2b1])*) . m

Remark 3.5. Let M, Ty be given. Let zg = (x9,po) such that |pg| < M.
For t € [~Tp, Tp] set as above (z%(t),p°(t)) = exp tH p2/2(z0, po). Identify Ty X
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and T, X by parallel transport along the geodesic 20(t), and for any t write
r=20) +y,y € Tpy X ~ T, X the geodesics coordinates centered at 20(¢).
Then, by the same proof as the one of lemma 3.4, we get that there exist § > 0
depending only on M, Tj, such that the solution z(t) = (z(t),p(t)) of the dif-
ferential equation (3.18) with data xg,pg, b, b1 = %|t=0 satisfies in the above
coordinates the following estimates, where O is uniform in |tbo| + [t2b1| < 0,
keeping the notation

R = (|tbo| + [2b1]) (1%t + [pol + [tbo| + [£*1])”

: tt t5
z(t) = 2°(t) + bot?/2 + bit? /6 + B by + b= | + O(F’R)
24 120
0 2 2 t3 t4 9
t) = p°(t) + bot + b1t? /2 + B2 bo— + by — t
gy 70 = 20 b2 02 (b )+ OG°R)
b(t) = b + byt + 1% (bot?/2 4 b1t3/6) + O(tR)
Db
E(t) = by + h*(bot + b1?/2) + O(R) . o

Lemma 3.6. There exist ty > 0,69 > 0 and two smooth functions By 1 (t, zo)
defined for t € [~to,to], 20 = (w0,p0) € Ty, X, |po| < do, with values in T X,
such that By(0,20) = 0, B1(0,20) = h%po, and such that if z(t) = (z(t),p(t)) is
the solution of the differential equation (3.18) with data xg, pg, bg, b1 = %ﬂt:o,
then the equation in by, by

b(t) = 0

(3.31) Db

£ = Wp(t)

admits the unique solution (bg,b;) closed to (0, h?pg)
(3.32) (bo,b1) = (Bo(t,20), Bi(t,20)) -
Moreover, one has

Bo(t, z0) = —h*pot + O(t*|po|n*)

(3.33) 5 ) 9 /o 9
Bi(t, 20) = H2po + O(#lpol* (R%]t] + Ipol))

Proof: This lemma is an obvious consequence of (3.28). m
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Lemma 3.7. There exist tg > 0, dg > 0, §1 > 0 and two smooth functions
Boi(t, z, z0) defined for t € ]0,t0], z = (x,p), 20 = (w0, po), dist(x,z) + |At|> +
[tp| + [tpo| < 61, with values in T X, such that if 2(t) = (x(t),p(t)) is the
solution of the differential equation (3.18) with data x¢, pg, by, b1 = %h:o, then
the equation in by, by
(3.34) z(t) =z
admits the unique solution (bg,b1) in the set [t2bo| + |t3b1| < do
(335) (bo,bl) = (BO(t,Z,ZO), B]_(t,Z,ZO)) .

Moreover, in geodesic coordinates centered at xg, one has with

1/2 1/6 6 —2
M= ( i 1?2) M= (12 6)
<t2BO(t,z,zo)) - <x — g —tp0>
(3.36) t*Bi(t, 2, z0) t(p — po)
+:0( (1o =20~ ol + 1ep — pol) (1 + sz, o) + el + 1) ).

Proof: This lemma is an obvious consequence of (3.28). n

Theorem 3.8. Let M be a upper bound for the L*° norm of the Riemann
tensor R. There exist a universal constant C' such that the solution of the dif-
ferential equation (3.18) with data xg, pg, bo, b1 = %’]tzo exists for t € [—T, T,]
with

ds

r.xc|f .
0 VIl 2sTor] + hs + /M s([po + 5)

Proof: We first observe that when by = b; = 0, the solution of the differential
equation (3.18) is

(3.37)

z(t) = exp(tH|p|2/2)(x0,po) , b(t)=0
and thus is defined for all t. Set u = |p|?/2, v = |b]*/2, w = |%’;]2/2. Then we
get using the rule (a[b)’ = (22[b) + (a|2b)
u < 2vu\v
v <2V uvw
w < 20vvw + 4 Muuvw .
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Thus we can estimate the life span T by the life span of the following differential
equation on R

y@ = (My? + %)y
(%(0),5/(0),3"(0)) = (Ipol, [bol, [bx]) -

With A(y) = My?/3+h%y and B(y) = My*/6+ hy?+2CYy, integration of (3.38)
leads to

(3.38)

y' =A@y)+C, y?=Gy)=By) - By0))+y(0)*.

One has B'(y) = 2(A(y) — A(y(0)) + y"(0)), and we get the lower bound for the

life span
T, > / W_
w VG(Y)

With y = y(0) + s, we thus get (3.37) from

VGl < C<\/|b0|2+25]b1\ + hs + VMs(|po| +s)) n

Remark 3.9. Observe that in the above theorem, we have not take in ac-
count the sign of the curvature tensor. o

3.2. Homogeneity

In the sequel, we shall often use scaling arguments linked with the homogene-
ity of the phase space ¥ = T*X. For ¢ > 0, let ¢(z,p) = (z,ep) be the natural
action of homogeneity on ¥. We will denote by j. the corresponding action on the
cotangent space which is the canonical transformation of the symplectic variety
T*Y given by

je(@,p, ¢, ¢Y) = (w,ep, M e7CY)

For A >0, let A(z,{) = (2, A() be the natural action of homogeneity on 77*X.
If Fx(z,() = F(z,X(), one has Aexp(tHF, )(z0, (o) = exp(AtHF)(20, A(p)-
Let z(t) = (x(t),p(t)) be a solution of the differential equation (3.18).

Let (z(t), p(t), ¢ (t),¢V(t)) be the corresponding integral curve of the Hamil-
tonian vector field of H. Set t' = t/e and 2'(t') = (z(t'),p'(t') = ep(t’)). Then,
with b = £2b and v/ = ev = g~ 1(p'), #/(t) satisfies the differential equation

/
, dx

(3.39) —— 4+ (V|R(, W)+ (he)?V =0, o= i
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By theorem 3.3, the transformation

1 DV
TH 1\ reg - Y

C'V(t/) _ ég_l(b’(t'))

defines an integral curve parametrized by ¢’ of the Hamiltonian vector field of H'
with

(3.40) () = (VP ) + 01
One has
(2,9, ¢, ) = e, p, ¢ CY)
H(&)e(2,0) = SH(,0)
Let H.(z,¢) be the Hamiltonian

(3.41)

(3.42) He(z0) = (VP — 21pl?) + (olc™)
Observe that one has

e exp(tHp')(2,¢) = exp(tHn.)(z,2C)

&’ j exp(etHpr) (20, o) = exp(tHa.)(ej=(20, ) -

We will denote by

(3.43)

s — (ZE(S,Z(),C()), EE(S,ZO,CO))
s — (Z/(S,ZQ,Co), E/(87207C0))

the flows of the Hamiltonian of H.(z,(), H'(z,{) on T*X starting from (zg, {p)-
By (3.43), one has

(3.44)

Z/(Sa 20, CO) = ZE(S, 20, €C0)

(3.45) _, _
S (87207C0) = ':'8(872075<0) .

3.3. Time dependent eikonal

In this subsection, we shall study the following eikonal equation related to
the decay of the kernel of the heat equation.

(3.46) o0+ 2 (@ — o) + {IpP/2.0} = 0.
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For ¢ty > 0 and 6 = (do, 91, 92) with dg > 0,61 > 0,02 > 0, we denote by Uy, 5
the subset of R x ¥ x ¥

(347) Uy = {(t,z,zo), t €10, t0], dist(z,z0) < do, |tp] < 8a, |tpo| < 51}
where z = (z,p), and 29 = (z¢, po)-
Lemma 3.10. There exist ty > 0 and 61 >0, d5 such that the equation in (y
E(t, 20,0) = 0
admits an unique smooth solution (o = E.(t, z0) defined in the subset
Visr = {t € [~to,to), 20 € X, [tpo] <61}

of [—to, to] XX, and such that Z,(0, zp) =0. The smooth functions Z.(t, zy), (¢, zo)
defined in the set (t,29) € Vi, 5, by

Z(t,20) = Z(t,20,Z4(t, 20)) € 2

3.48 ¢
(349 Y(t, z0) —/0 (CaH - H) (Z4(s,20), Ex(s,20)) ds € R

are such that

~v(t, z0) = min/o L(x(s))ds

2 _ (ht)°
6

(3.49)

ht
= 5|P0\ Ipol? + O (t*Rlpo|* + t°B°|pol?)

where the minimum is taken over all trajectories s € [0,t] — x(s) such that
(2(0), g(v(0))) = 2o and data (bg,b1) such that t2|by| + t3|by| < 8. Moreover,
in geodesic coordinates centered at g, one has
(3.50) Zi(t, z9) = exp(tH|p‘2/2)(z0)

' + (—h2p0t3/6 +O(t°h¥|pol), —h?pot*/2 + O(t4h4|p0|)> :

Proof: By (3.19), the equation Z(t, 29, (o) = 0 is equivalent to

Db

(3.51) bt) =0, 5

(t) = hp(t) .
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Therefore, if one sees =, as a function of the parameter i, one has obviously
Esln=0 =0,  Zu(t,20)|n=0 = exp(tHp2/2)(20) ,  Y(t,20)|n=0 =0 .
We shall use the scaling transformation, where ¢ € |0, 1]
(h, Pos bo, b5 ', 1) = (w0, epo, €%bo, £°by; t/e, hie)

Let t(,0, < 1 such that lemma 3.6 holds true for solutions of the rescaled dif-
ferential equation (3.39), uniformly with respect to i’ € [0, h]. Let us denote by
B(’M(e, t', z,) the associated functions, where the dependence in € comes from the

dependence of By, in &' = he. Then we have by (3.33)
By(e,t',25) = —hppt’ + O(t°|pg| 1)

(3.52) / o 2,1 1200\ #12 (512147 /)2
Bi(e,t',20) = W2+ O (¢2[pln (WY + phl)°) -

For a given zg, set

%
€= € 1]0,1] .
(po)
Then p{, = ep satisfies |pj| < d;. Set
Syt
ty = 0p = 29
T T

Then for (t,29) € Vi, one has [t'| = |t/e| < t{. Therefore, by lemma 3.6, the
unique solution in by, b; of the equation (3.51) closed to (0, h%pg) is given by

by = BO(tazO) = 5_2B6(67t/72/0)

(3.53) 3, .,
bl - Bl(tsz) =€ Bl(gataz[))

and the expansions (3.33) holds true. Therefore, if (5 = Z.(¢,20) is a smooth
solution of Z(t, 2o, (o) = 0 defined in the subset Vj, 5, of [—to,to] x X, such that
E4(0,z0) = 0, one has

_ Bi(t, #

Zf(t, Zo) = hpo —_ 1(h0) = O(t2 ‘p0| h(h2’t’ + |p0|)2>
(3.54) ) (B (t ))

_ g ) 2 _

:K(t,zo) = # = —htg 1(p0) —|—O(t3|p0\h3) .

Let 2/ (¢, z,) the associated rescaled functions, so that

EHW, ) =22 (t,20), BV (Y, 20) =EY (¢, 20) -
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Let Z(t', 2),~(t', 2,) the associated functions defined by
Z(t z) = Z'(¥, 20, EL(t', 20))
Vit = [ (G~ 1) (2.2, h) s
0
where the Hamiltonian H' is defined in (3.40). Then one has
Zu(t,z0) = e 1 ZL(, %)

(3.55)

(3.56)
’V(t7 ZO) =e? 7/(t/ﬂ26) :
Let
a'(s 2 "' (s 2
557) Sl = OE | H R

2n 2
Then one has Y
V(s 20) = ; L'(a'(s)) ds
where s — 2/(s) is the trajectory of the rescaled equation (3.39) with data at

s = 0 depending on the final time ¢ equal to (z(,py, By(e, t', 25), Bl (e, t, 2)).
From (3.52), and lemma 3.4, we get

Zi (t/7 Z(/)) = (X; (tlv Z(/))7 Pai (t/7 Z(/)))
(3.58) XL(t,20) = xf + t'py — W2ppt" /6 + O (3 |ph|> + "W |pp))
P, 20) = py — B?ppt”® /2 + O(t?|pp|* + 1" |pg)
and
/t/ h/t/ 3
(3.59) (%) = 5 (6)

Observe that formula’s (3.58) and (3.59) have the correct scaling invariance com-
patible with (3.56), and therefore, (3.50) and (3.49) holds true. The proof of
lemma 3.10 is complete. n

b2~ P+ O (R |+ P+ TR )

Lemma 3.11. There exist ty,d with 61 << d9 and a unique smooth function
Y(t, z, z0) defined on Uy, 5, which is a solution of the eikonal equation (3.46), and
such that (3.60), (3.61) hold true

(Z,dﬂﬁ)(t, 2, ZO) € exp(tHH)(T;:zo)
(3.60) dp(t,z,20) =0 & z=Z.(t,2)
U(t,2,20) = P(t, Zu(t, 20),20) = 0

(3.61) w(t, Z,(t, zo),zg) = ~(t, z0) -
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Proof: We first observe that if (¢, z, 2¢) exists, it is unique by (3.60) up
to a function f(¢,z9) depending only on ¢, zp, and that the function f(¢,z) is
determined by (3.61). In order to prove the existence of 1 (t, z, zg), we shall first
use a scaling argument to reduce the problem in a situation where (z,2p) € ¥ x X
is in a small neighborhood of the diagonal X ~ X xx X C ¥ x X.

Let ¢ a solution of the eikonal equation (3.46). Then the function

Ye(t, z,20) = g3 (et ez, 5_120)

satisfies the eikonal equation

h
(3.62) Ontpe + 5 ((Opve)* = £%lpI%) + {Ipl*/2, 0} = 0
and if (3.60) holds true for ¢, then from (3.43) we get that v is such that

(z,d.10e)(t, 2, 20) € eXp(tHHe)(T;:zo)

(3.63)
dzwg(t,aZ*(et,e_lzg),zo) =0.

Now, let ¥.(t, z, z9) be a smooth function defined for € € ]0, 1], t € [ty/2, 2to],
dist(x, zo) < do, |p| < d4, |po| < 83, such that (3.62) and (3.63) holds true. The
function

t
ws(ta 27 ZO) = 573 wé‘ (57 EZ? EZO)
satisfies (3.46) and (3.60) and is define in the set

t € [eto/2,2ety] , dist(x,xz0) <o, elp| <1, elpo|l <3 .
If moreover ¢ satisfies
Ve (t, Zi(t, 20), 20) = Y(t, 20)

then by (3.60), ¢ will be independent of e, and therefore the function ¢ = °
will be given by the formula

(3.64) W(t, z,20) = (;0)3 w%<t0, ;z, ttozo)

and will be defined and smooth on Uy, s if one takes
01 = tpo3 , 0o = tp0a .

Therefore, lemma 3.11 will be consequence of the next lemma.
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Lemma 3.12. There exist tg > 0, 69 > 0 and 0 < d3 < I4 and a unique
smooth function .(t, z, z9) defined for e € |0, 1], t € [to/2,2to], dist(z,zo) < do,
Ip| < d4, |po| < d3, solution of (3.62) and (3.63), and such that, with

Zoo(t,20) = eZi(ct,e ) = ZL(t, 20)

one has

¢5(t,Z,ZO) Z wa(ta Z*,E(ta ZO)azO) Z 0
(3.65) doe(t,z,20) =0 & z=Z,(t, 20)

wa(ta Z*,eS(t? ZO),ZO) = 537(€t78712]0) = Efyl(tvz()) .

Moreover, in geodesic coordinates centered at xg one has

hape (to, Zy e (to, 20) + (toX, P)720> = he® y(eto, e 20)
(3.66) )
+ ;(3X2 —3PX + P?) + O<to(|p0\2 + 1% 4+ (X, P)*) (X, P)2>
0

where the O is uniform with respect to €.

Proof: The smooth dependence in zg = (xg,pp) of the function 1. will be
clear by the proof, and we will work in geodesic coordinates centered at xg for x.
Using (3.43), one gets that (3.63) is equivalent to

(’Za dzwa)(ta 2, 20) €e exp(tHH/)(T::Z())

(3.67)
d e (ta Zi(ta ZO)v ZO) =0.

Let @7, the map from T, x T; to 3,
(bo, b1) — @7 . (bo, b1) = 2(t)

where z(s) is the solution of the differential equation (3.39) with data xg, po, bo, b1
at s = 0. We first show that there exist tg, d3, such that the differential of ®%

to,z0

at (bg,b1) = (0,0) is non singular for all zg such that |pg| < 03 and all € € [0, 1].
It is obviously sufficient to show that there exist g such that the differential of

@E

fo(z0,0) A (bo, b1) = (0,0) is non singular for all € € [0,1]. But when py = 0, we
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get by lemma 3.4 in geodesics coordinates centered at xg

4 5
_ 2 3 2 5 S
x(s) = bps“/2+ b1s°/6 + I <b024 +b1120)

(3.68) + 0(56(1b0| + [sby]) (B2 + [bo| + |sb1|)2)
83 84

p(s) = bos + b1s%/2 + h? <b06 - b124>

+ O(s% (ol + Isbi]) (12 + o] + Isbi])*) -

s2/2 s3/6
<s 52/2>

is non singular, and therefore the differential of (I)i,(zo,o) at (b, b1)=1(0,0) is non

For s # 0, the matrix

singular for any s € ]0,4tg] and all ¢ € [0,1] if ¢ is small enough. We next
choose d3 small enough. Then by theorems 3.2 and 3.3, there exist dg, d4, and
for any t € [to/2,2to], a smooth function 1 .(t,z2,z2p) defined for ¢ € ]0,1],
dist(x,z9) < do, |p| < d4, |po| < 03, which is solution of (3.63). Adding to
1£(t, 2, 20) a function independent of z, we get a function .(t, z, z9) such that
the third line of (3.65), (3.62), (3.63) hold true, and also the second line of (3.65)
by lemma 3.10.

To get the first line of (3.65) and the formula (3.66), it remains to prove
that the hessian of v¥.(t, 2z, 29) is non degenerate and positive at is only critical
point which is precisely Z, (¢, z9) by lemma 3.10. As above, we may restrict the
verification to the case pg = 0; we then have

Zl(s,20) = 20 = (0, 0)
(3.69)
v (s,20) =0

and by theorems 3.2, 3.3, and making use of (3.67), (3.28) and We™! = h, we
get that the parametrization of (z, d,9.(s, 2, 2z0) in terms of (bg, b1) has the form,
with

R = 5(|bo| + |sbi]) (A2 + [bo| + |sb1])?



512 GILLES LEBEAU

4 5
_ 2 3 ” 5 s 3
xr = bys /2+b18 /6+h (bo24 +61120> +O(S R)
83 84
p = bos + b1s?/2 4+ B <b0 + b1> + O(s°R)
(3.70) 6 24
(d-1pe)™" = —b1 + O(R)
82 83
h(d..)Y = by + bys + B2 <b02 + b16> + O(sR)
we thus get from the two first lines of (3.70)
—bis° 2.4 6 3
z—sp/2 = +o(n s*(|bo| + | sb1]) + 58 (Jbo| + |sbr])®)
(3.71) , 12
S
v sp/3 = (’)(h’234(|b0| + |sba]) + 5 (|bo] + |sb1|)3>

and we deduce from the two last lines of (3.70)
2
(3.72)  hue(s, sX, P, (20,0)) = g(3X2—3XP+P2)+O<h’25(X, P)%+s(X, P)4) .
The proof of lemma 3.12 is complete. n
Definition 3.13. We define the large deviation function on R x ¥ x X by
t
(3.73) D(t, 2, 2) = min / L(w(s)) ds
0

where the minimum is taken over all trajectories s € [0,¢] — x(s) such that

(2(0),9(v(0))) =20, (z(t).9(v(t)) =2 .0

Remark that the function D(t, z, z9) depends on the constant h, and satisfies
the following scaling invariance

(3.74) D(he,t/e,ez,e29) = €*D(h,t, 2z, 20) .

Theorem 3.14. i) For allt>0, 2y, z, there exist a solution s € [0, ] — zopt(s)
of the differential equation (3.18) connecting zy to z such that

(3.75) DL, 2, 20) = /O L(opi(s)) ds

The function t — D(t, z, z9) is continuous on R*.
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ii) Let tg small enough. There exist 0 < g = 01 < g such that the following
equality of functions on Uy, s holds true

(3.76) ¥(t, 2, 20) = D, 2, 20) |, 5 -

Moreover, in geodesic coordinates centered at x, one has for (t,z,z0) € Uy s,
with z = Z,(t,z0) + (tX, P), and |(X, P)| small

2
(3.77) D(t,z,20) = (t,20) + ﬁ(?)x? —3PX + P?)
t
+ O<h <|p0|2 + 1+ (X, P)2) (X, P)2) :
iii) There exist a universal constant C' such that for all h,t, z, zy, one has

hd? 1 d\2
(3.78) Dt 2,20) < - +C(1+ =) (Ipl + lpol + 5)
t ht t
where d = distx (z,x) is the Riemannian distance between x and x.
If Ky, K are two disjoint compact subsets of 3, there exist Cy > 0 such that
for zp € Ky, z € K, t €]0,1] one has

(3.79) D(t,z,20) > Cp/t.

Proof: i) The action Z;(zg, z) being non-negative, one has D(t, z, z9) > 0.

On a minimizing sequence z(s) of the action, the L? norm of pj, and by, = DD—T are

bounded by \/%(1 + D(t, 2,20)) and \/2h(1 + D(t, 2, 29)); Using %]p|2/2 = (p|b),
we thus get that

Pk(8)|F < [pol® + 4+ 4D(t, 2, 2)

thus all the sequence remains in a compact subset of X, the sequence by, is bounded
in L2, and therefore a sub-sequence will converge to a solution zpt(s) of the dif-
ferential equation (3.18). By the previous estimates, the sup-norm of the velocity
on this optimal trajectory satisfies

(3.80) [Popt (8)|Z0e < |pol® +4D(t, 2, 20) -

The continuity of t — D(t,2,29) on R is now obvious since for ¢ € K, with
K compact subset of RY, the data of an optimal trajectory connecting zg to z
remains in a compact subset of T3 X.
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ii) Set e = t/to, 2/ = ez, 2, = £z0. Using (3.64) and (3.74), we are reduce to
prove that for g small, there exist 0 < dy = d; < da, such that for all € € ]0, 1],
one has

(3.81) Ve (to, 2, 20) = e D(he,to, 2, 2;)
for dist(z, zg) < do, to|p| < d2, tolp] < d1. By lemma 3.12 and i) one has
(3.82) e(to, 2’y 20) > eD(he, to, 2, %)) -

Set as before &/ = he. Choose tg, 03 < d4, 05 as in lemma 3.12 such that for
all e € [0,1], and 2/, 2{, such that dist(z’,@fo’zé(0,0)) < Oy, dist(z,zg) < tods,
Ipy] < d3, the equation

@ (thbh) =

admits in the set |bj| + [b}| < 5 a unique solution. This solution satisfies for
some C' independent of

Bo| + [bi| < Cdist(2/, @5, ,(0,0)) .

Set 0g = tp3d3, 61 = toBds, 62 = toBds with 3 > 0 small. We claim that if b, b}
are the data of an optimal trajectory xg,, connecting zy = (o, pp) to 2’ = (z,p’)
with dist(z, zo) < to80s3, [pj| < 803, [p'|F < 64 for the rescaled action

to b/2 h/ /12 to b/2 2h /12
| P, Kl :/||+s i
o 21 2 o 2h 2

then, there exist a constant C, such that for g small enough, one has

(3.83) |bp| + 6] < 95 .

Clearly, this fact will imply (3.81). Set 2’ = Z[(to, 2() + (toX, P). Then using
(3.82) and (3.66) we get

2
eD(H,to, 2, 25) < e (to, ) + ﬁ(3x2 —3PX + P?)
0

. + o(tg(w + 1%+ (X, P)Q) (X, P)Q) .

From (3.58) one has

dist(z, x
X< o U ) < cone, 1P < O() + ) < 86
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and thus we get using (3.59)
(3.85) eD(W to, 7', 2) < 05264<h +52ht0> =M.

We thus get |V'[12(0,4) < V2hM, and from L[p'|2 = 2(p'|t') we get for s € [0, to]
the L® bound on the velocity

(3.86) P'(8)] < Vs V|2 +4/slb'[7, + ppl? < CBOa(1+ 'to) -

Using the fact that 2/(s) satisfies the equation (3.39), we get with ¥} (s) = %l;/

¥, < c&(uh' o)

(3.87) vio

D /
Dsl 2 < CW|2 (K% + 65(1 + W'to)?)

and therefore (3.83) holds true if 3 is small enough. The formula (3.77) follows
easily from (3.66).

iii) Let z = (z,p), z0 = (x0,po). We split [0,¢] in [0,¢/4]U[t/4,3t/4]U[3t/4,1],
and we define a trajectory z(s) in the following way: let (xo, p()), (z,p’) such pj, p’
are the data of a geodesic curve s € [t/4, 3t/4] — z¢(s) connecting xo to = in time
t/2; one has |p| = [p'| = 2. Take z(s) such that 2(s) = zo(s) for s € [t/4,3t/4].
Then the contribution of the interval [t/4, 3t/4] to the action is equal to M%Z Thus
we have reduce the problem in the geometric situation zy = (¢, 0), z = (20, q),
lg| < (|p| + |po| + 24) where the trajectory s € [0,t] — z(s) is a loop at zg starting
with 0 velocity. Let xo(s) be the geodesic curve starting at z¢ with velocity
v =g"%(q), and set z(s) = xo(tg(s/t)) with g(0) = g(1) = 0, ¢’(0) = 0, ¢’(1) = 1.
Then the action on the trajectory z(s) is equal to

|Q‘2 12
(3.88) — —i— thg“ da

and we conclude that (3.78) holds true by

NchN — shN <C 1+i
~ NshN — 2(chN —1) — N

(3.89) mln/ Z_ + N¢?do

these last estimate being a particular case of the calculus for the Euclidean case
given in the subsection 3.6.
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Finally, let z = (z,p) € K, 2o = (x0,po) € Ko. From

hdist(x, zg)?

t
Mmdz/hﬁﬁz
0 2t

we may assume that 7(K)Un(Kp) C X is contained in a small neighborhood U
of a point yy € X, that in geodesic coordinates centered at yg, one has |p — po| >
¢ > 0, and that the optimal trajectory z(s) connecting zy to z stays in U.
Then from (3.80) we get

Ip = pol < VIl + Ct(pol* + 4D(t, 2, 20)

and (3.79) is obvious from

11172
2h

D(t, z,29) >
The proof of theorem 3.14 is complete. n
Let X xx X ~ X be the subset of ¥ x X

(3.90) XxxX = {(z,z); z = (a:,O)} .

Definition 3.15. For (z,z9) € ¥ x X, we define the subset P(z,z9) of
RxT* S by

oy TE = {t.0) t>0, Z(t20,0) =2} i (2.20) € XxxX
' P(20,20) = {(t, Co); >0, Z(t,20,C0) = Zo} if (20,20) € XxxX .

For (20, (o) € T7 %, set

t
392 It = [ F0E+1PR) (205,060 2o, ) ds

so that I(t, z0,p) is the value of the action Z;(zp, z) on the trajectory starting at
(z0,C0). We define the subset Py(z, 29) of P(z,20) by

(393> PO(Z’ ZO) = {(ta CU) € P(Zv ZO)a I(ta 20, CU) = D(tv 2, ZO)} .
We define the subset W(z, zp) of R x R% by

(3.94)  W(z20) = {(u,t) € RxR%, 3(t,Go) € Polz, 20) 8.t o= H(zo,go)} o



GEOMETRIC FOKKER-PLANCK EQUATIONS 517

The sets P(z, z0) N (t > 0) are closed in RY} x T7 3. By theorem 3.14 and his
proof, for any to > 0, Po(z, 20) N (t = to) is a compact non empty subset of 77 ¥,
and is equal to the subset of P(z,z9) N (t = tp) where the continuous function
Co — I(to, 20, (o) reach is minimum. For any 0 < ¢ty < 1, Po(z,20) N {t € [to,t1]}
is compact. The sets W(z, z0) N (t > 0) are thus closed, and for any 0 <ty < t1,
W(z,20) N {t € [to,t1]} is compact. Moreover, if ¢t € ]0,%], and dist(z,zg) +
|Rt|2 + |tp| + |tpo| < 61, we get using lemma 3.7, that for (¢,({s) € P(z,20) and
Rt2(¢Y | + ht3| 3 — hpo| < 8o one has

(3.95) (t,¢0) € P(2,20) © Co = Colt 2, 20)

with

(396) (C(I]v{(t Z, ZO)) _ (hpo - %Bl (ty 2, ZO))
(¢, 2, 20) 397 Bo(t, z, 20)

and thus from the proof of ii) in theorem 3.14, we get

(3.97) (t,C0) € Po(z,20) and (t,z,20) € Upys = (o= Colt 2, 20) -

3.4. Stationary eikonal

Let p > 0. In this subsection, we shall study the following Hamilton—Jacobi
equation for the phase function ®

h
2
For ;> 0 and 2y € X, set

(3.98) ((8,@)% = |p?) + {IpI*/2, @} = 1.

T, =To SN {H(z() = p} .

20,4 T T 20
Observe that p # 0 implies for (zo, (o) € 17, ,

Y (5= 0,20,0) = %?(zo,cw £0

so the Hamiltonian flow of H restricted to H(z,() = u is transversal to 17 3.
Observe also that the set H(z,() = p is not compact. Let A, ,, be the imbedded
subvariety of 7% equal to the union of maximal Hamiltonian curves (Z(s, 2o, (o),
=(s, 20, C0)), with (z0,C0) € 77 ,- One has dim(A,,,) = dim(X) and Ay, is
isotropic, hence is a Lagrangian imbedded subvariety of T%X.
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Let G(t, 20, (o) be the function on Ry x T*¥ defined by
(3.99) Git.z0,60) = | ¢z
gl

where 7 is the path s € [0, t] — (Z(s, 20, (o), Z(8, 20, ) €T*X. If H=Hy+H;+ H>
is the decomposition of H in homogeneous functions in ¢ of degrees 0, 1,2, one
has

t t A t
/gdz = / 0Ho+1H,+2H, ds —/H+H2—H0 ds = ut+2/(!CV|2—Hp\2) ds .
~ 0 0 0

Thus we get the identity
(3.100) G(t,ZD,CQ) = I(t,Zo,Co) +tH(Zo,C0) .

Thus, for u > 0 and (o € T} ,, the function ¢ — G(t, 20, (o) is strictly increasing,
and one has

d h
(3.101) G(t20,60) = n+ (I +1pP°) = ne-

In particular, the inverse of the map ({o,t) — (o, G(¢,20,(p)) defines for any
> 0 an isomorphism
TZ*O’H XR >~ Ay

Definition 3.16. For ;¢ > 0, we shall denote by ®,(z, zp) the function on
Y x X

(3.102)  @,(z,20) = min(G(t, 20,Co); H(z0,¢) = p, (t,¢p) € P(z,z0)> .a

We shall see in theorem 3.17 that ®,(z, z) is finite, i.e the projection of A, ,
on X is surjective for any p > 0. Remark that the function ®,(z, 29) depends on
the constant A, and satisfies the following scaling invariance

(3.103) .3, (he,e2,620) = e2®,(h,z,2) .

In order to study the function ®,,, it will be convenient to reparametrized the set
P(z, z0) for (z,29) ¢ X xx X in the following way.

If s € [0,t] — x(s) is a trajectory on X, set s = ta. Then on the trajectory
a € ]0,1] — z(ta), and with the notation

dx
r_ 9 I / by =
Tu P g(v'),

Dy’ ¥ - DV

v Do’ '™ Da



GEOMETRIC FOKKER-PLANCK EQUATIONS 519

the action is

1 |b/|2 ht2|p’|2
104 I, =t3 d
(3.104) t /0 on T a

and the equation satisfied by critical trajectories is

DY}

1
(3.105) D

= 2% + (V'|RW, )"y, ' =—.

Take as new parameters (¢, b/, b]) such that

b/ —1 bl
3¢H = ht? /_%1’ tZCS/:g (v') .
Then one has
(3.106)

Pz 20) — {(t,b',b’n; t>0, (o)

' o = (20, tpo), (x, ;LZ)

= (, tp)}

a=0 a=1

where (x0, tpo, b, b}) are the initial conditions for the equation (3.105). In these
parametrization, the function H is given by

b/2 th |p/ | 2 1

(3.107) t'H = o 5 ﬁ(p/]bll) .

Theorem 3.17. For any > 0 and (z,2) € ¥ x X, ®,(2, 29) is finite, non-
negative, and the following identities hold true

®,(2,20) = min(D(t, z,20) + pt) if (z,20) ¢ X xx X
(3.108) >0
(I)H(Zo,ZO) =0 if (Zo,Z()) € XxxX.

Proof: In the case (zp, z0) € X xx X, one has (0, () € P(z0, 20), for any (o,

so ®,,(20,20) = 0. We next assume (z,29) ¢ X xx X. Set

(3.109) F(z,2) = rtrl>i(r)1(7)(t,z,zo) + ut) .

Using (3.97) we get
(3.110) Fl(z 20) = min([(t, 20,Co) + pit; (£,o) € P(Z,ZD)) .

From (3.79) and (3.77) we get D(t,z,29) > Ct~! for t closed to 0, due to
(z,20) ¢ X xx X. Thus, the function D(t, z, 29) being continuous in time, the
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minimum in (3.109) is reached on a compact non empty subset {tin(i, 2, 20)}
of 10, 00[, and for v > 0, ;1 > 0 one has always

max(t S {tmm(u+ y,z,zo)}) < min(t c {tmm(,u,,z,zo)}) .
One has obviously

F(z,20) = min F
(3111) t>0,z(a)
F =1+ pt

where 7; is the functional given in (3.104) and « € [0, 1] — z(«) is any trajectory
such that the constraints in (3.106) are satisfied. Set (a) = a + (), with a
function 4 such that §(0) = §(1) = 0; §’(0) = 6’(1) = 1. Then, using (3.104) and
(3.107) we get that the derivative of the functional F at ¢ = 0 along the path

e — (1&E = (1+e)t, zc(a) =xz(a+e 5(()4)))

is equal to

1 1
(3.112) ut4+t4/0(5’1)Hdoz + 71:&/0 {(6’—1)(|b’|2 + (p'|0y)) +6”(p’|b’)] da .

By integration by part, we get that the last term in (3.112) is equal to 0. More-
over, we already know by theorem 3.14 that the minimum of the functional F
is reached at some (t,z(«)) where x(«) is a solution of the differential equation
(3.105). The Hamiltonian H is constant on this trajectory, and therefore from
(3.112), we get that at the minimum, one has

(3.113) p=H(20,"), t€ {tminlp, 220} (™) € Po(z, 20) -
Thus ®,(z, 2) is finite, and using (3.110) and (3.100) we get

Fu(z,20) = min (I(t 20, o) + tus H(z0,C0) = p (1,o) € P(220))

(3.114)
= min<G(t7207C0)7 H(z0,C0) = u, (t,¢0) € 7’(2720))

and thus

(3.115) ®,(2,20) = Fu(z,20) . m
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3.5. The Laplace operator case

Let —Ax be a Laplacian operator on X, that is a second order elliptic operator
acting on sections of a fiber bundle over X, with scalar principal part equal to

_ ij o2 . . X s
dg B0 The action associated to —5% is

T
/ w2/2 dt .
0

The Legendre transform of L(z,v) = |[v|?/2 is H(z,¢) = |[£]?/2, and the eikonal
equations one gets on the weight function ®(z) in order to evaluate the decay
outside the diagonal of the kernel of the resolvant % + p when p — +o0, or
on the great deviation function ¥(t,z) in order to evaluate the decay of the heat
kernel outside the diagonal are precisely

g
H(x,0,®) =p, %+H(:U,8m\lf):0.

The solutions of these eikonal equations with data at a given point zg € X are
equal to
d% (v, z
®(z) = /20 dx(z,20) , W(t,z) = X(QtO)
where dx (x,zg) is the Riemannian distance function on X x X.

So, for any value of t > 0, D(t,z,20) play for GFK operators, the role of
the square of the Riemannian distance dx for Laplacian operators. However,
there are big differences. First, D(t, zp, z0) is not equal to 0, except in the case
29 = (20,0). Moreover, for z = (z,p) € ¥, and —z = (z, —p), the symmetry
relation dx (z,y) = dx(y,x) has to be replaced by

D(t, —Zl,—Zo) = D(t,ZO,Zl) .

This is due to the fact that a GFK operator A is not self adjoint, but the symmetry
p — —p exchange A and A* modulo lower order terms. Finally, the dependence in
t of D(t, z, zp) is non trivial, since the geometric support of an optimal trajectory
connecting zg to z in time ¢t depends strongly on ¢, even in the Euclidean case,
as we will see in the next subsection.

3.6. The Euclidean case

Let us make the above calculations explicitly in the simple case of the constant
metric on the Euclidean space R™. The Hamiltonian function H(x,p, &, n) is

h
H(z,p;€,m) = 5(772 —p®) +pé
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and the associated flow on T*7T*(R") is

(3.116)
z(s) = zo + S%O + (Po-%) Sh(hhs) + UOCh(hz) -1 » &(s) =%
p(s) = %U + (po—%o> ch(hs) +no sh(hs), n(s)=mnoch(hs)+ (po—%o> sh(hs) .

Set N = ht, so that N is the number of cycles between 0 and ¢.
Let w(N),v(N),w(N),¥(N) be the functions

u(N) = sh(N) - N
(3.117) v(N) = ch(N) -1
w(N) = sh(N)
PY(N) = v3(N) —u(N)w(N) = Nsh(N) —2(ch(N)-1) .

We may assume zg = 0. For z = (z,p), z0 = (0,po), set p' = tp, pj= tpp. Then in

the parametrization (3.104), b'(«) satisfies the differential equation 2Y — N2y,
do

and (3.116) becomes

/ /

r(a) = pha+ b—ov(Na) + b—lu(Na)

N? N3
/ / b6 b{l.
— o+ L w(Na) + L o(N
(3.118) pla) = po+ yuwlNa) + 15 v(Na)

b/
V(a) = bych(Na) + leh(]\fa)
b (o) = Nbysh(Na) + by ch(Na) .

We thus get that (¢,b),b]) € P(z,20) is equivalent to

(3.119) by Nt [(v(N)/N? —u(N)/N?\ [z —pf

' o) (N \—w(N)/N o(N)/N? ) \p' — )
From (3.118) and (3.119), we get that the optimal trajectory s € [0,t] — z(s)
connecting zp to z in time ¢ is given, with s = at, N = ht, by the following

formula
zi(ta) = tpoa+ (x —tpo) F(N, Na) + (p — po) G(N, Na)
v(N)v(Na) —w(N)u(Na)
(3.120) F(N,Na) = o)

v(N)u(Na) —u(N)v(Na)
hip(N)

G(N,Na) =
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Observe that when ¢t — 0, the curve (3.120) converge to the geodesic curve
connecting o to x with the parametrization « € [0, 1] — y(«)

(3.121) y(a) = xo + (3a% — 2a3) (z — x0)

and thus the direction of the velocity at the end points is lost. For a € ]0, 1], one
has

d
gﬁt(s) =

0 (a—a?)+0(1) .

In particular, we see that the geometric support of the optimal trajectory x;
depends on ¢, and that for ¢ small and p or py not closed to *5*¢, which is the

initial velocity of the geodesic connecting xg to = in time ¢, the minimal action is
concentrated at the end points of the interval [0, ¢], where the optimal trajectory
connect the end points velocity to

From (3.118) and (3.119), we get

z—xg
t

_ 0 Sh(N) bo
Zi(t,20) = <x0+ﬁch(]\7) h(N)>
(3.122) % sh(N)
Y(t,20) = ng\ ch(N) °

From (3.104) one gets by integration by part

t2*D(t, 2, 20) = QN/ 02 da + — / Ip'|? dox

1
Vo — ﬁ[ (@) +

(3.123)

2N[ 2[1?}

In coordinates centered at Z,(t, zo)
(ZE,p) = Z*(tv ZO) + (y,Q)
we get from (3.119) (3.122) and (3.123) the value of the great deviation function

[pol* sh(N)
D(t,z,20) = ——
(3.124) , ’ 2 ch(N)
NPT [sh(N) hy|* — 2(ch(N)—1) (fiy|g) + (Nch(N)—sh(N)) W] _
In the limit & — 0 one has
lim <Z*(t720)> _ ((1‘0 + tpOaPO))
(3.125) oAk 20) 0

2 (a]Y]? Y
Dtz = (32 = 3() + la?)
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so we observe the convergence to the geodesic flow on T*X, and in the limit
h — 400 we get

lim <Z*<t, Zo)) _ ((ZL‘o,O))
(3.126) h—=-+oo \ (1, z0) @

hd?X (x,x0)

D(ta 2, ZO) Eh—+oo ot

so we observe the convergence to the Gaussian equilibrium.
The large time behavior of the great deviation function is given by

2 2
(3.127) lim D(t, 2, z20) = 2Pl
t——+00 2

which is compatible with the estimate (3.78) of theorem 3.14.

4 — The heat kernel

By theorem 2.4 applied with the phase function ®=0and s=0, for Re(\)<—cy,
the resolvant (A — \)~! exists as a uniformly bounded in A operator on L2.
Therefore, the Cauchy problem for the heat equation

((9t+A)u:0 in t>0

4.1
(1) Ulp=g =v € L?

is well posed, and its solution u(t) = e *4v is given by the Fourier integral, with
c>Co

1 Tt - \—1
(4.2) u(t) = — e"(A+ir) v dr .

27 Im(r)=—c

We can rewrite formula (4.2) on the operator form

1
(4.3) e p—— e MA=N"1an.
2im Re(A)=—c

We shall denote by P(t, z, zy) the distribution kernel of e~*4, so that we have

(4.4) u(t,z) = /P(t,z,z/)v(z/) dz'
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where dz’ = dz’dp’ is the canonical volume form on ¥ = T*X. By theorem 2.4
applied with the phase function ® = 0 and any s, and using

NN
e—tA — 3 / e—t)\(A_ )\)—I—N d\
Re(\)=—

2im c

one gets from the definition of the norms ||.||\ s, using in particular there depen-
dence in A, that P(t,z,2’) is smooth in ¢t > 0, and that all its derivatives in ¢
belong to the Schwartz class in z, 2. Moreover, computing %Hu(t)ﬂig forvedS
which is dense in the domain of A, one gets that there exist C,c¢ > 0 such that
for all ¢ > 0 one has

e 2 < Ce.

One recover for Re(\) < —c the resolvant (A — A\)~! from the heat kernel by the
formula

(4.5) (A-N"1 = / etATA gt |
0

Let zp = (z0,po) € 2. In order to describe the asymptotic of the heat kernel
P(t, z,z9) with z closed to zp and ¢t — 0, we will work in geodesics coordinates
centered at zg. Set

Zy (tv Zo) = (mzo (t)7pzo (t))

where Z,(t, zo) is given by formula (3.50) of lemma 3.10. Let us introduce the
rescaled coordinates (y, q) centered at z

(4'6) z = (ZL‘,p) = (wzo(t) +ty, pzo(t) + Q) .

Observe that from (3.77), the large deviation function v satisfies with a constant
C > 0 for (y,q) in a neighborhood of (0,0) and ¢ > 0 small

(47) b=t + ).

In these coordinates, we will denote by C¥(A*(T*Y) ® 7*F) the space of smooth
functions f(t,y,q, z0) with values f(t,y,q,20) € End(A*(T; %) ® n*F), defined
for (t,20) € Vigs,» |(y,q)| <9, with o > 0, 61 > 0, § > 0 small enough but fixed,
Vio,6: being introduced in lemma 3.10, and such that for any [, o, 3,, there exist
C' such that the following inequality holds true uniformly in (¢, 2o, y, q)

(4.8) [0y Ve . VD f]l < Cpo)tHIOl.

€i,20 * éJ,zg
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As an example, if M (zp) is a symbol of degree d in the sense of definition 1.2,
then

F(t.y.0,20) = M (2(8) + 1y, paolt) + )
belongs to CY(A*(T*X) ® m*F), due to (with obvious notations for C¢)
(4.9) T, +ty € CO, p,t)+qect.

Let 0(y,q) be a cutoff function with support in |(y,q)| < 6§, and equal to 1 in
a neighborhood of (0,0). Let ¢(u), u € R, be a cutoff function with support in
|u| <41, and equal to 1 in |u| < d;/2.

Theorem 4.1. For all integer j, there exist
¢j(t,y,q,20) € CI(A(T*S) @ 7 F)
and for any N, an operator Ry with distribution kernel Ry(t, z, zo) such that
(4.10)
P(t,z,z0) = Pn(t,z,20) + Rn(t, 2, 20)

Py (t, 2, 20) = t72" ¢(t|p|) e~V (=20) (EogjgN t/ ¢j(t, v, q, Zo)) 0(y, q) ¢(t[pol)

where the sequence of operators Ry is such that for any s > 0, M > 0 there exist
N and a constant C such that for t € ]0,to] one has

(4.11) IRy (w)lls < CtM [ful|—

where ||lul|; is the Sobolev norm (2.12) with A = 0, i.e |Julls = [Jul|o.-

Remark 4.2. Due to the presence of the cutoff functions ¢, in (4.11), the
kernels Py (t,.,.) are globally defined on ¥ x ¥, and vanish identically outside a
neighborhood of the diagonal of the form

dist(z, 7, (1)) <Ct, |p—ps,@#) <C

and also for
tlp| > C" or tlpo| >C".

Observe that if (4.10) holds true, one has dc;(t,y, q, z0) € CITH (A (T*Y) @ n*F),
and thus theorem 4.1 holds true if one replace the c¢;” by the d;(y,q,20) €
C/(A*(T*Y) ® 7*F) independent of ¢ given by

1
dn(y7 q, ZO) = Ej-l—l:nﬁ aécj (07 Y,q, ZO) -0
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Remark 4.3. Using formula (4.5) and the asymptotic (4.10), one can write
an asymptotic formula for the singularity of the kernel of the resolvant (4 — \)~!
near the diagonal. o

Proof: Let u be a solution of (9; + A)u = 0, and set
u =t Yy .

Then using the fact that ¢ satisfies the eikonal equation (3.46), we get that v is
solution of the conjugate equation

_h|p|2>_2n b U 0T v

J
(4.12) at+( 5 5 o 3000 — 2M06

We first search a formal solution of (4.12) as a formal power series

(4.13) v = St ¢
such that
(4.14) }ii%t_Q”e_wv = Jpmsy -

In the coordinates (t,y, q), partial derivatives are transformed according to

1
8 — 0 — %ay — (0, ()0, - (Orp=o (1)) Dy
1
833 - an
Op — Oy

and using (3.66) and t|pg|> € C! one gets

2
(4.15) W(t, 2, 20) — Y(t, 20) — ﬁ(3y2 —3yq+4¢*) € Cct.

Thus we get

o 1 X

h 2
Apzp—Tn e ¢!

9

EMJ
0 dp;

%(yCOJr qC°) + ¢!

{pP/2,.} — 3 @ ()8, — (O ()8, € 10, +C', + ',



528 GILLES LEBEAU

—hA,

+ 30, MJ + Sp; M + M € €°92 + %9, +C!

0 1
Sgijo € = (—6y + 4 1

and therefore the conjugate operator (4.12) is of the form
1 1
O+ 2 (a=y)0y + 5 (~by +49)9, + 7 + B
(4.16) g € yC%+¢C°
B € C'9:+C'o,+C'o,+C" .

Let us introduce the first order operator Z

(4.17) Z = (q—y)0y+ (—6y+4q)0; + g .

Then the ¢;’s are uniquely determined by the transport equations
ZCQ =0

(4.18) , 0 .
(Z+4)e = - st B)e-1, 521

Observe that % + B maps C™ into C™*!, and thus it remains to verify

i) There exist an unique ¢ € C° such that any solution of Zcy = 0 is of the
form ¢o = a(t, zo)c.

ii) For j > 1 and h € C™, the equation (Z + j)f = h admits an unique
The eigenvalues of the matrix

solution f € C™.
—11
—6 4

are equal to 1,2, and therefore by a linear change of coordinates (u,v) — (y,q),

Z becomes
Z = u0y + 200, +
(4.19) 0 o g
g € uC” +vC" .
Set

! 2 ds 0
G(t,u,v,zp) = —/ g(t, su, s“v,z0) — € C° .
0

S

One has exp(G) € C° and any solution of the equation Zc = 0 is of the form

c(t,y,q,20) = a(t, zp) exp(Q)

and therefore i) holds true.
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For A > 0, the equation (A + Z)f = h € C™ admits the unique solution

1
d
f(t,u,v,29) = exp(Q) / P [h exp(—G)] (t, su, s2v, 20) @ e C™
0 S
and therefore ii) holds true.
We thus get co = a(t, z0) exp(G) and the function a(t, z9) is uniquely defined
by the initial condition

(4.20) a(t, zo) mt_Q"/e_r‘?t(3y2_3yq+q2)l(y,q) t" dydq = 1(0,0)

li
t—0
and thus we get

V3\"
4.21 t =(—1 .
(1.21) aftz0) = (37

It remains to estimate Ry. By the above construction, one has
(4.22) (O +A)Ry =t o(tlp]) e =) (tNfw) 0y, ) d(tlpol) + Ty + T

with fy € CN*!, and where 7, % contains error terms involving derivatives of the
cutoff ¢(¢|p|), #(t[po|), and T contains error terms involving derivatives of the
cutoff 0(y, q). Set

Ry = Ry + R%

with
O+ ARy = Ky = t7 2 ¢(tlp]) e =) (1N f3) 0(y, @) d(tlpol) + Ty

(4.23) le\f’t:() =0,
(O +A)RY, =K% =T2, Rili=0=0.

From (3.49) and (3.77), one has 1 > Ct|pg|?, so we get for f € CN*!
Hthg(%Q) €_wHLoo < Csup<p0>N+1 N o—Ctlpol® < Oy V212

and therefore the sequence of kernels K} satisfies (4.11). By Duhamel formula,
one has .
RY = / e~ A KL W) dt
0
Let s > 0 and M > 0; by theorem 2.4 there exist L such that
lulls < Socj<rlA’ullo -
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Choose N such that

Since et

sup [|ATKN (¢t )vllo < Ot ||o)—s .
0<j<L

4 is bounded on L? for t € ]0,1], one gets for v € H™*

t
| Rivl|s </20§j§L|lAJK}v(t',-)vllo dt' < CtMH ||y
0

and thus the sequence of kernels R}, satisfies (4.11). Finally, one has tp=tp,, (t)+tq
and the support of ¢'(¢|p|) is contained in §1/2 < |tp| < 6;. Using (3.26) and
(3.50) we get that on the support of 72, one has dy < |tp| < dy and dg < |tpo| < dy
for some 0 < dy < dy. Therefore, v» > Ct|po|? implies that the sequence of kernels

T2 satisfies (4.11), and the same argument as above shows that the sequence of

kernels R3; satisfies (4.11). The proof of theorem 4.1 is complete.
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