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REAL GELFAND-MAZUR ALGEBRAS

OLGgA PANOVA *

Recommended by A.F. dos Santos

Abstract: Several classes of real Gelfand—Mazur algebras are described. Conditions,
when the trace M N B of a closed maximal left (right) ideal M of a real topological algebra
A would be a maximal ideal in a subalgebra B of the center of A are given.

1 — Introduction

1. Let K be one of the fields R of real numbers or C of complex numbers,
A a topological algebra over K with associative separately continuous multipli-
cation (in short, topological algebra) and m(A) the set of all closed regular
(or modular) two-sided ideals of A, which are maximal as left or right ideals.
If the quotient algebra A/M (in the quotient topology) is topologically isomor-
phic to K for each M € m(A), then A is called a Gelfand-Mazur algebra (see [1],
[2], [3] or [4]). Herewith, A is a real Gelfand-Mazur algebra if K = R and is a
complex Gelfand—Mazur algebra if K = C.

Moreover, a unital topological algebra A is a Q-algebra if the set InvA of all
invertible elements of A is open in A; is a Waelbroeck algebra or a topological alge-
bra with continuous inverse if A is a Q-algebra in which the inversion a — a~ ! is

continuous in InvA; is a Fréchet algebra if the underlying linear topological space
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of A is complete and metrizable; is a topological algebra with bounded elements if
every a € A is bounded in A that is, there is a nonzero complex number A, such

that the set
{(&)s nen]

is bounded in A; is an exponentially galbed algebra if its underlying topological
vector space is an exponentially galbed space that is, for each neighbourhood O
of zero in A there exists another neighbourhood U of zero in A such that

{Z;Z: ao,...,anEU} c O

k=0

for each n€N and is a locally pseudoconvex algebra if A has a base B={U,: a € A}
of neighbourhoods of zero consisting of balanced (i.e. \U, € Uy, whenever |A| < 1)
and pseudoconvexr (i.e. U, + Uy C pU, for some p > 2) sets. Moreover, a
locally pseudoconvex algebra A is locally A-pseudoconver if for each U, € B and
a € A there is a number p, > 0 such that aU,, Uya C psU, and is locally
m-pseudoconvez if U2 C U, for each U, € B.

2. Let now A be a real topological algebra,
Z(A) = {z € A: za=az foreach a € A}

the center of A and B a closed subalgebra of Z(A) in the subset topology.
An ideal M € m(B) is called extendible to A if

n
I(M) = clA{Zakmk: neN, ay,..,a, € A; mq,...,my EM} #+ A,
k=1

where cly(M) denotes the closure of M in the topology of A. We denote by
me(B) the set of all ideals M € m(B), which are extendible to A.

3. Let A be a (real or complex) topological algebra, M a maximal regular
left (right) ideal of A and Pyy ={a € A:aAC M} (Py ={a€ A: Aa C M},
respectively) the primitive ideal of A defined by M. If {04} is a primitive ideal
of A, then A is called a primitive algebra and if there is a closed maximal regular
left (right) ideal M of A such that Py = {04}, then A is called a topologically
primitive algebra (see [2], p. 21).
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4. Properties of real Banach algebras have been studied in several books
and articles (see, for example, [7], [8], [9] and [10]); of real k-normed and real
k-Banach algebras in [6]; of real Waelbroeck algebras in [6] and in [12]; of real lo-
cally m-convex algebras in [11] and of real locally pseudoconvex division algebras
in [5]. Properties of several classes of real Gelfand-Mazur algebras are studied
and conditions for a real topological algebra A that the trace M N B of a closed
maximal left (right) ideal M of A in a subalgebra B of the center Z(A) to be a
closed maximal ideal in B are given in the present paper.

2 — Properties of the center and of the quotient algebra

Let (A, 7) be a real topological algebra, I a closed two-sided ideal of A and
71 the canonical homomorphism of A onto A/I. By 74,; we denote the quotient
topology on A/I, defined by 7 and 77, and by 77 the subset topology on Z(A/I)
defined by 74,7. Similarily as in the complex case (see [2], pp. 26-28) we have
the following result.

Proposition 1. Let A be a real topological algebra and I a closed two-sided
ideal of A. If there exists a topology T on A such that

a) (A, ) is locally pseudoconvex, then (A/I,74,r) and (Z(A/I),7r) are real
locally pseudoconvex algebras;

b) (A, ) is locally A-pseudoconvex (in particular, locally m-pseudoconvex),
then (A/I,74/r) and (Z(A/I),71) are real locally A-pseudoconvex
(respectively, locally m-pseudoconvex) algebras;

c) (A,7) is an exponentially galbed algebra with bounded elements, then
(A/I,74/1) and (Z(A/I),7r) are real exponentially galbed algebras with
bounded elements;

d) (A,7) is a locally pseudoconvex Fréchet algebra, then (A/I,T,/) and
(Z(A/I), 1) are real locally pseudoconvex Fréchet algebras;

e) (A,7) is a real topological algebra with jointly continuous multiplication,
then (A/I,74,1) and (Z(A/I), 1) are real topological algebras with jointly
continuous multiplication.

Moreover, if I is a regular ideal, u a right modular unit for I and for each
a € A there is a A € R such that a — Au € I, then sp/;(z) is not empty for each
z € A/I and spy(a/1)(y) = spayr(y) for eachy € Z(A/I). n
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3 — Complexification of real algebras

1. Let A be a (not necessarily topological) real algebra and let A=A+iA
be the comlexification of A. Then every element @ of A is representable in the
form @ = a + ib, where a,b € A and i2 = —1. If we define the addition in A, the
multiplication over C and the multiplication in A by

(a+1ib) + (c+id) = (a+c¢) +i(b+d),

(a +iB)(a+ ib) = (aa — Bb) + i(ab + Sa),

and
(a+ib)(c+id) = (ac — bd) + i(ad + be)

for all a,b,c,d € A and «, € R, then A is a complex algebra with zero ele-
ment 0; = 04 + 04 (here and later on 04 denotes the zero element of A). If
A is an algebra with unit element e4, then e ; = e4 4164 is the unit element of A.
Herewith, A is an associative (commutative) algebra if A is an associative
(respectively, commutative) algebra. We can consider A as a real subalgebra of A
under the imbedding v from A into A defined by v(a) = a+ 64 for each a € A.

2. Let A be an algebra over K with unit e4 and
spgala) ={AeK:a— ey ¢ InvA}

for each a € A. Then spy(a) is the spectrum of a. Herewith, elements of sp 4(a)
are complex numbers if A is a complex algebra and real numbers if A is a real
algebra.

A real (not necessarily topological) algebra A is formally real if from a,b € A
and a? + b% = 04 follows that a = b = 04 and is strictly real if spA(a +1i04) C R.
It is known (see, for example, [6], Proposition 1.9.14) that every formally real
division algebra is strictly real and every commutative strictly real division
algebra is formally real. Moreover, the complexification A of a commutative
real division algebra A is division algebra if and only if A is formally normal
(see [6], Proposition 1.6.20).

Lemma 1. Let A be a real algebra and I a two-sided ideal of A. Then the
quotient algebra A/I is formally real if and only if I satisfies the condition

() from a,b € A and a® + b* € I follows that a,b € I.
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Proof: Let A be a real algebra, I a two-sided ideal in A, w7 the quotient
map of A onto A/I and let a, b € A be such that a® + b* € I. Then

m(a)2 +7T[(b)2 = 7'('[((12 +b2) = HA/I-

If A/I is formally real, then 7j(a) = 7;(b) =04/ or a € [ and b € I.
Let now a two-sided ideal I satisfy the condition («) and z, y € A/I be such
that 22 +y? = 04/7- Then there are a, b € A such that z = 7(a), y = 7(b) and

mr(a® +b%) = 2% +y* =041

Hence, from a? + b? € I follows that z =y = 6 4/1 by the condition (a). m

3. Let now (A, 7) be a real topological algebra and {U, : « € A} a base of
neighourhoods of zero of (A, 7). As usual (see [6] or [12] ), we endow A with the
topology 7 in which {U, + iU, : a € A} is a base of neighbourhoods of zero.
It is known that (fl,f') is a complex topological algebra and the multiplication
in (A, 7) is jointly continuous if the multiplication in (A, 7) is jointly continuous
(see [6], Proposition 2.2.10). Moreover, the underlying topological space of (A, 7)
is a Hausdorff space if (A, 7) is a Hausdorff algebra.

Let M be a maximal regular left (right or two-sided) ideal of A. Then (see
[6], Proposition 1.6.12, p. 46) M = M + iM is a maximal regular left (right or
two-sided) ideal in A.

Proposition 2. Let A be a real topological algebra, M a closed maximal
regular left (right) ideal of A and Py; the primitive ideal of A defined by M.
Then

a) the primitive ideal ]5]\7[ of A defined by M is representable in the form
Py = Py + Py

b) A/Py=A/Py+iA/Py;

c) Z(A)=Z(A)+iZ(A).

Proof: a) Let A be a real topological algebra, a, b € Py and v + iw € A.

Since
(@ +1ib)(v + iw) = av — bw + i(aw + bv) € M,

then Py + Py C ]51\7 Let now a + ib € 151\7 and v +1i04 € A. Then
(a+ib)(v+i04) = av + ibv € M

if and only if av, bv € M or a, b € Py;. Thus ﬁﬁ C Py +iPyy.
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b) Let a, b € A. Then
a+ Py +i(b+ Py) = (a+1ib) + (Py +iPy) = (a+ib) + Py € A/ P

Hence, A/Pyr +iA/Py C A/Pr; and similarily A/Py C A/Pyy +iA/Pay.

c) It is clear that Z(A) +iZ(A) C Z(A). Let now ag + ibg € Z(A). Since
aag + iabg = (a + i@A)(ao +1ibg) = (ao + ibo)(a + ’iQA) = aga + thpa

for each a € A, then ag,bp € Z(A). n

Corollary 1. If A is a real topologically primitive topological algebra, then
the complexification of A is a complex topologically primitive topological algebra.

Proof: Let A be a real topologically primitive topological algebra. Then
there exists a closed maximal regular left (right) ideal M in A such that Py, =
{64}. Since

Py =Py +iPy = {04 +i0a} = {04}

and M is a closed maximal regular left (right) ideal of A, then A is a complex
topologically primitive topological algebra. m

4 — Commutative real Gelfand—Mazur algebras

To describe real Gelfand—Mazur algebras, we need the following result proved
in [5], Corollary 5.5:

Proposition 3. Let A be a commutative strictly real division algebra.
If A has a topology(!) T such that (A, ) is
a) a locally pseudoconvex Hausdorff algebra with continuous inversion;

b) a locally A-pseudoconvex (in particular, locally m-pseudoconvex) Haus-
dorff algebra;

c) a locally pseudoconvex Fréchet algebra;

d) an exponentially galbed Hausdorff algebra with jointly continuous multi-
plication and bounded elements;

(*) Which can be different from the preliminary topology of A.
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e) a topological Hausdorfl algebra for which the spectrum sp4(a) is not
empty for each a € A,

then A is a commutative real Gelfand—Mazur division algebra. u
Now we prove

Theorem 1. Let A be a commutative real topological algebra. If A has a
topology(?) T such that (A, T) satisfies the condition () for each I € m((A,T))
and belongs in one of the following classes of topological algebras:

a) locally pseudoconvex Waelbroeck algebras;

b) locally A-pseudoconvex (in particular, locally m-pseudoconvex) algebras;
c) locally pseudoconvex Fréchet algebras;
d) exponentially galbed algebras with jointly continuous multiplication and

bounded elements;

e) topological algebras in which for any element a € A and M € m((A,7))
there is a A € R such that a — Au € M (here u is a modular unit for M),

then A is a commutative real Gelfand—Mazur algebra.

Proof: Let (A, 7) be a commutative real topological algebra which satisfies
the condition («) for each I € m((A, 7)) and M a fixed element of m((A,7)).
Then (A/M,T4/0r) is a commutative strictly real topological division Hausdorff
algebra by Lemma 1. If now (A, 7) satisfies

1) the condition a), then (A/M,T4/5) is a commutative strictly real locally
pseudoconvex Waelbroeck division algebra by the statement a) of Proposition 1
and Corollary 3.6.27 from [6];

2) the condition b), then (A/M,74/5r) is a commutative strictly real locally
A-pseudoconvex (in particular, m-pseudoconvex) Hausdorff division algebra by
the statement b) of Proposition 1;

3) the condition c), then (A/M,74/yr) is a commutative strictly real locally
pseudoconvex Fréchet division algebra by the statement d) of Proposition 1;

4) the condition d), then (A/M,74,p) is a commutative strictly real expo-
nentially galbed Hausdorff division algebra with jointly continuous multiplication
and bounded elements by the statements c¢) and f) of Proposition 1;

(?) See the footnote 1.
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5) the condition e), then (A/M,74/5) is a commutative strictly real topo-
logical Hausdorff algebra for which the spectrum sp 4 /M<$) is not empty for each
x € A/M by Proposition 1.

Hence, in all these cases A/M (in the quotient topology defined by the prelimi-
nary topology of A) is topologically isomorphic to R for each M € m(A) by
Proposition 3. Therefore A is a commutative real Gelfand—Mazur algebra. =

5 — Maximality of traces of ideals

Let A be a unital real topological algebra, B a subalgebra of Z(A) and M a
closed maximal left (right) ideal of A. It is easy to see that the trace M N B of
M is a closed ideal in B. To find the conditions for A that the trace M N B of
M to be maximal in B, we need

Proposition 4. Let A be a real locally A-pseudoconvex algebra (or a real
locally pseudoconvex Fréchet algebra) with a unit element ey, M a closed max-
imal left (right) ideal of A and Py a primitive ideal of A defined by M. If Pyy
satisfies the condition

(B) from a,b € A and a® + b? € Py follows that a,b € Py,

then Z(A/Pyy) is topologically isomorphic to R.

Proof: Let (A,7) be a unital real locally A-pseudoconvex (locally pseudo-
convex Fréchet) algebra, M a closed maximal regular left (right) ideal of A, Pys
a primitive ideal in A defined by M, 7s the canonical homomorphism of A onto
A/Py; and 77 the quotient topology on A/P); defined by 7 and my;. Then
(A/ Py, ) is a unital real locally A-pseudoconvex Hausdorff (respectively, lo-
cally pseudoconvex Fréchet) algebra by Proposition 1. Since the complexification
of A/Pyy is Z/ P—, where ﬁﬁ is a closed primitive ideal in A by Proposition 2,
then (A/P=,7y) is a unital complex locally A-pseudoconvex Hausdorff (respec-
tively, locally pseudoconvex Fréchet) algebra by Theorem 3.3 and Corollary 3.2
from [5]. Hence, Z(A/ ﬁﬁ) is topologically isomorphic to C by Theorem 1 from
[1] or by Theorem 2.17 from [2]. Therefore, Z(A/ JBM) is a complex division al-
gebra. As Z(Z/ﬁﬁ) = Z(A/Pyr) +iZ(A/Pyr) by Proposition 2, then Z(A/Pxr)
is formally real by Proposition 1.6.20 from [6] (by condition (3) the quotient al-
gebra A/ Py is formally real by Lemma 1, hence Z(A/Pys) is formally real too).
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Now, every element © € Z(A/Py) is representable in the form x = Azeq for
some A\, € R. Therefore, Z(A/Pys) is isomorphic to R. In the same way as in
the complex case (see, e.g. [2], p. 47) it is easy to show that this isomorphism is
a topological isomorphism because Z(A/Pyy) is a Hausdorff space in the subset
topology. u

Corollary 2. Let A be a real locally m-pseudoconvex topological algebra
with unit, Py; a primitive ideal of A defined by a closed maximal regular left
(right) ideal M of A. If Py satisfies the condition ([3), then Z(A/Pyr) is topo-
logically isomorphic to R.

Proof: Since every locally m-pseudoconvex algebra is locally A-pseudo-
convex, then Z(A/Pyy) is topologically isomorphic to R by Proposition 4. u

Corollary 3. Let A be a unital strictly real topologically primitive locally
A-pseudoconvex Hausdorff algebra or a unital real topologically primitive locally
pseudoconvex Fréchet algebra. Then Z(A) is topologically isomorphic to R. u

Theorem 2. Let(®) A be a real locally A-pseudoconvex (in particular, a
locally m-pseudoconvex) algebra with unit e4 or a real locally pseudoconvex
Fréchet algebra with unit e4, M a closed maximal left (right or two-sided) ideal
of A, Py the primitive ideal in A defined by M and B a closed subalgebra of
Z(A), containing e4. If Pys satisfies the condition ((3), then

1) every b € B defines a number A € R such that b— ey € M;
2) M N BemB).

Proof: Similarily as in [1], the proof of Corollary 1, or in [2], the proof of
Proposition 3.1, it is easy to show that Theorem 2 holds by Proposition 4 and
Corollary 2. n

Corollary 4. Let A be a real locally A-pseudoconvex (in particular, a locally
m-pseudoconvex) algebra with unit e4 or a real locally pseudoconvex Fréchet
algebra with unit e4, M a closed maximal left (right or two-sided) ideal of A and
Pyy the primitive ideal in A defined by M. If Py satisfies the condition ([3), then

1) every z € Z(A) defines a number X € R such that z — ey € M;
2) MNZ(A) €me(Z(A)). n

(*) For complex locally A-pseudoconvex (in particular, locally m-pseudoconvex) algebras
with unit and for complex locally pseudoconvex Fréchet algebras with unit similar result has
been published in [1], Corollary 1, and in [2], Proposition 3.1.
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