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Université d’Évry - Val d’Essonne, Boulevard F. Mitterrand,

F-91025 Évry Cedex
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1. Introduction, motivations

1.1. Lamperti’s correspondence

In 1972, J. Lamperti [16] established an extremely interesting correspondence
between:

• on one hand, real-valued Lévy processes (ξt, t ≥ 0), and
• on the other hand, Feller processes (Xu, u ≥ 0) taking values in (0,∞),
and, furthermore, satisfying the scaling property:

∀c > 0, (Xx,cu, u ≥ 0)
(law)
= (cX x

c ,u
, u ≥ 0) (1.1)

where (Xy,u, u ≥ 0) denotes the Markov process X starting at y.

Likewise, (ξt, t ≥ 0) denotes the Lévy process starting at 0, and for a ∈ R,

(ξa,t, t ≥ 0)
(law)
= (a+ ξt, t ≥ 0).

In the particular case where:
∫∞
0 exp(ξs) ds = ∞ a.s., Lamperti’s correspon-

dence may be presented very simply in the form of either of the following iden-
tities:

exp(ξa,t) = Xexpa,At , or: log(Xx,u) = ξlog x,Hu , (1.2)

where: At =

∫ t

0

exp(ξa,s) ds, and: Hu =

∫ u

0

1

Xx,v
dv.

Put simply, Lamperti’s correspondence expresses the fact that the independence
and homogeneity properties of the increments of the Lévy process (ξt, t ≥ 0)
translate, via (1.2), into the scaling property (1.1) of the process X .

1.2. Perpetuity and remainder variables

In the particular case where (ξt, t ≥ 0) is a subordinator, the law of the perpe-
tuity:

I ≡ I(ξ) =

∫ ∞

0

exp(−ξt) dt
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has been of great interest for a number of “real-world” problems, and many
properties of this law have been obtained; see, e.g., Bertoin-Yor [2, 3], Salminen-
Yor [22]. In fact, the studies on this topic are now exploding; see e.g. a number of
recent papers by P. Patie ([19]), A. Kuznetsov et al ([15]), J.C. Pardo et al ([20]).
Among other results, the law of I is characterized by its integral moments:

E[In] =
n!

Φ(1) · · ·Φ(n) , n ≥ 1, (1.3)

where (Φ(s), s ≥ 0) is the Laplace-Bernstein exponent of (ξt):

E[exp(−s ξt)] = exp(−tΦ(s)).

In fact, continuing to quote Bertoin-Yor [2], the relation (1.3) may be comple-
mented as follows: the standard exponential variable e may be factorized as:

e
(law)
= I ·R, (1.4)

with I and R independent, and R (or rather its law) is characterized by:

E1

(
1

Xt

)
= E[exp(−t R)], t ≥ 0. (1.5)

(∀x > 0, Px indicates the law of the process (Xx,u)u≥0, and P a generic proba-
bility.)

Combining (1.3) and (1.4), the integral moments of R are seen to be given
by:

E[Rn] = Φ(1) · · ·Φ(n). (1.6)

More generally, for every p > 0, Bertoin-Yor [2] show the existence of a
variable Rp, taking values in R+, such that:

E1

(
1

Xp
t

)
= E[exp(−t Rp)], t ≥ 0. (1.7)

The motivation of the present paper stems essentially from (1.7).

1.3. Temporally completely monotone functions

Since the variables (Rp, p > 0) play such an important rôle in the computations
of the laws of exponential functionals associated with the Lévy process ξ, it
seemed of some interest, a generic E-valued Markov process (Yt, t ≥ 0) being
given, to study systematically the functions f on E such that, for every y ∈ E,
the function:

t −→ Ey[f(Yt)]

is a completely monotone function on (0,∞). We say that such a function f
is temporally completely monotone for Y , and we write for short: f is TCM
(for Y ). For example, from (1.7) and the scaling property of X , the function:
φp(x) = x−p is TCM for X .

In the present paper, our goal is, as much as possible, to determine the TCM
functions of a general Markov process, or, at least, to find some remarkable
properties of these functions, and to treat some significant examples.
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1.4. Representation of TCM functions

In a general context, a natural question is to determine whether the TCM
functions may be represented as integrals of extremal TCM functions, in analogy
with the classical Bernstein representation theorem for completely monotone
functions on (0,∞).

Actually, this kind of question has already been investigated in the analytic-
probabilistic literature, under various formulations.

In particular, Itô-Suzuki [13] and Ben Saad-Janßen [1] studied a dual prob-
lem, namely the integral representation of completely superharmonic ([13]) or
completely excessive ([1]) measures. In [13], the method consists, modulo some
additional hypotheses, in applying the classical Choquet representation theorem,
whereas in [1], the authors use a result of Getoor [10] on the representation of
pseudo-kernels as kernels (and the classical Bernstein theorem) to give a simple
proof of a general representation theorem of completely excessive measures.

Completely superharmonic functions (or ultrapotentials) were studied by
Beznea [4] in the set-up of resolvents in duality, fulfilling an absolute conti-
nuity hypothesis (Meyer’s celebrated Hypothesis (L)). Here again, the method
consists, modulo additional hypotheses, in applying Choquet’s theorem.

Our “strategy” to obtain an integral representation of TCM (or completely
excessive) functions is: given a completely excessive function, to associate with
it a completely excessive measure, and to use the theorem in [1]. For this, we
shall need an absolute continuity hypothesis (similarly as in [4]), and, following
[24] closely, to prove under this hypothesis the existence of a dual semi-group.

1.5. Organization

The above mentioned relation with the paper [1] led us to the following organi-
zation of our paper:

• Section 2 consists in the study of general properties of completely excessive
functions, in a very general framework. In particular, we determine the
extremal rays of the cone of completely excessive functions.

• In Section 3, under an absolute continuity hypothesis, we state a represen-
tation theorem of completely excessive functions, which is deduced from
the corresponding theorem in [1] for the completely excessive measures.

• In Section 4, we express, in a Markovian set-up, the TCM property in
terms of complete superharmonicity with respect to the extended genera-
tor L of Y . Said a little roughly, f is TCM iff for any n ∈ N,

(−1)n Lnf ≥ 0.

• Sections 5, 6 and 7 are devoted to the general description of the TCM
functions when Y is respectively a Lévy process, a Bessel process, and
finally an increasing Lamperti process X , as featured in (1.2) when ξ is a
subordinator.
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2. A general framework

The following very general framework shall be made more and more particular,
as we progress throughout our study.

Let (E, E) denote a measurable space. We also use the notation E for the

set of measurable functions from E into R; we note E+, resp. E+
, for the set of

measurable functions from E into R+ = [0,∞), resp. R+ = [0,∞].
In the sequel, (Pt, t > 0) denotes a measurable semi-group, that is a family

of kernels on (E, E) such that:

(SG) ∀s > 0, ∀t > 0, Pt+s = Pt Ps,
(M) ∀f ∈ E+, (t, x) −→ Ptf(x) is measurable on (0,∞)× E.

Definition 2.1. A function f ∈ E+ is said to be completely excessive relatively
to (Pt) if, for every x ∈ E, the function: t −→ Ptf(x) is completely monotone
and f(x) = lim

t↓0
↑ Ptf(x).

We denote by T the set of completely excessive functions.

For λ ≥ 0, we denote:

Tλ = {f ∈ E+; ∀t > 0, ∀x ∈ E, Ptf(x) = e−λtf(x)}

Obviously, Tλ ⊂ T .
Finally, if C is a convex cone contained in E+, we denote as ex(C) the set of

extremal rays of C. If f ∈ E+ and f 6≡ 0, we denote by ρ(f) the ray generated
by f : ρ(f) = {r f ; r ≥ 0}.

Proposition 2.1. There is the equality between sets:

ex(T ) =
⋃

λ≥0

ex(Tλ).

Proof. 1) Let f ∈ T . Then, for every t > 0 and every x ∈ E,

lim
s→0

Ps+tf(x) = lim
s→0

Pt(Psf)(x) = Ptf(x), by monotone convergence.

Hence, if f ∈ T and t > 0, then both Ptf and (f − Ptf) belong to T .
Consequently, if f 6≡ 0 and ρ(f) ∈ ex(T ), then, for every t > 0, Ptf = λ(t) f ,
with λ a completely monotone function such that limt→0 λ(t) = 1. Moreover,
λ satisfies:

∀s, t > 0, λ(s + t) = λ(s)λ(t).

Hence, there exists µ ≥ 0 such that: λ(t) = exp(−µ t), and f ∈ Tµ. Since
ρ(f) ∈ ex(T ), a fortiori, ρ(f) ∈ ex(Tµ). Consequently:

ex(T ) ⊂
⋃

λ≥0

ex(Tλ).
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2) Conversely, assume that f 6≡ 0 and ρ(f) ∈ ex(Tµ) for some µ ≥ 0. Assume
moreover that: f = g + h, with g and h belonging to T . The extremality
of exponential functions in the set of completely monotone functions entails
that, for every x ∈ E, there exists c(x) ≥ 0, such that:

∀t > 0, Ptg(x) = c(x) e−µ t f(x).

Letting t go to 0, we obtain: c f = g, hence g ∈ Tµ. Likewise, h ∈ Tµ, and
the extremality of ρ(f) in Tµ implies that:

∃α1, α2 ≥ 0, g = α1 f and h = α2 f,

which proves that ρ(f) ∈ ex(T ).

We now define the potential kernel V by:

∀f ∈ E+, V f =

∫ ∞

0

(Ptf) dt.

Proposition 2.2. For λ > 0,

Tλ = {f ∈ E+; f = λV f}.

Proof. Clearly, if f ∈ Tλ, then V f = 1
λ f .

Suppose f ∈ E+ and f = λV f . Then, for t > 0,

Ptf = λPtV f = λ

∫ ∞

t

(Psf) ds.

Hence, for every x ∈ E, there exists c(x) such that:

∫ ∞

t

Psf(x) ds = c(x) e−λ t,

and therefore:

c(x) = V f(x) and Ptf = λ

∫ ∞

t

(Psf) ds = λ e−λ t V f = e−λ tf.

At this stage, a natural question arises: is it possible to represent the elements
of T as integrals of extremal elements, which, by Proposition 2.1, belong to⋃

λ≥0(Tλ)? In other words: is the subset of T presented in the following (easy)
proposition, equal to T ? In the next section, we shall show that this actually
holds under additional hypotheses.

Proposition 2.3. We suppose that, for every t > 0 and x ∈ E, the measure
Pt(x, dy) is σ-finite. Assume that there exist a σ-finite Borel measure σ on [0,∞)
and a family (fs, s ≥ 0) such that:
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i) ∀s ≥ 0, fs ∈ Ts,
ii) (s, x) ∈ [0,∞)× E −→ fs(x) is measurable,

iii) ∀x ∈ E, f(x) :=

∫
fs(x) σ(ds) < ∞.

Then f ∈ T .

Proof. Obviously, f ∈ E+ and, by Fubini’s theorem, we obtain directly:

∀t > 0, ∀x ∈ E, Ptf(x) =

∫
e−st fs(x) σ(ds),

which shows that f ∈ T .

3. A representation theorem

We now seek a representation theorem, of the kind of Bernstein’s theorem, for
the elements of T , i.e. a converse of Proposition 2.3. We shall use a theorem due
to Ben Saad and Janßen [1] which bears on measures. For this purpose, we need
to introduce a reference measure, and a dual semi-group, which will allow to
use the functions - measures duality. Thus, in this section, we are compelled to
make further hypotheses on the semi-group (Pt), namely the following absolute
continuity hypotheses:

(σF) There exists a sequence (An, n ≥ 0) of measurable sets of E such that:

E =
⋃

n≥0

An and ∀t > 0, ∀n ≥ 0, Pt1An ∈ E+.

(AC) There exists a σ-finite measure m on (E, E) such that:

∀t > 0, ∀x ∈ E, Pt(x, dy) ≪ m(dy).

The following theorem is stated in [9, Lemma 2.1] without proof, and is proven
in [24, Note added in proof, Theorem 4] in the case of a non-homogeneous semi-
group. However, in these two papers, no reference is made as to the measurability
with respect to t. This motivated us to give a complete proof of this theorem.

Theorem 3.1. There exists a nonnegative measurable function

p : (t, x, y) ∈ (0,∞)× E × E −→ p(t, x, y)

such that:

∀t > 0, ∀x ∈ E, Pt(x, dy) = p(t, x, y)m(dy)

and

∀x, y ∈ E, ∀t, s > 0, p(t+ s, x, y) =

∫
p(t, x, z) p(s, z, y) m(dz).
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Proof. 1) According to (σF), the measure Pt(x, dy)m(dx) is σ-finite on E ×
E and, from (AC), it is absolutely continuous with respect to m ⊗ m. In
particular, for every n ≥ 1, there exists a measurable function an(x, y) such
that:

P1/n(x, dy) m(dx) = an(x, y)m(dx)m(dy).

We set, for n ≥ 1 and t ∈ ( 1n ,
1

n−1 ],

q(t, x, y) =

∫
Pt− 1

n
(x, dz) an(z, y).

Using again (σF), one sees that q is measurable on (0,∞)×E ×E and, for
f ∈ E+,

∫
q(t, x, y) f(y) m(dy) =

∫
Pt− 1

n
(x, dz)

∫
an(z, y) f(y) m(dy).

Now, ∫
an(z, y) f(y) m(dy) = P 1

n
f(z) m(dz)-a.e.

Therefore, by (AC),

∫
q(t, x, y) f(y) m(dy) =

∫
Pt− 1

n
(x, dz)P 1

n
f(z) = Ptf(x).

Thus,
∀t > 0, ∀x ∈ E, q(t, x, y) m(dy) = Pt(x, dy).

2) Let p ∈ N. We set, for t > 1
p ,

πp(t, x, y) =

∫
q

(
t− 1

p
, x, z

)
q

(
1

p
, z, y

)
m(dz).

As previously,
πp(t, x, y)m(dy) = Pt(x, dy)

and therefore, for every t > 1
p and x ∈ E,

πp(t, x, y) = q(t, x, y) m(dy)-a.e.

By Fubini’s theorem, for m-a.e. y,

πp(t, x, y) = q(t, x, y) m(dx)-a.e.

Set, for 0 < n < p,

πp,n(x, y) = πp

(
1

n
, x, y

)

and Ẽ = {y ∈ E; ∀0 < n < p, πp,n(x, y) = q
(
1
n , x, y

)
m(dx)-a.e.}.

Then, m(Ẽc) = 0.
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3) Let 1
t < n < p, x ∈ E and y ∈ Ẽ. Then,

πp(t, x, y) = Pt− 1
p

(
q

(
1

p
, •, y

))
(x)

= Pt− 1
n
P 1

n− 1
p

(
q

(
1

p
, •, y

))
(x)

= Pt− 1
n
(πp,n(•, y)) (x)

= Pt− 1
n

(
q

(
1

n
, •, y

))
(x) (since y ∈ Ẽ)

= πn(t, x, y).

We set, if y ∈ Ẽ, p(t, x, y) = πn(t, x, y) for any n > 1
t , and, if y 6∈ Ẽ,

p(t, x, y) = 0. Then, the function p is measurable on (0,∞)× E × E, and

∀t > 0, ∀x ∈ E, Pt(x, dy) = p(t, x, y)m(dy).

4) Let 0 < s, 0 < t, x ∈ E, and y ∈ Ẽ. Then

∫
p(t, x, z) p(s, z, y) m(dz)

=

∫
p(t, x, z)πn(s, z, y) m(dz) for n > 1

s , since y ∈ Ẽ

=

∫ ∫
p(t, x, z) q

(
s− 1

n
, z, v

)
q

(
1

n
, v, y

)
m(dz) m(dv)

=

∫
q

(
t+ s− 1

n
, x, v

)
) q

(
1

n
, v, y

)
m(dv)

= πn(t+ s, x, y) = p(t+ s, x, y) since y ∈ Ẽ.

Moreover, the desired equality is obvious if y 6∈ Ẽ since then, both sides are
equal to 0.

Corollary 3.1. We set:

P̂t(x, dy) = p(t, y, x) m(dy).

Then, (P̂t, t > 0) is a measurable semi-group and

∀f, g ∈ E+
,

∫
(P̂tf) g dm =

∫
f (Ptg) dm.

Remark 3.1. Recall that, if (Xt) is a linear diffusion taking values in an interval
I ⊂ R and m is a speed measure for X , then there exists a continuous density
function: (t, x, y) −→ p(t, x, y), which is, moreover, symmetric in x and y; see

Itô-Mc Kean ([12, p. 149]) for a proof. Hence, in this case, Pt = P̂t.
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In order to apply the results in [1], we need a further topological hypothe-
sis, e.g:

(T) (E, E) is a Polish space, endowed with its Borel σ-field.

Definition 3.1. 1. A function f ∈ E+
is said to be excessive if

∀t > 0, Ptf ≤ f and ∀x ∈ E, lim
t↓0

↑ Ptf(x) = f(x).

2. A σ-finite measure µ is said to be excessive if

∀t > 0, µP̂t ≤ µ and lim
t↓0

↑ µP̂t = µ.

(We recall that if µ is a measure and P a kernel, then µP denotes the measure:
µP (dy) =

∫
µ(dx)P (x, dy).)

These two notions are compared in the following lemma.

Lemma 3.1. A measure µ is excessive if and only if there exists an excessive
function f such that:

f < ∞ m-a.e. and µ = f dm.

Proof. 1) Assume µ is excessive. As the semi-group (P̂t) admits densities, one
has: µ ≪ m. Let g denote a density of µ with respect to m. Then, for every
h ∈ E+,

∫
(Ptg)h dm =

∫
(P̂th) g dm =

∫
h d(µP̂t) ≤

∫
h dµ =

∫
h g dm.

Hence, Ptg ≤ g m-a.e. and consequently:

∀s > 0, Pt+sg ≤ Psg.

We set:

f = lim
n↑∞

↑ P1/ng.

Then, for every h ∈ E+,

∫
h dµ = lim

n↑∞
↑
∫

h d(µP̂1/n) = lim
n↑∞

↑
∫
(P1/ng)h dm =

∫
f h dm.

Thus, f is also a density of µ and, as µ is σ-finite, then f < ∞ m-a.e.
Moreover, f is clearly an excessive function.

2) Conversely, suppose that f is an excessive function and f < ∞ m-a.e. Then

the measure µ = f dm is σ-finite and, for t > 0, µP̂t = (Ptf) dm, which
entails that µ is an excessive measure.
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Lemma 3.2. If f and g are two excessive functions, then

f = g m-a.e. =⇒ f = g.

In particular, if µ is an excessive measure, there exists a unique excessive func-
tion f which is a density of µ. This function f will be called the excessive
representant of µ.

Proof. If f = g m-a.e., then, for every t > 0, Ptf = Ptg, and the desired result
follows directly.

We borrow the following definition from [1].

Definition 3.2. A family of measures (µt, t > 0) is called a completely mono-
tone family of measures if

i) µt(f0) < ∞ for all t > 0, for some strictly positive function f0 ∈ E+,
ii) for every f ∈ E+ such that f ≤ f0, t −→ µt(f) is completely monotone.

We denote by M the set of excessive measures µ such that (µP̂t, t > 0) is a
completely monotone family of measures. (In [1], the elements of M are called

completely excessive measures (with respect to (P̂t)).)

Lemma 3.3. If f ∈ T , then µ = f dm belongs to M.
Conversely, if µ ∈ M, and if its excessive representant f ∈ E+, then f ∈ T .

Proof. 1) Assume f ∈ T . In particular, f is excessive and finite, hence µ = f dm
is excessive. There exists f0 > 0 such that:

∫
f0 f dm < ∞. If h ∈ E+ and

h ≤ f0, then:

µP̂t(h) =

∫
(Ptf)h dm ≤

∫
f f0 dm < ∞

and t −→
∫
(Ptf)h dm is completely monotone. Thus, µ ∈ M.

2) Conversely, let µ ∈ M, and denote by f its excessive representant. Assuming
f is in E+, we obtain:

∀s > 0, ∀x ∈ E, Pt+sf(x) =

∫
Ptf(y) p(s, x, y) m(dy) = µP̂t(p(s, x, •))

and therefore,

Pt+sf(x) = lim
n↑∞

↑ µP̂t[p(s, x, •) ∧ n f0] ≤ f(x) < ∞.

Hence, the function: t −→ Pt+sf(x) is completely monotone, and it remains
to let s decrease to 0 to conclude.

For λ ≥ 0, we denote by Tλ the set of functions f ∈ E+
such that:

∀t > 0, ∀x ∈ E, Ptf(x) = e−λtf(x) and m(f = ∞) = 0.

We also denote by Mλ the set of σ-finite measures µ such that:

∀t > 0, µP̂t = e−λtµ.
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Lemma 3.4. The two following properties are equivalent:

i) µ ∈ Mλ.
ii) µ = f dm, with f ∈ Tλ.

Proof. 1) If µ ∈ Mλ, then µ is an excessive measure. Let f denote its excessive
representant. The equality:

∀t > 0, Ptf = e−λtf m-a.e.

holds, and since f and Ptf are excessive, by Lemma 3.2, the equality holds
everywhere.

2) Conversely, if µ = f dm with f ∈ Tλ, then µ is σ-finite and

∀h ∈ E+, µP̂t(h) =

∫
(Ptf)h dm = e−λt

∫
f h dm = e−λt

∫
h dµ

and hence µ ∈ Mλ.

Theorem 2.2 in [1] yields a representation of elements of M as integrals of
elements of (Mλ, λ ≥ 0). We deduce from that Theorem the following represen-
tation result for elements of T .

Theorem 3.2. Let f ∈ E+. Then, f ∈ T if and only if there exist a σ-finite
Borel measure σ on [0,∞) and a family (fs, s ≥ 0) such that:

i) ∀s ≥ 0, fs ∈ Ts,
ii) (s, x) ∈ [0,∞)× E −→ fs(x) is measurable,

iii) ∀x ∈ E, f(x) =

∫
fs(x) σ(ds).

Proof. 1) Let f ∈ T . Then, by Lemma 3.3, µ = f dm ∈ M. According to [1,
Theorem 2.2], there exist a σ-finite Borel measure σ on [0,∞) and a family
(µs, s ≥ 0) such that:

a) ∀s ≥ 0, µs ∈ Ms,

b) ∀h ∈ E+, s −→ µs(h) is Borel,

c) µ =

∫
µs σ(ds).

By a) and Lemma 3.4, one has:

a’) µs = fs dm with fs ∈ Ts,
and by b) and c), one obtains:

b’) ∀h ∈ E+, s −→
∫

fs h dm is Borel,

c’) ∀h ∈ E+,

∫
h(x) f(x) m(dx) =

∫ [∫
fs h dm

]
σ(ds).
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On the other hand, since f ∈ E+, there exists a sequence (An, n ≥ 0) in E
such that: ∪nAn = E, and

∀n,
∫

An

f dm < ∞.

Therefore, by c’), there exists a Borel set N ⊂ [0,∞) such that:

σ(N) = 0 and ∀n, ∀s 6∈ N,

∫

An

fs dm < ∞.

By monotone class, we deduce therefrom that, for every E ⊗ E-measurable
function ϕ,

(s, x) ∈ N c × E −→
∫
fs(y)ϕ(x, y) m(dy)

is measurable, and we set, for s ∈ N , fs = 0. Then, for t > 0,

(s, x) ∈ [0,∞)× E −→
∫
fs(y) p(t, x, y) m(dy) = e−stfs(x)

is measurable, which shows that property ii) is satisfied.
Now, by Fubini’s theorem,

∀h ∈ E+,

∫
h(x) f(x) m(dx) =

∫
h(x)

[∫
fs(x) σ(ds)

]
m(dx),

which entails:

f(x) =

∫
fs(x) σ(ds) m-a.e.,

and therefore,

∀t > 0, ∀x ∈ E, Ptf(x) =

∫
e−st fs(x) σ(ds).

Property iii) follows, letting t go to 0.
2) Conversely, if f ∈ E+ satisfies properties i), ii) and iii), then, for every t > 0

and x ∈ E,

Ptf(x) =

∫
e−st fs(x) σ(ds),

which entails that f ∈ T .

4. The Markovian set-up

We still assume here:

(T) (E, E) is a Polish space, endowed with its Borel σ-field.
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We consider an homogeneous Markov process X = ((Xt)t≥0; (Ft)t≥0; (Px)x∈E)
taking values in (E, E), with its transition semi-group (Pt)t≥0, which satisfies
(SG), (M) and Pt1 = 1 for every t ≥ 0.

In such a Markovian set-up, the completely excessive functions (i.e. the ele-
ments of T ) will also be called temporally completely monotone functions or, in
short, TCM functions (see Section 1).

We now define the extended generator L of this process. This notion was
introduced by Kunita [14], and then used by many authors, with definitions
slightly changing from one author to another (see for example [18, 21], . . .). The
following definition seems to be well adapted to our situation.

Definition 4.1. The extended generator L which is associated to X , is defined
through its graph in the following way: let f, g ∈ E . Then f belongs to the
domain D(L) of L and g = Lf if:

(a) ∀t ≥ 0, ∀x ∈ E,

∫ t

0

Ps(|g|)(x) ds < ∞,

(b)

(
f(Xt)− f(X0)−

∫ t

0

g(Xs) ds, t ≥ 0

)
is a ((Ft)t≥0; (Px)x∈E) martin-

gale.

We easily obtain the following equivalent definition.

Proposition 4.1. Let f, g ∈ E. Then f ∈ D(L) and g = Lf if and only if:

(a’) ∀t ≥ 0, ∀x ∈ E, Pt(|f |)(x) < ∞ and

∫ t

0

Ps(|g|)(x) ds < ∞,

(b’) ∀t ≥ 0, ∀x ∈ E, Ptf(x) = f(x) +

∫ t

0

Psg(x) ds.

Proof. This follows from the definitions and the Markov property.

Corollary 4.1. Let f ∈ E+ and λ ≥ 0. Then, f belongs to Tλ if and only if: f
belongs to D(L) and Lf = −λ f .

Proof. Let f ∈ E+. Then, by Proposition 4.1,

f ∈ D(L) and Lf = −λ f

⇐⇒ ∀t ≥ 0, ∀x ∈ E, Ptf(x) < ∞ and

Ptf(x) = f(x)− λ

∫ t

0

Psf(x) ds

⇐⇒ ∀t ≥ 0, ∀x ∈ E, Ptf(x) = e−λt f(x).

By iteration, we may define Ln, for every integer n ≥ 1, and we write L0 for
the identity in E .

Proposition 4.2. The following properties are equivalent:
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i) f ∈
⋂

n≥0

D(Ln) and ∀n ≥ 0, (−1)nLnf ≥ 0.

ii) f ∈ T and ∀n ≥ 1, ∀x ∈ E, lim
t↓0

↑ (−1)n
dn[Ptf(x)]

dtn
< ∞.

Moreover, if these properties are satisfied,

∀x ∈ E, lim
t↓0

↑ (−1)n
dn[Ptf(x)]

dtn
= (−1)nLnf(x).

Proof. 1) Suppose first that f satisfies property i). We see, by induction, that,
for every n ≥ 0,

∀t > 0, ∀x ∈ E,
dn[Ptf(x)]

dtn
= Pt[Lnf ](x)

and ∀x ∈ E, lim
t↓0

↑ (−1)n
dn[Ptf(x)]

dtn
= (−1)nLnf(x).

Hence, f satisfies property ii).
2) Conversely, suppose that f satisfies property ii). We set, for n ≥ 0,

gn(x) = lim
t→0

dn[Ptf(x)]

dtn
.

We see, by induction, that, for every n ≥ 0,

f ∈ D(Ln), Lnf = gn and ∀t > 0, ∀x ∈ E,
dn[Ptf(x)]

dtn
= Ptgn(x).

Hence, f satisfies property i).

Definition 4.2. A function f which satisfies property i) in Proposition 4.2 is
called a completely superharmonic function.

We denote by S the set of completely superharmonic functions. Then, there
are the inclusions: ⋃

λ≥0

Tλ ⊂ S ⊂ T .

The goal of the following sections is to find as many temporally completely
monotone functions as possible, which are associated to some particular Markov
processes.

5. Lévy processes

In this section, we assume that (E, E) is the space R
n endowed with its Borel

σ-field. We consider an R
n-valued Lévy process: (Xt, t ≥ 0), whose semi-group
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of measures is (αt, t ≥ 0), that is: αt(dx) = P0(Xt ∈ dx). The associated Markov
semi-group is:

Ptf(x) = Ex[f(Xt)] = E0[f(x+Xt)] =

∫
f(x+ y) αt(dy) = (f∗ ∨

αt)(x),

where ∗ denotes convolution, and
∨
µ is the image of µ by: x −→ −x. The dual

semi-group of (Pt), with respect to the Lebesgue measure, is defined by:

P̂tf(x) = (f ∗ αt)(x) =

∫
f(x− y) αt(dy).

Note that, if µ is a ≥ 0 Radon measure, then: µP̂t = µ∗ ∨
αt.

Throughout the sequel of this section, we work under the following hypoth-
esis:

(S) For every t > 0, the closed group generated by the support of αt is R
n.

(We note that a theorem of Tortrat [23] asserts the existence of a closed semi-
group S ⊂ R

n, and of a point a ∈ R
n such that, for every t > 0, supp(αt) =

a t+ S.)

Theorem 5.1. Let f be a nonnegative continuous function. Then, f ∈ T if and
only if there exist a σ-finite Borel measure σ on [0,∞) and a family (fs, s ≥ 0)
of continuous functions such that:

i) ∀s ≥ 0, there exists a measure θs(du) on R
n, which is carried by:

{
u ∈ R

n; ∀t > 0,

∫
exp(u · x) αt(dx) = e−st

}

and such that:

∀x ∈ R
n, fs(x) =

∫
exp(u · x) θs(du),

ii) (s, x) ∈ [0,∞)× R
n −→ fs(x) is measurable,

iii) ∀x ∈ R
n, f(x) =

∫
fs(x) σ(ds).

Proof. 1) Let f ∈ T . Moreover we assume that f is a continuous function.

Then, the family of measures: ((f∗ ∨
αt)(x) dx, t > 0) is completely monotone

in the sense of Definition 3.2. The representation theorem [1, Theorem 2.2]
applies, and there exist a σ-finite Borel measure σ on [0,∞) and a family
(µs, s ≥ 0) of ≥ 0 Radon measures on R

n, such that:

a) ∀s ≥ 0, ∀t > 0, µs∗
∨
αt= e−stµs,

b) ∀h ∈ E+, s −→ µs(h) is Borel,

c) ∀h ∈ E+,

∫
f(x)h(x) dx =

∫ [∫
h(x) µs(dx)

]
σ(ds).
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Taking into account hypothesis (S), we deduce from the above property a)
and from the classical Choquet-Deny theorem ([7],[8]) that, for every s ≥ 0,
µs has a continuous density fs which is defined from a measure θs as described
in i).
Let ϕ be a nonnegative continuous function with compact support such that∫
ϕ(x) dx = 1. By property b), we see that, for every p ≥ 1,

(s, x) −→ pn
∫

ϕ(p (x− y)) fs(y) dy is measurable.

Then, letting p go to ∞, we obtain property ii).
Likewise, property c) entails that, for every p ≥ 1 and x ∈ R

n:

pn
∫

f(y)ϕ(p(x− y)) dy = pn
∫ ∫

ϕ(p(x− y)) fs(y) dy σ(ds). (5.1)

By Fatou’s lemma, we have:

∀x ∈ R
n,

∫
fs(x) σ(ds) ≤ f(x) < ∞.

It is then easy to see, from the expression of fs as a Laplace transform, that
the function:

x ∈ R
n −→

∫
fs(x) σ(ds)

is continuous. Hence, letting p go to ∞ in (5.1), we obtain property iii).
2) Conversely, if a nonnegative continuous function f satisfies properties i), ii)

and iii), then, for every s ≥ 0, fs ∈ Ts and Proposition 2.3 applies.

Corollary 5.1. Suppose that the Lévy process X is symmetric, which means:

∀t > 0, αt =
∨
αt .

Then, the only continuous TCM functions are the nonnegative constants.

Proof. Suppose that, for some t > 0,
∫
exp(u · x) αt(dx) = e−st.

Then, by symmetry, ∫
cosh(u · x) αt(dx) = e−st.

Since αt is a probability, we get that, necessarily: s = 0, and

supp(αt) ⊂ {x ∈ R
n; u · x = 0}.

By property (S), this entails: u = 0. Thus, if f is a continuous TCM function,
then Theorem 5.1 applies with θs = 0 for s > 0, and θ0 is carried by {0}. This
yields the desired result.
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Corollary 5.2. Suppose that X is a subordinator (considered here as taking
values in R). In other words, we assume:

n = 1 and ∀t ≥ 0, supp(αt) ⊂ R+.

Then, a continuous function f : R −→ R+ is TCM if and only if there exists a
measure κ on R+ such that:

∀x ∈ R, f(x) =

∫
e−sx κ(ds)

(in particular, κ(ds) admits exponential moments of any order).
Moreover, any continuous TCM function is completely superharmonic, i.e.

belongs to S.
Proof. 1) Let f be a continuous TCM function. We apply Theorem 5.1, and

we keep its notation. We denote by Φ the Bernstein function which is the
Laplace exponent of X . We have, for t > 0,

∫
exp(u x) αt(dx) = e−st

⇐⇒ u ≤ 0 and Φ(−u) = s.

Therefore, for 0 ≤ s < Φ(∞),

∀x ∈ R, fs(x) = c(s) e−Φ−1(s) x,

where c denotes a nonnegative Borel function and Φ−1 denotes the inverse
function, for the composition operation, of the strictly increasing function Φ.
Therefore,

∀x ∈ R, f(x) =

∫
c(Φ(s)) e−sx σ̃(ds),

where σ̃ denotes the image of the measure σ, appearing in Theorem 5.1, by
Φ−1. We may then set:

κ = c(Φ(s)) σ̃(ds).

2) Conversely, suppose:

∀x ∈ R, f(x) =

∫
e−sx κ(ds).

Then, for t > 0 and n ≥ 0,

dnPtf(x)

dtn
= (−1)n

∫
e−sx e−tΦ(s) (Φ(s))n κ(ds).

Since Φ(s) = O(s) when s tends to ∞, we deduce from Proposition 4.2:

f ∈
⋂

n≥0

D(Ln) and
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∀n ≥ 0, ∀x ∈ R, Lnf(x) = (−1)n
∫
e−sx (Φ(s))n κ(ds).

Therefore, f ∈ S.

Remark 5.1. Usually, a subordinator is considered as defining a Markov pro-
cess on (0,∞) (instead of R as here). In Section 7 (see Theorem 7.3), we state
a representation theorem for the corresponding TCM functions (on (0,∞) this
time).

6. Bessel processes

Here, we consider the Bessel process with dimension δ ≥ 2 as a Markov process
taking values in (0,∞). It is well-known that its semi-group admits densities
with respect to the Lebesgue measure; hence, the representation theorem of
Section 3 applies. We shall obtain therefrom:

Theorem 6.1. The only TCM functions are the nonnegative constants.

Proof. 1) We first assume δ > 2, and we denote as usual: ν = δ
2 − 1 > 0. A

simple computation shows that the potential kernel is given by:

V f(x) =
1

ν

[
x−2ν

∫ x

0

f(y) y2ν+1 dy +

∫ ∞

x

f(y) y dy

]
. (6.1)

If λ > 0 and f ∈ Tλ, then f is a.e. finite and

∀x > 0, V f(x) =
1

λ
f(x).

By (6.1), f is a C∞-function and

f ′′ +
2ν + 1

x
f ′ = −2λ f. (6.2)

Now, (6.2) admits the following solution:

ϕλ(x) =

∞∑

n=0

(−1)n
(

λ x2

2

)n

n! Γ
(
δ
2 + n

) =

(
λx2

2

) 2−δ
4

Jν

(√
2λ x

)

where Jν is the Bessel function of index ν. It follows that ϕλ admits a se-
quence of zeros (with sign changes):

0 < a1 < a2 < · · · < an < · · ·
In fact, with the usual notation jν,n, an = 1√

2λ
jν,n (see Lebedev [17]).

Let ϕ be a solution of (6.2). We set, on (an, an+1), ϕ(x) = C(x)ϕλ(x). One
sees that, if the function C is not constant, then C has a sign change in
(an, an+1). Finally, we obtain: Tλ = {0}, for every λ > 0.

2) Suppose now that f ∈ T0. Then, by Corollary 4.1, for every x > 0, (f(Xt), t ≥
0) is a Px-martingale. For the sake of completeness, we shall now give a full
proof of the fact that f is constant. We denote, for r > 0, by Tr the hitting
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time of {r}. We know that, if 0 < a < x < b < +∞, then Ta ∧ Tb is finite
Px-a.s. Actually, since we have assumed δ > 2, if x < b, then Tb is finite
Px-a.s. One has, for x < b,

Ex[f(XTb∧n)] = f(x),

hence, f(x) ≥ f(b)Px(Tb ≤ n) and, letting n go to ∞, f(x) ≥ f(b). Thus,
f is a decreasing function. Consequently, if 0 < a < x < b < +∞, then, for
every t ≥ 0, f(XTa∧Tb∧t) ≤ f(a). We then obtain by dominated convergence,
and using classical results (see, for example, [21]):

f(x) = f(b)
a−2ν − x−2ν

a−2ν − b−2ν
+ f(a)

x−2ν − b−2ν

a−2ν − b−2ν
.

We deduce therefrom that there exist constants C ≥ 0 and D ≥ 0 such that:

∀x > 0, f(x) = C x−2ν +D.

Now, Ex[(Xt)
−2ν ] is not constant with respect to t, as it converges to 0 as

t → ∞. Therefore, C = 0 and f = D.
3) We now assume: δ = 2. The densities of the semi-group are given by:

p(t, x, y) =
1

t
exp

(
−x2

2t

)
y exp

(
−y2

2t

)
I0

(x y
t

)
, (6.3)

where I0 denotes the modified Bessel function of index 0. In particular, I0 is
an increasing function on R+ and I0(0) = 1.
Suppose λ > 0 and f ∈ Tλ. We deduce from (6.3) that, for t > 0 and x > 0,

f(x) ≥ eλt

t
exp

(
−x2

2t

) ∫ ∞

0

y exp

(
−y2

2t

)
f(y) dy.

Letting t go to ∞, one sees that f = 0 a.e. and therefore, f = 0. Finally, we
obtain: Tλ = {0}, for every λ > 0.

4) Suppose now that f ∈ T0. Then, by Corollary 4.1, for every x > 0, (f(Xt), t ≥
0) is a Px-martingale. By (6.3), we see that f(x) = Ptf(x) is the product

of the function 1
t exp

(
−x2

2t

)
by an increasing function of x. In particular, f

is a locally bounded function. Consequently, we obtain in the same way as
before that, if 0 < a < x < b < +∞,

f(x) = f(b)
log x− log a

log b− log a
+ f(a)

log b− log x

log b− log a
.

We deduce therefrom that there exist constants C and D such that:

∀x > 0, f(x) = C log x+D.

Since f ≥ 0, necessarily C = 0 and D ≥ 0.
5) To conclude, it then suffices to apply Theorem 3.2.
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To complement our understanding of Theorem 6.1, let us look closer at the
function of t which plays an essential role in the above proof, at the end of point
2), namely:

ρ(ν)x (t) := E
(ν)
x

[(
x

Xt

)2ν
]
,

where P
(ν)
x denotes the law of the Bessel process with index ν issued from x.

The following identities are part of the folklore on Bessel processes (see, e.g.,
Revuz-Yor [21, Chapter VIII]): for ν > 0 and x > 0,

E
(ν)
x

[(
x

Xt

)2ν
]
= P

(−ν)
x (T0 > t) = P

(ν)
0 (Λx > t),

where T0, resp. Λx, denotes the first hitting time of 0, resp. the last passage
time at x, for X .

Also well-known is the fact that, under P
(ν)
0 : Λx

(law)
= x2/2 γν, where γν de-

notes a gamma variable with parameter ν. It is now easily seen that P
(

1
γν

> t
)

cannot be written as
E[e−t R] ≡ P(e > tR)

for some r.v. R, and e a standard exponential. Indeed, this would imply the
equality in law between γν and R/e, which is impossible since γν admits positive
moments of all orders, and R/e moments of, at most, positive order p < 1. Of
course, we might also see directly that:

P

(
1

γν
> t

)
≡ 1

Γ(ν)

∫ 1/t

0

e−u uν−1 du

is not completely monotone, but the preceding argument is elementary and quite
convincing.

7. On increasing Lamperti processes

In this section, in order to illustrate our preceding general discussion, we study
two particular families of increasing Lamperti processes.

First of all, we fix the notation and recall some general facts.

7.1. General facts

Let us consider a subordinator starting from 0: (ξt, t ≥ 0), whose Laplace expo-
nent is denoted by Φ and whose infinitesimal generator is denoted by L. Follow-
ing Lamperti [16], we associate with ξ an increasing Feller process (Xu, u ≥ 0)
which takes values in (0,∞), and, furthermore, satisfies the scaling property:

∀c > 0, (Xx,cu, u ≥ 0)
(law)
= (cX x

c ,u
, u ≥ 0)
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where (Xy,u, u ≥ 0) denotes the Markov process X starting at y. Such corre-
spondence is one to one. In the sequel, we adopt the notation and definitions of
Section 4, the Markov process under consideration being here the Lamperti pro-
cess X , and E = (0,∞). In particular, we denote by L the extended generator
of X . The following intertwining relation holds (see, for example, [5]):

Lf(x) = 1

x
L(f ◦ exp)(log x), Lg(x) = ex L(g ◦ log)(ex). (7.1)

The following result comes from Bertoin-Yor [2].

Proposition 7.1. Set, for p > 0, φp(x) = x−p. Then,

∀p > 0, Lφp = −Φ(p)φp+1.

Consequently, for every p > 0, φp is a completely superharmonic function (φp ∈
S) and, a fortiori, φp is a TCM function.

Proof. According to [2], the process

(
X−p

t +Φ(p)

∫ t

0

X−p−1
s ds, t ≥ 0

)

is a uniformly integrable martingale. It then suffices to use Definition 4.1 to
identify Lφp.

We also may use relation (7.1), which yields:

Lφp(x) =
1

x
L(e−p •)(log x) =

1

x
(−Φ(p)x−p) = −Φ(p)φp+1(x).

The following proposition improves upon the above result.

Proposition 7.2. Completely monotone functions on (0,∞) are completely
superharmonic for any increasing Lamperti process.

Proof. 1) One has:

Φ(λ) = a λ+

∫
(1− e−λt) ν(dt)

for some a ≥ 0 and some measure ν on (0,∞) such that:
∫
(t ∧ 1) ν(dt) < ∞.

We set:

∀y ≥ 0, ν(y) =

∫

(y,∞)

ν(dt).

2) Let f be a completely monotone function on (0,∞). Then, for every n ≥ 1
and x > 0,

(−1)n
∫ ∞

0

· · ·
∫ ∞

0

f (n)(x exp(y1+· · ·+yn)) exp(y1+2 y2+· · ·+n yn) dy1 · · · dyn

= x−n (f(x)− f(∞)) < ∞.
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3) By (7.1),

Lf(x) = a f ′(x) +

∫
f(x ey)− f(x)

x
ν(dy).

Hence, by integration by parts, if f ∈ C1((0,∞)) and if:
∫ ∞

0

|f ′(x ey)| ey dy < ∞,

then, f ∈ D(L) and:

∀x > 0, Lf(x) =
∫

R+

f ′(x ey) ey ν̂(dy)

with ν̂(dy) = ν(y) dy + a δ(dy), δ(dy) denoting the Dirac measure at 0.
4) Now, let f be a completely monotone function. By what precedes, we obtain

by induction that, for every n ≥ 1, f ∈ D(Ln) and for every x > 0, Lnf(x)
is equal to:
∫
· · ·

∫
f (n)(x exp(y1+ · · ·+yn)) exp(y1+2 y2+ · · ·+n yn) ν̂(dy1) · · · ν̂(dyn).

Therefore, f is completely superharmonic for X .

Remark 7.1. Suppose that ξt = t, i.e. the subordinator ξ is deterministic.
Then, the associated Lamperti process is merely given by:

∀x > 0, ∀u ≥ 0, Xx,u = x+ u.

Therefore, the TCM functions for X are exactly the completely monotone func-
tions on (0,∞). Thus, according to the above Proposition 7.2, completely mono-
tone functions are the only functions which are TCM for any increasing Lamperti
process (see also property 2 in Proposition 7.5).

7.2. Pseudo-stable (increasing) processes

Definition 7.1. For 0 < α < 1, we call pseudo-stable increasing process of
index α the (0,∞)-valued process:

(X(α)
x,u ; x > 0, u ≥ 0) := ((x1/α + τ (α)u )α; x > 0, u ≥ 0)

where (τ
(α)
t , t ≥ 0) denotes the α-stable subordinator started at 0, defined from

the Bernstein function Fα(s) = sα:

E[exp(−s τ
(α)
t )] = e−t sα , s > 0, t ≥ 0.

Clearly, (X
(α)
x,u ; x > 0, u ≥ 0) is an increasing Lamperti process, whose as-

sociated subordinator is denoted (ξ
(α)
t , t ≥ 0). The next theorem describes the

Lévy measure and the Laplace exponent of ξ(α).
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Theorem 7.1. 1. Let ν(α) be the Lévy measure of ξ(α). Then:

ν(α)(dv) =
1

Γ(1 − α)
ev/α (ev/α − 1)−α−1 dv.

2. Let Φ(α) be the Bernstein function which is the Laplace exponent of ξ(α).
Then:

Φ(α)(s) =
Γ(α (s+ 1))

Γ(α s)
, s > 0. (7.2)

Proof. 1) As is well known, the Lévy measure of (τ
(α)
t , t ≥ 0) is:

σ(α)(dy) =
α

Γ(1− α)
y−1−α dy. (7.3)

We denote by L (resp. L) the generator of ξ(α) (resp. X(α)). By Definition
7.1 and (7.3), we have clearly:

Lf(x) = α

Γ(1 − α)

∫ ∞

0

[
f
(
(x1/α + y)α

)
− f(x)

]
y−1−α dy.

Therefore, by (7.1),

Lg(x) =
α

Γ(1− α)
ex

∫ ∞

0

[
g
(
α log(ex/α + y)

)
− g(x)

]
y−1−α dy.

By the change of variable: y = ex/α (ev/α − 1), one obtains:

Lg(x) =
1

Γ(1− α)

∫ ∞

0

[g(x+ v)− g(x)] ev/α (ev/α − 1)−α−1 dv,

which yields property 1.
2) By property 1,

Φ(α)(s) =
1

Γ(1− α)

∫ ∞

0

(1− e−sv) ev/α (ev/α − 1)−α−1 dv.

By integration by parts, one gets:

Φ(α)(s) =
s

Γ(1− α)

∫ ∞

0

e−sv (ev/α − 1)−α dv.

By the change of variable: y = e−v/α, we obtain:

Φ(α)(s) =
α s

Γ(1 − α)

∫ 1

0

yα(s+1)−1 (1− y)−α dy

=
α s

Γ(1 − α)
B(1− α, α (s+ 1)) =

α s

Γ(1 − α)

Γ(1− α) Γ(α (s+ 1))

Γ(α s+ 1)

=
Γ(α (s+ 1))

Γ(α s)
.
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As a corollary to formula (7.2), we may identify the law of R(α), as introduced
in formula (1.5), with the help of the moment formula (1.6).

Corollary 7.1. For 0 < α < 1, one has:

R(α) (law)
= (γα)

α (7.4)

where γα denotes a gamma variable with index α, i.e:

P(γα ∈ dt) =
1

Γ(α)
e−t tα−1 dt.

Proof. From (7.2), and the moments formula (1.6), we get:

E[(R(α))n] =
Γ(α (n+ 1))

Γ(α)

which is precisely the moments formula for (γα)
α. Hence, there is the identity

in law (7.4).

In a companion paper [11], we shall develop further relationship between
the above Theorem 7.1 and its Corollary on one hand, and on the other hand
the paper by Bertoin-Yor [2], where formulae (1.3), (1.4), and (1.6) were first
established.

Remark 7.2. Below we give an alternative proof of Theorem 7.1, showing
directly property 2. This proof is based on Bertoin-Yor [2] (see Proposition 7.1).
We have:

E1[(X
(α)
u )−s] = E[(1 + τ (α)u )αs].

Now, for r > 0 and x > 0,

x−r =
1

Γ(r)

∫ ∞

0

e−x v vr−1 dv.

Therefore:

E1[(X
(α)
u )−s] =

1

Γ(α s)

∫ ∞

0

E[e−v τ (α)
u ] e−v vαs−1 dv

=
1

Γ(α s)

∫ ∞

0

e−uvα

e−v vαs−1 dv.

Hence:

d

du
E1[(X

(α)
u )−s] =

−1

Γ(α s)

∫ ∞

0

e−uvα

e−v vα(s+1)−1 dv

= −Γ(α (s+ 1))

Γ(α s)
E1[(X

(α)
u )−s−1].

By Proposition 7.1, we obtain, by identification,

Φ(α)(s) =
Γ(α (s+ 1))

Γ(α s)
, s > 0.
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In the next theorem, we characterize the TCM functions for X(α).

Theorem 7.2. The TCM functions for the pseudo-stable increasing process
of index α are the functions: f(x) = h(x1/α), with h a completely monotone
function. Moreover, for the pseudo-stable increasing process of index α, any
TCM function is completely superharmonic.

Proof. 1) By definition, we need to prove that the TCM functions for the pro-

cess (x + τ
(α)
t ; x > 0, t ≥ 0) considered as a Markov process on (0,∞)

are the completely monotone functions. Note that, unfortunately, Corollary
5.2 cannot be used, since in this corollary, the subordinator is considered
as a Markov process on R. Let us fix α ∈ (0, 1), and consequently, we shall
delete α from our notation. The semi-group which is associated to the process
(x+ τt; x > 0, t ≥ 0) is given, for x > 0 and t > 0, by:

Ptf(x) = E[f(x+ τt)] =

∫ ∞

0

f(x+ y) pt(y) dy

where pt denotes the continuous density of τt (which exists, see e.g. Zolotarev
[25]). Thus, for the sequel of this proof, we are in the situation of Section
3, the notation of which we preserve; in particular, E = (0,∞), m is the
Lebesgue measure dx on (0,∞), and the TCM functions are characterized
by Theorem 3.2.

2) Consequently, we need to identify, for s ≥ 0, the Borel functions f , which
are ≥ 0, finite a.e., and which satisfy:

∀t > 0, ∀x > 0, Ptf(x) = e−st f(x),

i.e: the functions f ∈ Ts. We introduce:

ε(x) =

∫ ∞

0

e−t pt(x) dt if x > 0,

= 0 if x ≤ 0.

Now, ε is a probability density on R, carried by R+, and it is well-known
(see e.g. Chaumont-Yor [6, Exercise 4.21]) that:

∀x > 0, ε(x) =
sin(π α)

π

∫ ∞

0

e−xy yα

1 + 2yα cos(απ) + y2α
dy.

Thus, ε is a completely monotone function on (0,∞); in particular, it is
continuous, and > 0 for every x > 0.
Assume that f ∈ Ts. Then:

∀x > 0,

∫ ∞

0

f(x+ y) ε(y) dy =
f(x)

1 + s
.

It easily follows that f ∈ L1
loc(m). We now consider µ = f dm, which is a

Radon measure on (0,∞). We then have:

µ(dx) =

[
(s+ 1)

∫

(x,∞)

ε(y − x) µ(dy)

]
m(dx). (7.5)
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3) In order to find all ≥ 0 Radon measures µ on (0,∞) which solve equation
(7.5), it is possible to apply the same method as that presented by Deny [8]
in order to prove the Choquet-Deny theorem on a group. Here, we just show
how we may determine the extremal solutions of (7.5), which is the essential
point of the proof.
Let µ be a solution of (7.5), and set, for 0 < r < a,

µa,r(dx) =

[
(s+ 1)

∫

(x+a−r,x+a+r)

ε(y − x) µ(dy)

]
m(dx). (7.6)

By a simple computation, we obtain that µa,r solves (7.5). Since µa,r ≤ µ,
then µ− µa,r also solves (7.5). Therefore, if µ 6= 0 is an extremal solution of
(7.5), there exists c(a, r) ≥ 0 such that:

µa,r = c(a, r)µ. (7.7)

We deduce from (7.6) that
[
(s + 1)

∫ a+r

a−r
ε(y) dy

]−1
µa,r vaguely converges,

when r tends to 0, to the measure µa defined by:

∀ϕ ∈ C+
c ((0,∞)),

∫
ϕ(x) µa(dx) =

∫
ϕ(x − a) µ(dx),

and by (7.7), there exists c(a) ≥ 0 such that: µa = c(a)µ. By definition, c is
obviously continuous on (0,∞) and satisfies:

∀a, b > 0, c(a+ b) = c(a) c(b).

Therefore, there exists u ∈ R such that:

∀a > 0, c(a) = eua.

On the other hand, since µ satisfies (7.5), then µ admits a density h and:

∀a > 0, h(a+ x) = eua h(x) dx-a.e.

Then, by (7.5), we may take, as density of µ,

h̃(x) := (s+ 1)

∫ ∞

x

ε(y − x)h(y) dy = eu x (s+ 1)

∫ ∞

0

h(z) ε(z) dz.

Finally, there exists c > 0 such that µ(dx) = c eux dx and, using again (7.5),
we obtain:

(s+ 1)

∫ ∞

0

euy ε(y) dy = 1,

which is equivalent to u = −s1/α. Hence, the convex cone of solutions of
(7.5) admits only one extremal ray, which is:

{c exp(−s1/α x) dx; c ≥ 0}.

Taking back again the Choquet-Deny method, we find that these are the
only solutions of (7.5). Finally, Ts = {c exp(−s1/α x) dx; c ≥ 0}.
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4) Now, Theorem 3.2 allows to conclude that the TCM functions for the process

(x+ τ
(α)
t ; x > 0, t ≥ 0) are exactly the completely monotone functions.

5) Finally, suppose that f is a TCM function for the pseudo-stable increasing
process of order α. Then, there exists a measure κ on R+ such that:

∀x > 0, f(x) =

∫
e−s x1/α

κ(ds).

Then, for t > 0 and n ≥ 0,

dnPtf(x)

dtn
= (−1)n

∫
e−s x1/α

e−t sα snα κ(ds).

Hence, by Proposition 4.2, f ∈ ⋂
n≥0 D(Ln) and

∀n ≥ 0, ∀x ∈ R Lnf(x) = (−1)n
∫
e−s x1/α

snα κ(ds).

Therefore, f ∈ S.

Remark 7.3. In the previous proof, we showed that the TCM functions for the

process (x + τ
(α)
t ; x > 0, t ≥ 0) considered as a Markov process on (0,∞) are

the completely monotone functions. This result extends, with the same proof,

replacing (τ
(α)
t , t ≥ 0) by a large class of subordinators. For example, we may

state the following theorem.

Theorem 7.3. Consider (ξt, t ≥ 0), a subordinator started at 0. We assume
that:

i) for every t > 0, ξt admits a density pt with respect to the Lebesgue measure
on (0,∞),

ii) for every compact K of (0,∞), inf
x∈K

ε(x) > 0, with

ε(x) =

∫ ∞

0

e−t pt(x) dt.

Then the TCM functions for the process (x + ξt; x > 0, t ≥ 0) considered as
a Markov process on (0,∞), are the completely monotone functions. Moreover,
every TCM function is completely superharmonic.

Note that for ii) to be satisfied, it suffices that, for every t > 0, pt is a lower
semi-continuous, strictly positive function.

7.3. Lamperti processes associated to the exponential compound
Poisson processes

In this subsection, we consider the Lamperti increasing processes X which are
associated to the compound Poisson processes ξ with exponential Lévy measure,
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i.e. whose Bernstein functions are:

Φ(x) = C

∫ ∞

0

(1− e−xt) exp(−θx) dx =
C

θ

x

x+ θ

(with C > 0, and θ > 0). In the sequel, we fix, to simplify: C = θ.
These processes are studied in detail in [5], and lead themselves to many

explicit computations, so that they are of much use in Applied Probability.
We denote by L(θ), resp. T (θ), the extended generator, resp. the set of TCM

functions, for the Lamperti process X . We also set, in view of Corollary 4.1,

∀λ ≥ 0, T (θ)
λ = {f ∈ E+; f ∈ D(L(θ)) and L(θ)f = −λ f}.

Proposition 7.3. Let λ > 0. Then, T (θ)
λ is generated by

1{1/λ}(x) and 1(0,1/λ)(x) (1 − λx)θ−1.

T (θ)
0 consists of the nonnegative constants.

Proof. By (7.1), one has:

∀x > 0, L(θ)f(x) =
θ

x

∫ ∞

0

[f(x ey)− f(x)] e−θy dy

=
θ

x

∫ ∞

1

[f(x v)− f(x)] v−θ−1 dv.

Hence, if λ ≥ 0 and f ∈ E+, then f ∈ T (θ)
λ if and only if:

∀x > 0, θ xθ−1

∫ ∞

x

f(y) y−θ−1 dy =

(
1

x
− λ

)
f(x). (7.8)

Setting:

h(x) =

∫ ∞

x

f(y) yθ−1 dy,

the above equation (7.8) is equivalent to:

∀x > 0, (λx− 1)xθ+1 h′(x)− θ xθ h(x) = 0.

Solving this differential equation, we obtain:

h(x) = 0 for x ≥ 1/λ,

= c x−θ (1− λx)θ for 0 < x < 1/λ

with c ≥ 0, and hence,

f(x) = 0 for x > 1/λ,

= a for x = 1/λ,

= b (1− λx)θ−1 for 0 < x < 1/λ

with a, b ≥ 0, which is the announced result.
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Note that Theorem 3.2 does not apply here, as the semi-group does not
satisfy hypothesis (AC) of Section 3. However, the following proposition is a
straightforward consequence of Proposition 2.3 and of the above Proposition 7.3.

Proposition 7.4. Let Kθ be the set of functions f from (0,∞) into R+ for
which there exists a measure σ(dλ) on R+ such that:

∀x > 0, f(x) =

∫

[0,1/x)

(1 − λx)θ−1 σ(dλ).

Then: Kθ ⊂ T (θ).

Remark 7.4. In fact, the elements of Kθ are completely superharmonic. Indeed,
we may use the characterization given in Proposition 4.2. If

f(x) =

∫

[0,1/x)

(1− λx)θ−1 σ(dλ),

then

Ptf(x) =

∫

[0,1/x)

e−λt (1− λx)θ−1 σ(dλ)

and hence:

(−1)n (L(θ))nf(x) =

∫

[0,1/x)

λn (1 − λx)θ−1 σ(dλ) ≤ x−n f(x) < ∞.

We now introduce some further notation:
For λ ≥ 0 and γ > 0, we set:

h
(γ)
λ (x) = 1[0,1/λ)(x) (1 − λx)γ−1.

We denote, for θ < η, by Λθ,η the kernel:

Λθ,ηf(x) =
1

B(θ, η − θ)

∫ 1

0

f
(x
u

)
uθ−1 (1− u)η−θ−1 du.

In the two following propositions, we establish some relations between the
spaces Kθ.

Proposition 7.5. 1. The map: θ −→ Kθ is decreasing.
2. The set:

⋂
θ>0 Kθ is the set of completely monotone functions on (0,∞).

Proof. 1) An easy computation yields, for 0 < θ < η,

h
(η)
λ (x) =

1

B(θ, η − θ)

∫ 1

0

h
(θ)
λ/u(x)u

θ−1 (1− u)η−θ−1 du. (7.9)

This entails property 1.
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2) One has, for a > 0,

∀x > 0, e−a x =
aθ

Γ(θ)

∫ 1/x

0

(1 − λx)θ−1λ−θ−1 e−a/λ dλ.

This entails that any completely monotone function belongs to Kθ.
3) Now let f ∈

⋂
θ>0Kθ. Then, for every pair of integers 1 ≤ p < n, there exists

a measure σn on R+ such that:

∀x > 0, f(x) =

∫
[(1− λx)+]n σn(dλ).

Therefore, f is of Cp class, and:

∀x > 0, f (p)(x) = (−1)p n (n−1) · · · (n−p+1)

∫
[(1−λx)+]n−p λp σn(dλ).

Consequently;
∀x > 0, (−1)p f (p)(x) ≥ 0,

and f is completely monotone.

Proposition 7.6. 1. For 0 < θ < η and λ ≥ 0,

h
(η)
λ = Λθ,ηh

(θ)
λ .

2. For 0 < θ < η,
Λθ,η Kθ ⊂ Kη.

Proof. 1) One has:

h
(θ)
λ/u(x) = h

(θ)
λ (x/u).

Property 1 then follows from (7.9).
2) Suppose f ∈ Kθ. Then, there exists a measure σ(dλ) on R+ such that:

∀x > 0, f(x) =

∫
h
(θ)
λ (x) σ(dλ).

By property 1,

Λθ,ηf(x) =

∫
h
(η)
λ (x) σ(dλ) ≤

∫
h
(θ)
λ (x) σ(dλ) < ∞

and property 2 follows.

Remark 7.5. Suppose 0 < θ < η. If f ∈ Kη, then there exists a measure σ(dλ)
on R+ such that:

∀x > 0, f(x) =

∫
h
(η)
λ (x) σ(dλ).
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By property 1 in Proposition 7.6, f = Λθ,ηg with

g(x) =

∫
h
(θ)
λ (x) σ(dλ).

However, if θ < 1, it does not follow that: g(x) < ∞ for every x > 0, and
therefore, g does not necessarily belong to Kθ. Nevertheless, this shows that, if
1 ≤ θ < η, then:

Λθ,η Kθ = Kη.

Concerning the spaces T (θ), we have:

Proposition 7.7. Suppose 0 < θ < η and f ∈ T (θ). If Λθ,ηf ∈ E+, then
Λθ,ηf ∈ T (η).

Proof. We denote by (P
(θ)
t ) and (P

(η)
t ) the semi-groups of the Lamperti pro-

cesses. From [5], for 0 < θ < η the following intertwining relation holds:

P
(η)
t Λθ,η = Λθ,η P

(θ)
t . (7.10)

Let f ∈ T (θ) and suppose Λθ,ηf ∈ E+. Then:

Λθ,η P
(θ)
t f(x) =

∫
P

(θ)
t f(y) Λθ,η(x, dy) ≤ Λθ,ηf(x) < ∞.

Therefore, t −→ Λθ,η P
(θ)
t f(x) is completely monotone and

lim
t↓0

↑ Λθ,η P
(θ)
t f(x) = Λθ,ηf(x).

Finally, we deduce from (7.10) that Λθ,ηf belongs to T (η).

Proposition 7.8. Every ≥ 0 decreasing function belongs to T (θ) for every
0 < θ ≤ 1. Conversely, every functionf in T (1), which is right-continuous,
locally with bounded variation, and such that limx→∞ f(x) exists, is a decreasing
function.

Proof. 1) By definition, K1 consists of the ≥ 0 right-continuous functions, which
are decreasing, and, by property 1 in Proposition 7.5, K1 ⊂ Kθ for 0 < θ ≤ 1.
Moreover, by Proposition 7.3, any ≥ 0 function with countable support,
belongs to T (θ) for every 0 < θ. The first part of the proposition follows
therefrom.

2) We know, from [5], that:

P
(1)
t f(x) = f(x) exp(−t/x) + t

∫ ∞

x

f(y) exp(−t/y)
1

y2
dy.

Under the indicated conditions, we get by integration by parts:

P
(1)
t f(x) = f(∞)−

∫

(x,∞)

exp(−t/y) df(y).

Hence, if f ∈ T (1), then: −df(y) ≥ 0.
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