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Abstract

We provide an introduction to logarithmic potential theory in the complex plane that par-
ticularly emphasizes its usefulness in the theory of polynomial and rational approximation. The
reader is invited to explore the notions of Fekete points, logarithmic capacity, and Chebyshev
constant through a variety of examples and exercises. Many of the fundamental theorems of
potential theory, such as Frostman’s theorem, the Riesz Decomposition Theorem, the Principle
of Domination, etc., are given along with essential ideas for their proofs. Equilibrium measures
and potentials and their connections with Green functions and conformal mappings are pre-
sented. Moreover, we discuss extensions of the classical potential theoretic results to the case
when an external field is present.
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0 Introduction

Logarithmic potential theory is an elegant blend of real and complex analysis that has had a
profound effect on many recent developments in approximation theory. Since logarithmic potentials
have a direct connection with polynomial and rational functions, the tools provided by classical
potential theory and its extensions to cases when an external field (or weight) is present, have
resolved some long-standing problems concerning orthogonal polynomials, rates of polynomial and
rational approximation, convergence behavior of Padé approximants (both classical and multi-
point), to name but a few. Here are some problems where potential theory has played a crucial
role:

(i) Rate of Polynomial Approximation: Let f be analytic on a compact set E of the complex
plane C, whose complement C \ E is connected. How well can f be uniformly approximated
on E by polynomials (in z) of degree at most n?

(ii) Asymptotic Behavior of Zeros of Polynomials: Let p∗n(x) denote the polynomial of degree at
most n of best uniform approximation to a continuous function on [−1, 1], say f(x) = |x|. In
the complex plane, p∗n has n zeros (at most).∗ Where are these zeros located as n→ ∞?

(iii) Fast Decreasing Polynomials: Given ϕ ∈ C[−1, 1], does there exist a sequence of “needle-like”
polynomials (pn), deg pn ≤ n, such that pn(0) = 1 and |pn(x)| ≤ Ce−cnϕ(x), x ∈ [−1, 1], for
some positive constants c, C?

(iv) Recurrence Coefficients for Orthogonal Polynomials: Let {pn} denote orthonormal polynomi-
als with respect to the weight exp (−|x|α) , α > 0, on R. That is,

∫ ∞

−∞
pm(x)pn(x)e−|x|α dx = δmn.

Then the pn satisfy a 3-term recurrence of the form

xpn(x) = an+1pn+1(x) + anpn−1(x), n = 1, 2, . . . ,

where (an) is the sequence of recurrence coefficients. These coefficients go to infinity as n
increases, but exactly what is their asymptotic growth rate?

(v) Generalized Weierstrass Problem: A famous theorem of Weierstrass states that f ∈ C[−1, 1]
if and only if there exists a sequence of polynomials (pn), deg pn ≤ n, such that pn → f
uniformly on [−1, 1]. But how would you characterize those f ∈ C[−1, 1] that are uniform
limits on [−1, 1] of “incomplete” polynomials of the form q2n(x) =

∑2n
k=n akx

k, for which
half the coefficients are missing? More generally, what functions f are the uniform limits
of weighted polynomials of the form w(x)npn(x), where the power of the weight matches the
degree of the polynomial?

(vi) Optimal Point Arrangements on the Sphere: How well separated are N (≥ 2) points on the
unit sphere S2 = {x ∈ R

3 : |x| = 1} that maximize the product of their pairwise distances:
∏

1≤i<j≤N

|xi − xj | ?

∗By symmetry and uniqueness of the best approximants, p∗
2n+1 = p∗

2n for f(x) = |x|.
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(vii) Rational Approximation: Determine the rate of best uniform approximation to e−x on [0,+∞)
by rational functions of the form pn(x)/qn(x), deg pn ≤ n, deg qn ≤ n.

In this article we provide an introduction to the tools of classical and “weighted” potential
theory that are the keys to resolving the above questions. The essential reason for the usefulness
of potential theory in obtaining results on polynomials is the fact that for any monic polynomial
p(z) =

∏n
k=1(z − zk) the function log(1/|p(z)|) can be written as a logarithmic potential:

log
1

|p(z)| =

∫

log
1

|z − t| dν(t),

where ν is the discrete measure with mass 1 at each of the zeros of p.

1 Transfinite Diameter, Capacity, and Chebyshev Constant

We begin by introducing three “different” quantities associated with a compact (closed and bounded)
set in the plane.

A Geometric Problem. Place n points on a compact set E so that they are “as far apart” as
possible in the sense of the geometric mean of the pairwise distances between the points. Since the
number of different pairs of n points is n(n− 1)/2, we consider the quantity

δn(E) := max
z1,...,zn∈E





∏

1≤i<j≤n

|zi − zj |





2/n(n−1)

. (1.1)

Any system of points Fn :=
{

z
(n)
1 , . . . , z

(n)
n

}

for which the maximum is attained is called an n-point

Fekete set for E; the points z
(n)
i in Fn are called Fekete points.

For example, if n = 2, then F2 =
{

z
(2)
1 , z

(2)
2

}

, where
∣

∣

∣z
(2)
1 − z

(2)
2

∣

∣

∣ = diam E. Obviously, any

such points lie on the boundary of E. In general, it follows from the maximum modulus principle
for analytic functions that for all n, the Fekete sets lie on the outer boundary ∂∞E, that is, the
boundary of the unbounded component of the complement of E.

Exercise. Prove that the determinant of the n × n Vandermonde matrix [zj
i ], 1 ≤ i ≤ n, 0 ≤

j ≤ n− 1, is given by
∏

1≤i<j≤n(zj − zi). Consequently, an n-point Fekete set for E maximizes the
modulus of this determinant over all n-point subsets of E.

Exercise. Let E be the closed unit disk (or the unit circle). Prove that the set of nth roots
of unity is an n-point Fekete set for E (and so is any of its rotations) and that δn(E) = n1/(n−1).
[Hint: Use Hadamard’s inequality for determinants.]

If E = [−1, 1], then the set Fn turns out to be unique and it coincides with the zeros of
(1 − x2)P ′

n−1(x), where Pn−1 is the Legendre polynomial of degree n− 1 (cf. [Sz]).
Fekete points are “good points” for polynomial interpolation. We denote by Pn the linear space

of all algebraic polynomials with complex coefficients of degree at most n. Recall that if z1, . . . , zn+1
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are any n + 1 distinct points, then the unique polynomial in Pn that interpolates a function f in
these points is given by

pn(z) =

n+1
∑

k=1

f(zk)Lk(z),

where Lk(z) is the fundamental Lagrange polynomial that satisfies Lk(zj) = δjk.

Exercise. Prove that if {z1, . . . , zn+1} is an (n+ 1)-point Fekete set for a compact set E, then the
associated fundamental Lagrange polynomials satisfy |Lk(z)| ≤ 1 for all z ∈ E. Furthermore, show
that if Pn ∈ Pn, then

‖Pn‖E ≤ (n+ 1)‖Pn‖Fn+1 ,

where ‖·‖A denotes the sup norm on A.

Exercise. Prove that if Pn(f ; z) denotes the polynomial of degree at most n that interpolates
a continuous function f in an (n+ 1)-point Fekete set for E, then

‖f − Pn(f ; ·)‖E ≤ (n+ 2)‖f − p∗n‖E ,

where p∗n is the best uniform approximation to f on E out of Pn.

On taking the logarithm in (1.1), we see that the max problem in (1.1) is equivalent to the
minimization problem

En(E) := min
z1,...,zn∈E

∑

1≤i<j≤n

log
1

|zi − zj|
. (1.2)

The summation in (1.2) can be interpreted as the energy of a system of n like-charged particles
located at the points {zi}n

i=1, where the repelling force between two particles is proportional to the
reciprocal of the distance between them. Thus

En(E) =
n(n− 1)

2
log

1

δn(E)
(1.3)

denotes the minimal logarithmic energy that can be attained by n particles that are constrained
to lie on E. Any set of n points that attains this minimal energy is called an equilibrium
configuration for E; that is, a Fekete set Fn represents an n-point equilibrium configuration for
E.

Essential questions are:

(i) What is the asymptotic behavior of the minimal energy En(E) (or, equivalently, of δn(E)) as
n→ ∞?

(ii) How are optimal configurations (Fekete points) distributed on E as n→ ∞?

As a first step we establish

Lemma 1.1. The sequence
(

En(E)
n(n−1)

)∞

n=2
is increasing (i.e., nondecreasing) or, equivalently, the

sequence (δn(E))∞n=2 is decreasing (i.e., nonincreasing).
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Proof. With Fn =
{

z
(n)
k

}n

k=1
we have, for each k = 1, . . . , n,

En(E) =
∑

i6=k

log
1

∣

∣

∣z
(n)
i − z

(n)
k

∣

∣

∣

+
∑

1≤i<j≤n
i6=k
j 6=k

log
1

∣

∣

∣z
(n)
i − z

(n)
j

∣

∣

∣

≥
∑

i6=k

log
1

∣

∣

∣z
(n)
i − z

(n)
k

∣

∣

∣

+ En−1(E).

Now add these n inequalities together and divide by n(n− 1)(n − 2) to get result. �

The sequence (δn(E)) therefore has a limit†

τ(E) := lim
n→∞

δn(E), (1.4)

which is called the transfinite diameter of E. For example, the transfinite diameter of the disk
E = {z ∈ C : |z| ≤ R} is R since δn(E) = Rn1/(n−1) → R as n→ ∞.

Note that 0 ≤ τ(E) ≤ diam E and that E1 ⊂ E2 implies τ(E1) ≤ τ(E2).

Exercise. Let aE + b := {az + b : z ∈ E}, with a, b fixed complex constants. Prove that
τ(aE + b) = |a|τ(E) for any compact set E ⊂ C.

Exercise. Show that the closed set E = {0} ∪ {1/k : k = 1, 2, . . .} has transfinite diameter
zero.

Remark. The transfinite diameter τ (considered as a set function) has some of the properties
of Lebesgue measure on compact subsets of C; in fact, if E is the closed interval [a, b], then
τ([a, b]) = (b−a)/4. However, τ fails to be subadditive; τ(E1∪E2) may exceed the sum τ(E1)+τ(E2).

To investigate the asymptotic behavior of a sequence of Fekete sets Fn, n = 2, 3, . . ., we utilize
weak-star convergence of measures.

Definition 1.2. Let µn be a sequence of finite positive measures with supports‡ supp(µn) ⊂ K

for all n, where K is some compact set. We write µn
∗→ µ if

lim
n→∞

∫

f dµn =

∫

f dµ ∀f ∈ C(K). (1.5)

(If µn(K) ≤ M for some constant M and all n (which clearly holds when µ is a finite measure),
this is equivalent to pointwise convergence in the dual space of C(K).) The same definition applies
to signed measures and complex measures. In (1.5), we can always take K to be the extended
complex plane C; however, knowing a specific compact set K that contains all the supports of the
µn’s serves to remind us that the limit measure will also be supported on K.

†If E consists of only finitely many points, then τ (E) = 0. Why?
‡Recall that a point z0 belongs to supp(µ) if and only if every open set containing z0 has positive µ-measure.
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For a discrete set consisting of n points of C, say An = {z1, . . . , zn}, we associate the normal-
ized counting measure

ν(An) :=
1

n

n
∑

k=1

δzk
,

where δz is the unit point mass at z.

Example 1.3. If An+1 consists of the n + 1 Chebyshev nodes for [−1, 1]; that is An+1 =
{cos(kπ/n) : k = 0, 1, . . . , n}, then

ν(An)
∗→ dx

π
√

1 − x2
, (1.6)

which is the arcsine distribution on [−1, 1]. The nodes An+1 are the extreme points of the
Chebyshev polynomials Tn(x) = cos(n arccos x), which are orthogonal on [−1, 1] with respect
to the arcsine distribution. Verify (1.6)!

Example 1.4. If An consists of the nth roots of unity, then ν(An)
∗→ 1

2π dθ, where dθ is
arclength on the unit circle |z| = 1.

Exercise. Let λ be a real irrational number and let An := {exp(λkπi) : k = 1, . . . , n}. Prove

that ν(An)
∗→ 1

2π dθ. What happens if λ is rational?

As we shall see, many of the results of potential theory are formulated for semi-continuous
functions.

Definition 1.5. A function f : D → (−∞,∞] (f omits the value −∞) is lower semi-continuous
(l.s.c.) on the set D ⊂ C if it satisfies any of the following equivalent conditions:

(i) {z ∈ D : f(z) > α} is open relative to D for every α ∈ R;

(ii) For every z0 ∈ D,
f(z0) ≤ lim inf

z→z0

f(z);

(iii) For every compact subset K ⊂ D, there exists an increasing sequence of continuous functions
on K with pointwise limit f .

Exercise. Prove that if f is l.s.c. on a compact set K, then f attains its minimum on K.

Important for us is the fact, which follows from property (iii) and the Monotone Convergence
Theorem, that if f is l.s.c. on a compact set K, then

∫

K
f dµ ≤ lim inf

n→∞

∫

K
f dµn (1.7)

wherever µn
∗→ µ and supp(µn) ⊂ K for all n.

Exercise. Prove that if µn
∗→ µ, then for any bounded Borel set E,

µ(E̊) ≤ lim inf
n→∞

µn(E) ≤ lim sup
n→∞

µn(E) ≤ µ(E),
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where E̊ and E denote, respectively, the interior of E and the closure of E. [Hint: First show that
the characteristic function of an open set is l.s.c.]

Our goal now is to determine the weak-star limit (if it exists) for the sequence of normalized
counting measures ν(Fn) in the Fekete points for a given compact set E. For this purpose we study
the continuous analogue of the discrete minimum energy problem (1.2).

Electrostatics Problem for a Capacitor. Place a unit positive charge on a compact set E
so that equilibrium is attained in the sense that energy is minimized. Again it is assumed that the
repulsive force between like-charged particles located at points z and t is proportional to 1/|z − t|.

To create a mathematical framework for this problem, we let M(E) denote the collection of all
positive unit Borel measures µ supported on E (so that M(E) contains all possible distributions
of charges placed on E). The logarithmic potential associated with µ is

Uµ(z) :=

∫

log
1

|z − t| dµ(t), (1.8)

which is harmonic outside the support supp(µ) of µ and is l.s.c. in C since

Uµ(z) = lim
M→∞

∫

min

(

M, log
1

|z − t|

)

dµ(t).

The energy of such a potential is defined by

I(µ) :=

∫

Uµ dµ =

∫ ∫

log
1

|z − t| dµ(t) dµ(z). (1.9)

Thus, the electrostatics problem involves the determination of

VE := inf{I(µ) : µ ∈ M(E)}, (1.10)

which is called the Robin constant for E. Note that since E is bounded, we have

−∞ < VE ≤ +∞.

First we establish the existence of a measure µE ∈ M(E) for which the “inf” is attained. For
this purpose we use

Lemma 1.6 (Principle of Descent). Let µn be a sequence of measures in M(E) that con-
verges weak-star to some µ ∈ M(E). Then, for all z ∈ C,

Uµ(z) ≤ lim inf
n→∞

Uµn(z), (1.11)

and, furthermore,
I(µ) ≤ lim inf

n→∞
I(µn). (1.12)

Proof. Inequality (1.11) follows from (1.7) on observing that log 1/|z − t| is l.s.c. in t. Inequality
(1.12) follows similarly, on observing that µn × µn converges weak-star to µ× µ. �
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Lemma 1.7. There is some µE ∈ M(E) such that I(µE) = VE .

Proof. By the Banach-Alaoglu Theorem, M(E) is compact in the weak-star topology (this
fact is also known as Helly’s Selection Theorem). Let µn be a sequence in M(E) satisfy-
ing limn→∞ I(µn) = VE and let ν denote some weak-star cluster point of the µn. Then, by the
Principle of Descent and the definition of VE , we obtain VE = I(ν). �

When VE = +∞ (for example this is the case if E is countable), then every measure µ ∈ M(E)
is a minimizing measure. However, if VE is finite, it follows from the strict convexity of I(µ) on
M(E) (cf. [ST]) that there exists a unique measure µE such that VE = I(µE). In this case, we call
µE the equilibrium measure for E, and UµE the equilibrium or conductor potential for E.

Definition 1.8. The logarithmic capacity of E, denoted by cap(E), is defined by

cap(E) := e−VE . (1.13)

If VE = +∞, we set cap(E) = 0; such sets E are called polar sets because they correspond to
sets where potentials can equal +∞. More generally, an arbitrary set E ⊂ C is said to be polar if
every closed subset of E is polar. In electrostatic terms, polar sets are “too small” to hold a charge.§

Exercise. Prove that any countable set E is a polar set.

Next we establish the connection with the transfinite diameter.

Theorem 1.9. For any compact set E ⊂ C,

τ(E) = cap(E). (1.14)

Moreover, if E has positive capacity, then

ν(Fn)
∗→ µE as n→ ∞. (1.15)

Proof. First we show that

VE = log
1

cap(E)
≥ log

1

τ(E)
. (1.16)

Let F (z1, z2, . . . , zn) :=
∑

1≤i<j≤n log(1/|zi − zj|). Then the expected value of F with respect to
the product of equilibrium measures dµE(z1) dµE(z2) · · · dµE(zn) cannot be less than its minimum
value defined in (1.2); i.e.,

∫ ∫

· · ·
∫

F (z1, z2, . . . , zn) dµE(z1) · · · dµE(zn) =
n(n− 1)

2
VE

≥ En(E) =
n(n− 1)

2
log

1

δn(E)
.

§Somewhat surprising is the fact that the classical “1/3 Cantor set,” which has 1-dimensional Lebesgue measure
zero, has positive capacity. The precise value of this capacity is as yet still unknown (see [R2] for some numerical
approximation methods).
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Dividing by n(n− 1)/2 and letting n→ ∞ gives (1.16).
For the reverse direction, let µ̂ be a weak-star limit point of the measures νn := ν(Fn), say

νn
∗→ µ̂ as n→ ∞, n ∈ N . Set logM x := min{log x,M}. By the Monotone Convergence Theorem

and the weak-star convergence of νn × νn to µ̂× µ̂ for n ∈ N , we get

I(µ̂) =

∫ ∫

log
1

|z − t| dµ̂(z) dµ̂(t) = lim
M→∞

∫ ∫

logM

1

|z − t| dµ̂(z) dµ̂(t)

= lim
M→∞

lim
n→∞

∫ ∫

logM
1

|z − t| dνn(z) dνn(t)

≤ lim
M→∞

lim
n→∞

{

2

n2
En(E) +

nM

n2

}

= lim
M→∞

lim
n→∞

log
1

δn(E)
= log

1

τ(E)
≤ VE.

Thus from the minimality property of VE, we have

VE ≤ I(µ̂) ≤ log
1

τ(E)
≤ VE ,

which proves (1.14). Furthermore, if cap(E) > 0, then by uniqueness of the equilibrium (minimiz-
ing) measure, µ̂ = µE . Since µ̂ was an arbitrary limit measure of ν(Fn), (1.15) follows. �

As we have earlier observed, Fekete points necessarily lie on the outer boundary of E. Thus from
(1.15) we immediately deduce that the equilibrium measure µE is supported on the outer boundary
of E; consequently,

cap(E) = cap(∂∞E), µE = µ∂∞E .

If ∂∞E is a continuum (not a single point), then supp(µE) = ∂∞E. In general, ∂∞E \ supp(µE)
has capacity zero.

From our knowledge of Fekete points for the disk we deduce the following.

Example 1.10. If E is the closed disk |z − a| ≤ r, then cap(E) = r and dµE = 1
2πr ds,¶

where ds is arclength on the circumference |z − a| = r. Furthermore, the equilibrium potential
UµE (z) satisfies

UµE (z) =
1

2π

∫ 2π

0
log

1

|z − a− reiθ| dθ =

{

log 1
r for |z − a| ≤ r

log 1
|z−a| for |z − a| ≥ r.

(1.17)

Exercise. Verify formula (1.17). [Hint: The mean-value property for harmonic functions is useful
here; see Theorem 2.1.]

¶This also follows from the fact that the disk E is invariant under rotations about z = a and since the equilibrium
measure is unique and supported on the circumference it must also be rotation invariant and hence of the form
described.
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Figure 1: Graph of equilibrium potential for the unit disk

Example 1.11. Let E = [a, b] be a segment on the real line. Then cap(E) = (b − a)/4 and
dµE is the arcsine measure; i.e.,

dµE =
1

π

dx
√

(x− a)(b− x)
, x ∈ [a, b].

If a = −1, b = 1, the conductor potential is given by

UµE (z) = log 2 if x ∈ [−1, 1],

UµE (z) = log 2 − log
∣

∣

∣z +
√

z2 − 1
∣

∣

∣ if z 6∈ [−1, 1],

where the branch
√
z2 − 1 is positive for z = x > 1. These facts can be obtained from Example

1.10 by applying the Joukowski conformal map of C \ [−1, 1] onto |w| > 1. See Example 3.6.

In the examples for the disk and line segment, observe that the equilibrium potential UµE is
constant on E, namely it equals VE = log 1

cap(E) there. This is certainly consistent with our ex-

pectations based on physical grounds, that equilibrium should occur when the potential (voltage)
is constant; for otherwise there would be a flow of charge to the points of E at lower potential.
From a mathematically rigorous point of view, this assertion is true quasi-everywhere (q.e.) on
E; that is, except for a set of capacity zero.‖ This fact is included in the following result.

Theorem 1.12 (Frostman’s Theorem). Let E ⊂ C be compact with cap(E) > 0. Then

(a) UµE (z) ≤ VE for all z ∈ C;

(b) UµE (z) = VE q.e. on E.

The proof relies on a maximum principle for potentials which is discussed in Section 2. For full
details, see [R1], [ST], [Ts].

The theorem suggests that we visualize the 3-dimensional graph of an equilibrium potential as
something like an infinite tent with an “essentially” flat roof consisting of the projection of the set
E and tent sides that flow down and outward to −∞; see, e.g., Figure 1.

There are many important consequences of Frostman’s result, of which the following will be
useful in the proof of the main theorem of this section.

‖An arbitrary Borel set B has capacity zero if sup{cap(F ) : F ⊂ B compact} = 0.
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Proposition 1.13. Let E ⊂ C be compact with cap(E) > 0. If σ is any probability mea-
sure with compact support, then

inf
z∈E

Uσ(z) ≤ VE = log
1

cap(E)
.

Proof. Here we use the reciprocity law (a simple consequence of the Fubini-Tonelli Theorem)
which asserts that

∫

Uσ(z) dµE(z) =

∫

UµE (z) dσ(z).

The left-hand side is bounded below by infz∈E U
σ(z) and, from Frostman’s theorem, VE is an upper

bound for the right-hand side. �

We now introduce a third quantity associated with a compact set E — the Chebyshev con-
stant, cheb(E) — which arises in a min-max problem.

Polynomial Extremal Problem: Determine the minimal sup norm on E for monic polyno-
mials of degree n. That is, determine∗∗

tn(E) := min
p∈Pn−1

‖zn + p(z)‖E ,

where Pn−1 denotes the collection of all polynomials of degree ≤ n− 1 and ‖ · ‖E is the sup norm
(uniform norm) on E. We assume that E contains infinitely many points (which is always the case
if cap(E) > 0). Then for every n there is a unique monic polynomial Tn(z) = zn + · · · such that
‖Tn‖E = tn(E), which is called the nth Chebyshev polynomial for E.

Exercise. Prove that all the zeros of Tn lie in the convex hull of E. (This fact is due to Fejér.)

In view of the simple chain of inequalities

tm+n(E) = ‖Tm+n‖E ≤ ‖TmTn‖E ≤ ‖Tm‖E‖Tn‖E = tm(E)tn(E),

the sequence log tn(E) is subadditive, from which it follows that tn(E)1/n converges and its limit
is infk≥1{tk(E)1/k} (cf. [Ts], [ST]). We call this limit the Chebyshev constant for E:

cheb(E) := lim
n→∞

tn(E)1/n = inf
k≥1

{tk(E)1/k}. (1.18)

From (1.18) and the definition of tn(E) we deduce the following.

Lemma 1.14. For any monic polynomial pn(z) of degree n there holds

‖pn‖E ≥ [cheb(E)]n. (1.19)

∗∗This problem is equivalent to finding the polynomial of degree ≤ n − 1 of best uniform approximation to the
monomial zn on E.
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Example 1.15. Let E be the closed disk of radius R, centered at 0. For any p ∈ Pn−1, the
ratio (zn + p(z))/zn represents an analytic function in |z| ≥ 1 that takes the value 1 at ∞. By the
maximum principle for analytic functions,

‖zn + p(z)‖E = max
|z|=R

|zn + p(z)| = Rn max
|z|=R

∣

∣

∣

∣

zn + p(z)

zn

∣

∣

∣

∣

≥ Rn,

and strict inequality takes place if p(z) is not identically zero. It follows that Tn(z) = zn. Therefore
tn(E) = Rn and cheb(E) = R.

Example 1.16. Let E = [−1, 1]. Then Tn is the classical monic Chebyshev polynomial††

Tn(x) = 21−n cos(n arccos x), x ∈ [−1, 1], n ≥ 1.

Thus, tn(E) = ‖Tn‖[−1,1] = 21−n from which it follows that cheb(E) = 1/2, which is the same as
the capacity of [−1, 1].

Exercise. Verify Example 1.16 by using the fact that 21−n cos(n arccos x) equioscillates n + 1
times on [−1, 1].

Closely related to Chebyshev polynomials are Fekete polynomials. An nth degree Fekete poly-
nomial Fn(z) is a monic polynomial having all its zeros at the n points of a Fekete set Fn.

Example 1.17. If E is the closed unit disk centered at 0, then one can take Fn(z) = zn − 1,
so that ‖Fn‖E = 2. Comparing this with Example 1.15 we see that the Fn’s are asymptotically
optimal for the Chebyshev problem:

lim
n→∞

‖Fn‖1/n
E = lim

n→∞
‖Tn‖1/n

E = 1 = cheb(E).

Moreover, uniformly on compact subsets of |z| > 1, we have

lim
n→∞

|Fn(z)|1/n = lim
n→∞

|Tn(z)|1/n = |z| = exp(−UµE (z)),

(the last equality follows from formula (1.17)).

The above examples illustrate the following fundamental theorem, various parts of which are
due to Fekete, Frostman, and Szegő.

Theorem 1.18 (Fundamental Theorem of Classical Potential Theory). For any com-
pact set E ⊂ C,
(a) cap(E) = τ(E) = cheb(E);
(b) Fekete polynomials are asymptotically optimal for the Chebyshev problem:

lim
n→∞

‖Fn‖1/n
E = cheb(E) = cap(E).

††There is ambiguity in this notation since Tn(x) is traditionally used to denote cos(n arccos x).
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If cap(E) > 0 (so that µE is unique), then we also have:

(c) Fekete points (the zeros of Fn) have asymptotic distribution µE , i.e., ν(Fn)
∗→ µE as n→ ∞;

(d) uniformly on compact subsets of the unbounded component of C \ E,

lim
n→∞

|Fn(z)|1/n = exp(−UµE (z)).

Proof. Part (c) was established in (1.15) of Theorem 1.9. Assertion (d) follows from (c) on
observing that

1

n
log

1

|Fn(z)| = Uν(Fn)(z),

and that all the Fekete points lie on E. Regarding (a) and (b), we already know that cap(E) = τ(E).
So to establish (a), we prove that τ(E) = cheb(E).

Let Fn = {z(n)
k }n

k=1 denote an n-point Fekete set for E. Then

δ
n(n+1)/2
n+1 = max

{zi}⊂E

∏

1≤i<j≤n+1

|zi − zj| ≥
[

n
∏

k=1

|z − z
(n)
k |

]

δn(n−1)/2
n

for all z ∈ E. Thus
δ
n(n+1)/2
n+1 /δn(n−1)/2

n ≥ |Fn(z)|, z ∈ E,

and so on taking nth roots, we get

δ
(n+1)/2
n+1 /δ(n−1)/2

n ≥ ‖Fn‖1/n
E . (1.20)

The left-hand side of this inequality can be written as

(

δn+1

δn

)n/2

δ
1/2
n+1δ

1/2
n ,

which is bounded above by δ
1/2
n+1δ

1/2
n since the sequence δn is decreasing. From (1.19), we have that

the right-hand side of (1.20) is bounded below by cheb(E). Hence

δ
1/2
n+1δ

1/2
n ≥ ‖Fn‖1/n

E ≥ cheb(E),

and so on letting n→ ∞, we get

τ(E) ≥ lim sup
n→∞

‖Fn‖1/n
E ≥ lim inf

n→∞
‖Fn‖1/n

E ≥ cheb(E).

It remains only to prove that cheb(E) ≥ τ(E). This is obvious if τ(E) = cap(E) = 0. So assume
cap(E) > 0. Let ν(Tn) denote the normalized counting measure in the zeros of Tn(z). Then by
Proposition 1.13,

inf
z∈E

Uν(Tn)(z) = inf
z∈E

1

n
log

1

|Tn(z)| =
1

n
log

1

tn(E)
≤ VE.

Hence
tn(E)1/n ≥ e−VE = cap(E) = τ(E),
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and on letting n→ ∞, we get cheb(E) ≥ τ(E). �

Exercise. Let 0 < a < b. Prove that

cap ([a, b] ∪ [−b,−a]) =

√
b2 − a2

2
.

[Hint: What are the Chebyshev polynomials of even degree for this union?]

Exercise. Let P (z) be a monic polynomial of degree n, and consider the lemniscate set L :=
{z : |P (z)| ≤ Rn}. Prove that cap(L) = R. [Hint: Begin by determining the Chebyshev polynomi-
als Tkn, k = 1, 2, . . . , for L.]

Exercise. Let E be a compact set and ǫ > 0. Show that there exists a lemniscate set L such that
E ⊂ L and cap(L) < cap(E) + ǫ.

2 Harmonic, Superharmonic and Subharmonic Functions

Recall that a real-valued function u(z) defined in an open set D ⊂ C is harmonic in D if u and
its 1st and 2nd partial derivatives are continuous in D and u satisfies Laplace’s equation

uxx(z) + uyy(z) = 0, z ∈ D. (2.1)

(Actually it is enough to merely assume that the 2nd partial derivatives exist and satisfy (2.1).)
Locally, harmonic functions are the real (or imaginary) parts of an analytic function.

Exercise. Prove that if u is harmonic in D, then g(z) := ux(z) − iuy(z) is analytic in D.

Note that the important function log |z| is harmonic in C \ {0}, is locally the real part of a
branch of log z, but is not globally (in C \ {0}) the real part of an analytic function.

Exercise. Prove that the logarithmic potential Uµ(z) is harmonic for z not in the support of
µ (assuming this support is compact and µ is a finite measure).

Harmonic functions can also be characterized by the following Mean-Value Property (MVP).

Theorem 2.1. A real-valued function u(z) is harmonic in an open set D if and only if u is
continuous in D and locally satisfies the mean-value property; i.e., if the disk |z − a| ≤ r is
contained in D, then

u(a) =
1

2π

∫ 2π

0
u(a+ reiθ) dθ. (2.2)

(In fact, it is enough that equality holds for r = r(a) sufficiently small.)

Exercise. Prove that if u is harmonic on an open set D containing the disk |z − z0| ≤ r, then

u(z0) =
1

πr2

∫ ∫

|z−z0|≤r
u(z) dxdy.
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Exercise. Prove that if un(z), n = 1, 2, . . ., is a sequence of functions harmonic in D that converges
locally uniformly to a function u in D, then u is harmonic in D.

An important consequence of (2.2) is the Max-Min Principle for harmonic functions.

Theorem 2.2. If u is harmonic in a domain D (i.e., an open connected set) and u attains
its maximum (or minimum) in D, then u is identically constant in D.

Furthermore, if u is harmonic in the interior and continuous on the boundary of a compact set,
then u attains its max and min on the boundary.

The proof of this principle follows from the observation that if u attains its max at a point
z0 ∈ D and Dr(z0) is any closed disk centered at z0, then u must equal u(z0) for all z ∈ Dr(z0)
since the contrary assumption would lead to a violation of the MVP (simply integrate around a
circle centered at z0 and containing a point where u(z) < u(z0)).

Theorem 2.2 also tells us that harmonic functions are determined by their values on the bound-
ary of a compact set. Indeed, in the case of a disk, we have Poisson’s integral formula: If u is
harmonic in |z| < R and continuous on |z| ≤ R, then

u(z) =
1

2π

∫ 2π

0
P (t, z)u(t) dθ, t = Reiθ, |z| < R, (2.3)

where

P (t, z) :=
|t|2 − |z|2
|t− z|2 = ℜ

(

t+ z

t− z

)

. (2.4)

This formula can be deduced, for example, from the Cauchy integral formula for analytic func-
tions; it includes as a special case the MVP (2.2).

Exercise. Prove that if U(t) is integrable (in the Lebesgue sense) on |t| = R, then

u(z) :=
1

2π

∫ 2π

0
P (t, z)U(t) dt (2.5)

is harmonic in |z| < R. (If U(t) is continuous on the circle |t| = R, then Schwarz’s theorem asserts
that u as given in (2.5) solves the Dirichlet problem for the disk; i.e., limz→t u(z) = U(t) for all t
on the boundary |t| = R.)

If we replace equality in (2.2) by ≥, we obtain the class of superharmonic functions.

Definition 2.3. An extended real-valued function f on an open set D ⊂ C is called
superharmonic in D if f is not the constant function +∞ and satisfies

(i) f is lower semi-continuous on D;

(ii) the value of f at any point z0 ∈ D is not less than its average over any circle in D centered
at z0; that is

f(z0) ≥
1

2π

∫ 2π

0
f(z0 + reiθ) dθ (2.6)
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provided the closed disk Dr(z0) := {z ∈ C : |z − z0| ≤ r} is contained in D.

A subharmonic function is the negative of a superharmonic function. A real-valued function
u(z) that is both superharmonic and subharmonic in D is harmonic in D.

Exercise. Let f : D → R, D a domain, f ∈ C2(D). Prove that f is superharmonic in D if
and only if ∆f := fxx + fyy ≤ 0 at all points of D. [Hint: Begin by showing that a negative
Laplacian implies that f is superharmonic.]

As the above exercise illustrates, superharmonic functions in R
2 are analogues of concave func-

tions in R; and subharmonic functions are the analogues of convex functions.

Exercise. Prove that if F (z) is analytic in a domain D and p > 0, then |F (z)|p is subhar-
monic in D. Furthermore, show log |F (z)| is subharmonic in D unless F is identically zero.

Essential for us is the fact that logarithmic potentials are superharmonic in C. Indeed, as we
have seen,

Uµ(z) =

∫

log
1

|z − t| dµ(t)

is l.s.c. on C and since log(1/|z − t|) is superharmonic in C for fixed t (Why?), it follows from the
Fubini-Tonelli theorem that for a ∈ C

1

2π

∫ 2π

0
Uµ(a+ reiθ) dθ =

∫

1

2π

∫ π

−π
log

1

|a+ reiθ − t| dθ dµ(t)

≤
∫

log
1

|a− t| dµ(t) = Uµ(a)

(see also (1.17)).

Exercise. Prove that if Uµ is harmonic in a neighborhood of a point z0, then z0 6∈ supp(µ).

While it may appear that potentials are rather special types of superharmonic functions, their
properties are key to the analysis of general superharmonic functions. This is thanks to the follow-
ing celebrated result.

Theorem 2.4 (Riesz Decomposition). If f is superharmonic in a domain D, then there exists
a positive measure λ supported on D such that for every subdomain D∗ ⊂ D for which D∗ ⊂ D,
we have

f(z) = h(z) +

∫

D
log

1

|z − t| dλ(t), z ∈ D∗, (2.7)

where h is harmonic in D∗.

For the case when f is smooth, superharmonicity implies that ∆f = fxx + fyy ≤ 0 in D and it
turns out that the positive measure

dλ(t) := − 1

2π
∆f(t) dm2(t), t ∈ D, (2.8)
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where m2 denotes 2-dimensional Lebesgue measure, yields the appropriate potential Uλ for which
(2.7) holds.

Let’s verify this for the simple but important case when f(z) = −|z|2, for which we have
∆f ≡ −4. Then we need to show that ∆(f − Uλ) = 0 in D∗ where dλ = (2/π) dm2. For
an arbitrary disk Dr(z0) := {z : |z − z0| < r} contained in D∗, write Uλ = Uλ1 + Uλ2 where
λ1 = λ|Dr(z0) and λ2 = λ − λ1. Then Uλ2 is harmonic in Dr(z0) and so we need only show that

∆(f − Uλ1) = 0 in Dr(z0). A simple calculation using (1.17) gives that

Uλ1(z) =
2

π

∫

Dr(z0)
log

1

|z − t| dm2(t)

= 2r2 log
1

r
+ r2 − |z − z0|2,

from which we get ∆Uλ1(z) = −4 = ∆f for z ∈ Dr(z0), as desired. For more general but smooth
f , one can use Green’s formula‡‡ to verify that (2.8) yields the decomposition in (2.7).

For general superharmonic functions f , we interpret the right-hand side of (2.8) in the distribu-
tional sense (cf. [R1, Sec. 3.7]); more precisely, we identify −∆f dm2 as the unique positive measure
that satisfies

∫

D
φ(−∆f dm2) := −

∫

D
f∆φdm2 (2.9)

for all C∞ functions φ whose support is a compact subset of D. This condition is precisely what
would be expected from Green’s formula. The existence of such a measure −∆f dm2 satisfying (2.9)
is guaranteed by the Riesz representation theorem for linear functionals. With this interpretation,
it follows that for any finite Borel measure µ with compact support there holds

µ = − 1

2π
∆Uµ. (2.10)

Just as the MVP (2.2) for harmonic functions implied the Max-Min Principle (Theorem 2.2),
the mean-value inequality property (2.6) yields the following.

Theorem 2.5 (Minimum Principle for Superharmonic Functions). Let D be a bounded
domain and g a superharmonic function on D such that

lim inf
z→ζ

g(z) ≥ m ∀ ζ ∈ ∂D. (2.11)

Then g(z) > m for all z in D, unless g is constant.

Exercise. Use the Min Principle to prove that a l.s.c. function f (not identically +∞) is su-
perharmonic in a domain D if and only if it has the following property: If D0 ⊂ D is a bounded
domain whose closure is contained in D and u is harmonic in D0, continuous on D0 and satisfies

‡‡Recall that Green’s formula for smooth functions u, v on a bounded open set D with smooth boundary ∂D
asserts that

∫

D

(v∆u − u∆v) dm2 = −

∫

∂D

(v
∂u

∂n
− u

∂v

∂n
) ds,

where ∂/∂n denotes differentiation in the direction of the inner normal to D.
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u(ζ) ≤ f(ζ) ∀ ζ ∈ ∂D0, then u(z) ≤ f(z) ∀ z ∈ D0.

A more general form of the Min Principle allows us to ignore a set of points on ∂D of capacity
zero provided g is lower bounded on D; see [ST].

Theorem 2.6 (Generalized Min Principle). If D ⊂ C is a domain, cap(∂D) > 0, g is super-
harmonic and bounded from below in D and (2.11) holds for q.e. ζ on ∂D, then g(z) > m ∀ z ∈ D
unless g is constant.

Exercise. Give an example to show that the lower boundedness assumption cannot be removed
in the above result.

For potentials what is crucial is their behavior on the support of its defining measure.

Theorem 2.7 (Maximum Principle for Potentials). Let µ be a finite positive measure with
compact support. If Uµ(z) ≤M for all z ∈ supp(µ), then Uµ(z) ≤M for all z ∈ C.

The Max Principle is a special case of the following important result.

Theorem 2.8 (Principle of Domination). Let µ, ν be positive finite measures with com-
pact supports, ν(C) ≤ µ(C), and µ has finite logarithmic energy (I(µ) <∞). If for some constant
c, the inequality

Uµ(z) ≤ Uν(z) + c

holds µ-a.e., then it holds for all z ∈ C.

The idea of the proof of the above theorem is to consider the function

U(z) := min(Uν(z) + c, Uµ(z)),

which is superharmonic since the minimum of two superharmonic functions is again superharmonic.
Let λ := − 1

2π∆U (i.e., λ is the measure guaranteed by the Riesz Decomposition Theorem (RDT)
with D = C) and argue that λ must equal µ. See [ST] for details.

As an application of the Principle of Domination, we present

Example 2.9. Let pn, n = 1, 2, . . ., be a sequence of monic polynomials of respective degrees n
that satisfy

lim sup
n→∞

‖pn‖1/n
[−1,1] ≤ 1

2
= cap([−1, 1]), (2.12)

and let ν(pn) denote the normalized counting measure in the zeros of pn. If all the zeros of the pn’s
lie on [−1, 1], then

ν(pn)
∗→ µ[−1,1] =

dx

π
√

1 − x2
as n→ ∞. (2.13)

Indeed, by definition of the sup norm,

1

n
log

1

|pn(z)| ≥
1

n
log

1

‖pn‖[−1,1]
, z ∈ [−1, 1].
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We write this last inequality in the equivalent form

Uν(pn)(z) + log 2 ≥ 1

n
log

1

‖pn‖[−1,1]
+ Uµ[−1,1](z), z ∈ [−1, 1], (2.14)

where we used the fact that Uµ[−1,1](x) = log 2 for all x ∈ [−1, 1] (see Examples 1.11 and 3.6). By
the Principle of Domination, (2.14) holds for all z ∈ C. Now let ν be a weak-star limit measure of
the sequence ν(pn). Then from (2.12) and (2.14), we get

Uν(z) + log 2 ≥ log 2 + Uµ[−1,1](z) ∀ z 6∈ [−1, 1],

i.e., Uν(z) − Uµ[−1,1](z) ≥ 0 for all z ∈ Ω := C \ [−1, 1]. But since Uν − Uµ[−1,1] vanishes at ∞ and
is harmonic in Ω, the Max-Min Principle asserts that Uν(z) = Uµ[−1,1](z) for z ∈ Ω. By l.s.c., we
then deduce that Uν(x) ≤ Uµ[−1,1](x) = log 2 for all x ∈ [−1, 1] and so I(ν) ≤ log 2 = I(µ[−1,1]).
By uniqueness of the minimizing measure, we get that ν = µ[−1,1], which proves (2.13).

Actually, (2.13) holds without any prior assumptions on the location of zeros of the pn’s. This
follows from the fact that (2.12) implies that the proportion of zeros that lie outside any open set
containing [−1, 1] is asymptotically negligible (see Section 3).

Another consequence of the Riesz Decomposition Theorem is the following.

Theorem 2.10 (Unicity Theorem). Let µ, ν be positive finite measures having compact
support. If, in a region D ⊂ C, there holds

Uµ(z) = Uν(z) + h(z) m2-a.e.,

where h is harmonic in D, then µ|D = ν|D.

In particular, if two potentials Uµ and Uν agree except for a set of 2-dimensional Lebesgue
measure zero, then µ = ν.

3 Equilibrium Potentials, Green Functions and Regularity

Throughout this section, E ⊂ C denotes a compact set with cap(E) > 0. Here, we discuss properties
and characterizations of the equilibrium (conductor) potential UµE .

According to Frostman’s Theorem 1.12, UµE is “essentially” constant on E (more precisely,
constant q.e. on E). So the following result should come as no surprise.

Theorem 3.1. If ν ∈ M(E) has finite logarithmic energy (i.e., I(ν) < ∞) and Uν(z) = c
q.e. on E, then c = VE and ν = µE.

In the proof of this result, a useful fact is the following.

Exercise. If a measure ν has finite logarithmic energy, then any set of capacity zero has ν measure
zero.

With this fact, Theorem 3.1 follows by simply integrating the equality Uν = c with respect to
dµE and interchanging order of integration.
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Exercise. Give an example to show that if ν ∈ M(E) and Uν is constant on E except for
one point, then ν need not equal µE.

What can be said about the continuity properties of UµE? Certainly UµE is continuous in
C \ supp(µE) since it is harmonic there. So suppose z0 ∈ supp(µE). Then by l.s.c. and Frostman’s
Theorem, we have

UµE (z0) ≤ lim inf
z→z0

UµE (z) ≤ lim sup
z→z0

UµE (z) ≤ VE.

Hence if UµE (z0) = VE , then UµE is continuous at z0. The converse is also true. (Prove it!) To
summarize, we have:

Theorem 3.2. UµE is continuous at z0 ∈ supp(µE) if and only if UµE (z0) = VE. Conse-
quently, UµE is continuous q.e. in the plane.

Definition 3.3. A point z0 ∈ ∂∞E is said to be a regular point of the unbounded com-
ponent Ω of C \ E if UµE (z0) = VE . Otherwise, z0 is called an irregular point. (From Theorem
3.2, we see that the set of all irregular points has capacity zero.) If every point of ∂Ω = ∂∞E is
regular, we say that Ω is regular (with respect to the Dirichlet problem).

Exercise. Prove that every interior point of E satisfies UµE (z) = VE .

The equilibrium potential is related to the Green function associated with the unbounded com-
ponent of the complement of E; more precisely, we have

Definition 3.4. The Green function with pole at ∞ for the unbounded component Ω
of C \ E is defined by

gΩ(z,∞) := VE − UµE (z). (3.1)

(Some authors write gE(z,∞) instead of gΩ(z,∞).)

Three properties uniquely characterize this function for z ∈ Ω; namely

(a) gΩ(z,∞) is harmonic in Ω\{∞} and bounded from above and below outside each neighborhood
of ∞;

(b) gΩ(z,∞) − log |z| = O(1) as z → ∞;

(c) gΩ(z,∞) → 0 as z → ζ, z ∈ Ω, for q.e. ζ ∈ ∂Ω.

Regarding property (b), it follows from (3.1) and the fact that µE is a unit measure that

gΩ(z,∞) − log |z| → VE = log
1

cap(E)
as z → ∞. (3.2)

It is also clear from (3.1) that gΩ(z,∞) ≥ 0, gΩ(z,∞) > 0 for z ∈ Ω, and in view of Theorem 3.2,
if ζ ∈ ∂Ω = ∂∞E, then gΩ(z,∞) → 0 as z → ζ, z ∈ Ω, if and only if ζ is a regular point of Ω.
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Exercise. Prove that if g̃(z) is a function that satisfies properties (a), (b), and (c) for z ∈ Ω,
then g̃(z) = gΩ(z,∞) for z ∈ Ω.

In the case when Ω is simply connected, we can relate the Green function to a Riemann mapping
of Ω.

Theorem 3.5. If the unbounded component Ω of C \ E is simply connected, then gΩ(z,∞) =
log |Φ(z)|, z ∈ Ω, where w = Φ(z) is the unique Riemann mapping function from Ω to the exterior
{w : |w| > 1} of the unit disk such that Φ(∞) = ∞, Φ′(∞) > 0.

Such a function Φ has a Laurent expansion about ∞ of the form

Φ(z) =
z

c
+ a0 +

a1

z
+
a2

z2
+ · · · , with c > 0, (3.3)

and using this representation, properties (a), (b), and (c) are easy to establish.

Exercise. Prove Theorem 3.5.

From (3.3), we immediately see that

log |Φ(z)| − log |z| → log
1

c
as z → ∞,

and comparison with (3.2) shows that

c = cap(E).

From this fact, we can determine the capacity of any compact set E providing we know the exterior
conformal mapping function Φ. We illustrate this for the line segment.

Example 3.6. Let E = [−1, 1]. The well-known Joukowski transformation z = ψ(w) =
1
2(w+w−1) maps the exterior of the unit circle onto Ω := C \ [−1, 1], with ψ(∞) = ∞, ψ′(∞) > 0.
Solving for w, we obtain the desired Riemann mapping:

w = Φ(z) = z +
√

z2 − 1,

where
√
z2 − 1 behaves like z near infinity. Thus

gΩ(z,∞) = log
∣

∣

∣z +
√

z2 − 1
∣

∣

∣ ,

and since Φ(z) = 2z + · · · near infinity, we get that cap([−1, 1]) = 1/2. Furthermore, from (3.1),
we have

UµE (z) = log 2 − log
∣

∣

∣
z +

√

z2 − 1
∣

∣

∣

as claimed in Example 1.11.

Exercise. Show that if the unbounded component Ω of C \ E is simply connected, then ev-
ery point of ∂∞E is regular, i.e., Ω is a regular domain.
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Exercise. By constructing a suitable mapping function, show that the capacity of an ellipse
with semi-axis lengths a and b is (a+ b)/2.

Exercise. Show that if the compact set E has positive capacity and p(z) is a monic polyno-
mial of degree n, then the set p−1(E) has capacity [cap(E)]1/n.

In the case when ∂∞E is a smooth closed Jordan curve, there is a simple representation for µE

in terms of the Green function gΩ = gΩ(z,∞). Using Green’s formula, one first shows that, for
z ∈ Ω, the equilibrium potential (= VE − gΩ) identically equals the potential of the unit measure
1
2π

∂gΩ
∂n ds, where the derivative is taken in the direction of the outer normal on ∂∞E and s denotes

arclength on ∂∞E (cf. [W, Sec. 4.2 ]). On letting z ∈ Ω approach ∂∞E and appealing to the lower
semi-continuity of potentials, it follows that 1

2π
∂gΩ
∂n ds has energy at most VE, and so by uniqueness

of the minimizing measure, we deduce that dµE = 1
2π

∂gΩ
∂n ds. Thus, for any Borel subset γ of ∂∞E,

µE(γ) =
1

2π

∫

γ

∂gΩ
∂n

ds =
1

2π

∫

γ
|Φ′|ds.

Alternatively, µE(γ) is given by the normalized angular measure of the image Φ(γ):

µE(γ) =
1

2π

∫

Φ(γ)
dθ (3.4)

(for this representation, the smoothness of ∂∞E is not needed).
The Green function is especially useful for estimating the modulus of a polynomial outside E

when its sup norm on E is known.

Lemma 3.7. (Bernstein-Walsh). If pn(z) is any polynomial of degree ≤ n, then

|pn(z)| ≤ ‖pn‖E engΩ(z,∞), z ∈ Ω, (3.5)

where ‖pn‖E := maxz∈E |pn(z)| and Ω is the unbounded component of C \ E.

Proof. Assume that pn has exact degree n. Then (3.5) is equivalent to

1

n
log

1

|pn(z)| + gΩ(z,∞) ≥ 1

n
log

1

‖pn‖E
, z ∈ Ω. (3.6)

Let u(z) denote the left-hand side of (3.6) and note that u is superharmonic in Ω and harmonic at
∞. Moreover, from property (c) for gΩ, we deduce that

lim inf
z→ζ
z∈Ω

u(z) ≥ 1

n
log

1

‖pn‖E
for q.e. ζ ∈ ∂Ω.

Thus (3.6) follows from the Minimum Principle for Superharmonic Functions. �

It is useful to consider Green functions with poles at finite points of the plane. If D is a domain
with cap(∂D) > 0, ∂D ⊂ C compact, the Green function gD(z, ζ) for D with pole at ζ ∈ D is
the unique real-valued function of z satisfying
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(a’) gD(z, ζ) is harmonic in D \ {ζ} and bounded outside any neighborhood of ζ.

(b’) gD(z, ζ) − log 1
|z−ζ| = O(1) as z → ζ.

(c’) lim
z→w
z∈D

gD(z, ζ) = 0 for q.e. w ∈ ∂D.

The relation of this Green function to the one with pole at ∞ is easy to see. Consider the
mapping w = 1/(z − ζ) that takes ζ to ∞ and D to some domain D′. Then

gD(z, ζ) = gD′

(

1

z − ζ
,∞

)

. (3.7)

Exercise. Verify that the function of z on the right-hand side of (3.7) satisfies properties (a’),
(b’), (c’).

Exercise. Verify that for the unit disk D : |z| < 1,

gD(z, ζ) = log

∣

∣

∣

∣

1 − ζz

z − ζ

∣

∣

∣

∣

, z, ζ ∈ D.

A clever application of Green’s formula shows that gD is symmetric: gD(z, ζ) = gD(ζ, z); see
[Ts].

Exercise. Prove that if pn, n = 1, 2, . . ., is a sequence of monic polynomials of respective de-
grees n that satisfy

lim sup
n→∞

‖pn‖1/n
[−1,1] ≤ 1

2
= cap([−1, 1]),

then the proportion of the number of zeros of the pn’s that lie outside any neighborhood of [−1, 1]
tends to zero as n → ∞. (Recall Example 2.9 and the remark following it.) [Hint: Let {zn,k}k∈Jn

denote the zeros of pn that lie at a distance ≥ ǫ > 0 from [−1, 1] and consider the functions

1

n
log

1

|pn(z)| −
1

n

∑

k∈Jn

g(z, zn,k) + g(z,∞),

where g = g
C\[−1,1].]

Just as log 1
|z−t| serves as the kernel for logarithmic potential theory, so too does gD(z, t) serve

as the kernel for Green potential theory. If ν is a finite positive measure on D with compact support
in C, we define

Uν
D(z) :=

∫

gD(z, ζ) dν(ζ), z ∈ D, (3.8)

and note that Uν
D ≥ 0 in D and Uν

D is superharmonic in D and harmonic in D \ supp(ν). Further-
more, if ν has compact support in D, then

lim
z→w
z∈D

Uν
D(z) = 0 for q.e. w ∈ ∂D.
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The Green energy of a measure ν is defined by

ID(ν) :=

∫ ∫

gD(z, ζ) dν(z) dν(ζ). (3.9)

For a closed subset E ⊂ D of positive logarithmic capacity, we consider the minimum energy
problem

V D
E := inf{ID(ν) : ν ∈ M(E)} (3.10)

for which there exists a unique measure (the Green equilibrium measure) µD
E ∈ M(E) such

that ID(µD
E ) = V D

E . Analogous to Frostman’s Theorem 1.12, there holds

U
µD

E

D (z) = V D
E q.e. on E (3.11)

U
µD

E

D (z) ≤ V D
E for all z ∈ D. (3.12)

The constant

cap(E, ∂D) :=
1

V D
E

(3.13)

is called the capacity of the condenser (E, ∂D); see Section 5.

Balayage
Let D ⊂ C be an open set with compact boundary ∂D of positive capacity and let µ be a measure
with supp(µ) ⊂ D. The problem of balayage (a French word meaning “sweeping”) consists of
finding a new measure µb supported on ∂D such that µb(C) = µ(C) and

Uµb

(z) = Uµ(z) for q.e. z 6∈ D. (3.14)

For a bounded domain D, the sweeping out of the measure µ to ∂D can always be accomplished,
but if the domain D ⊂ C contains the point at infinity, it is necessary to modify (3.14) so that it
reads

Uµb

(z) = Uµ(z) + c for q.e. z 6∈ D, (3.15)

for some constant c. Necessarily

c =

∫

gD(z,∞) dµ(z). (3.16)

If D is connected and regular, then equality in (3.14) and (3.15) holds for all z 6∈ D. To ensure

uniqueness of µb, a condition such as boundedness of Uµb
on ∂D suffices.

Exercise. Verify that the constant c in (3.15) is given by (3.16). [Hint: Starting with
∫

gD(z,∞) dµ(z) =

∫

[VE − Uµ∂D(z)] dµ(z),

use the reciprocity law together with (3.15) on ∂D.]

Balayage measures can also be characterized by the following property: if h is any function that
is continuous on D and harmonic in D, then

∫

D
hdµ =

∫

∂D
hdµb. (3.17)
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Example 3.8. If D is the unit disk |z| < 1 and δζ is the unit point mass at ζ ∈ D, then
the balayage of δζ to ∂D : |z| = 1 is given by

dδb
ζ(t) =

1

2π
P (t, ζ) dθ, t = eiθ, 0 ≤ θ ≤ 2π,

where P denotes the Poisson kernel (2.4).

If D is a compact subset of C with cap(D) > 0, then the balayage of δ∞ onto the outer boundary
of D is the equilibrium measure µD.

The notion of balayage is intimately connected to the Green function of a domain. Indeed, if
D is bounded, ζ ∈ D, and δb

ζ denotes the balayage of δζ to ∂∞D, then

gD(z, ζ) = log
1

|z − ζ| − U δb
ζ (z), (3.18)

since, as can be verified, the right-hand satisfies properties (a’), (b’), and (c’) that characterize the
Green function with pole at ζ. If µ is a finite positive measure on D, then

µb =

∫

δb
ζ dµ(ζ) (3.19)

and so, on integrating (3.18) with respect to dµ(ζ), we get

Uµ
D(z) =

∫

gD(z, ζ) dµ(ζ) = Uµ(z) − Uµb

(z), z ∈ D. (3.20)

As a consequence of (3.20) and the nonnegativity of the Green potential, we get

Uµb

(z) ≤ Uµ(z) ∀z ∈ C. (3.21)

In case D is an unbounded domain with ∂D ⊂ C, then (3.18), (3.19), and (3.20) must be
modified to include the constant c of (3.16); e.g., (3.21) becomes

Uµb

(z) ≤ Uµ(z) + c ∀z ∈ C. (3.22)

4 Applications to Polynomial Approximation of Analytic Functions

Let f be a continuous complex-valued function on a compact set E ⊂ C and let

en(f ;E) = en(f) := min
p∈Pn

‖f − p‖E (4.1)

be the error in best uniform approximation of f by polynomials of degree at most n. We denote
by p∗n the polynomial of best approximation: ‖f − p∗n‖E = en(f).

If en(f) → 0 as n→ ∞, the series

p∗1 +

∞
∑

n=1

(p∗n+1 − p∗n)
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converges to f uniformly on E, so that the continuous function f must be analytic at every interior
point of E. (The collection of all functions that are continuous on E and analytic in the interior of
E is denoted by A(E).) Furthermore, it follows from the maximum principle for analytic functions,
that the above series automatically converges on every bounded component of C \ E, so that its
sum represents an analytic continuation of f to these components (e.g., if E is the unit circle
|z| = 1, then the convergence holds in the unit disk |z| ≤ 1). Such a continuation, however, may
be impossible. Therefore, in order to ensure that en(f) → 0 for every function f in A(E), it is
necessary to assume that the only component of C \ E is the unbounded one; that is, C \ E is
connected (so that E does not separate the plane).

A celebrated theorem of S.N. Mergelyan (cf. [Ga]) asserts that this assumption is also sufficient.
Here, we prove this result in a special case when E has a connected and regular complement
Ω := C \ E and f is analytic in some neighborhood of E. Our aim is to determine the rate of
approximation.

For any R > 1, let ΓR denote the level curve {z : gΩ(z,∞) = logR}, see Fig. 2 (we call such a
curve a level curve with index R). The assumption that Ω is regular ensures that for any open
set V containing E, the level curve ΓR will lie in V for R sufficiently close to 1.

��
��
��

��
��
��

�����
�����
�����
�����

Φ
1

ΓR

E

R

Figure 2: Level curve of gΩ(z,∞)

Let Fn+1 be the (n+ 1)-st degree Fekete polynomial for E and let Pn be the polynomial of degree
≤ n that interpolates f at the zeros of Fn+1. We are given that f is analytic in a neighborhood of
E; hence there exists R > 1 such that f is analytic on and inside ΓR. For any such R, the Hermite
interpolation formula yields

f(z) − Pn(z) =
1

2πi

∫

ΓR

Fn+1(z)

Fn+1(t)

f(t) dt

t− z
, z inside ΓR. (4.2)

(The validity of the Hermite formula follows by first observing that the right-hand side vanishes at
the zeros of Fn+1(z), and then by replacing f(z) by its Cauchy integral representation to deduce
that the difference between f and the right-hand side is indeed a polynomial of degree at most n.)

Formula (4.2) leads to a simple estimate:

en(f) ≤ ‖f − Pn‖E ≤ K
‖Fn+1‖E

minΓR
|Fn+1(t)|

,

where K is some constant independent of n. Applying parts (b), (c) of the Fundamental Theorem
1.18, we obtain that

lim sup
n→∞

en(f)1/n ≤ cap(E)

R cap(E)
=

1

R
< 1. (4.3)

We have proved that indeed en(f) → 0 and that the convergence is geometrically fast. Since R > 1
was arbitrary (but such that f is analytic on and inside ΓR), we have actually proved that (4.3)
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holds with R replaced by R(f), where

R(f) := sup{R : f admits analytic continuation to the interior of ΓR}.
Can we improve on this? The answer is — no! In order to show this, we appeal to the Bernstein-
Walsh Lemma 3.7.

Assume now that (4.3) holds for some R > R(f) and let R(f) < ρ < R. Then for some constant
c > 1,

en(f) ≤ c

ρn
, n ≥ 1.

Since, from the triangle inequality,

‖p∗n+1 − p∗n‖E = ‖p∗n+1 − f + f − p∗n‖E ≤ en+1(f) + en(f) ≤ 2cρ−n,

we obtain from the Bernstein-Walsh Lemma that for any r > 1,

‖p∗n+1 − p∗n‖ΓR
≤ 2c

(

r

ρ

)n

, n ≥ 1.

If we choose R(f) < r < ρ, we obtain that the series p∗1 +
∑∞

n=1(p
∗
n+1 − p∗n) converges uniformly

inside Γr. Hence it gives an analytic continuation of f to the interior of Γr, which contradicts the
definition of R(f).

Let us summarize what we have proved.

Theorem 4.1 (Walsh [W, Ch. VII]). Let E be a compact set with connected and regular com-
plement. Then for any f ∈ A(E),

lim sup
n→∞

en(f)1/n =
1

R(f)
.

Remark. R(f) is the first value of R for which the level curve ΓR contains a singularity of f .
It may well be possible that f is analytic at some other points of ΓR(f), but the geometric rate of
best polynomial approximation “does not feel this” — whether every point of ΓR(f) is a singularity
or merely one point is a singularity, the rate of approximation remains the same as if f was analytic
only inside of ΓR(f)! To take advantage of any extra analyticity, different approximation tools are
needed; e.g., rational functions.

Example 4.2. Let E = [−1,−α] ∪ [α, 1], 0 < α < 1, and let f = 0 on [−1,−α] and f = 1
on [α, 1]. Some level curves ΓR of gC\E are depicted on Fig. 3. For R small, ΓR consists of two
pieces, while for R large, ΓR is a single curve. There is a “critical value” R0 = gC\E(0,∞) for which
ΓR0 represents a self-intersecting lemniscate-like curve (the bold curve in Fig. 3). Clearly, f can be
extended as an analytic function to the interior of ΓR0 (define f = 0 inside the left lobe and f = 1
inside the right lobe). For R > R0, the interior of ΓR is a (connected) domain; hence there is no
function analytic inside of ΓR that is equal to 0 on [−1,−α] and to 1 on [α, 1]. Therefore

R(f) = R0 = exp
{

gC\E(0,∞)
}

,

and by Theorem 4.1:
lim sup

n→∞
en(f)1/n = exp

{

−gC\E(0,∞)
}

.
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ΓR, R > R0

−1

ΓR, R < R0

−α 1α
0

ΓR0

Figure 3: Level curves of gC\E for Example 4.2

5 Rational Approximation

For a rational function R(z) = P1(z)/P2(z), where P1 and P2 are monic polynomials of degree n,
one can write

− 1

n
log |R(z)| = Uν1(z) − Uν2(z),

where ν1, ν2 are the normalized zero counting measures for P1, P2, respectively. The right-hand
side represents the logarithmic potential of the signed measure µ = ν1 − ν2:

Uν1(z) − Uν2(z) = Uµ(z) =

∫

log
1

|z − t| dµ(t).

The theory of such potentials can be developed along the same lines as in the earlier sections.
We present below only the very basic notions of this theory that are needed to formulate the
approximation results. A more in-depth treatment can be found in the works of Bagby [B], Gonchar
[Gon], as well as [ST].

The analogy with electrostatics problems suggests considering the following energy problem.
Let E1, E2 ⊂ C be two closed sets that are a positive distance apart. The pair (E1, E2) is called
a condenser and the sets E1, E2 are called the plates. Let µ1 and µ2 be positive unit measures
supported on E1 and E2, respectively. Consider the energy integral of the signed measure µ =
µ1 − µ2:

I(µ) =

∫ ∫

log
1

|z − t| dµ(z) dµ(t).

Since µ(C) = 0, the integral is well-defined, even if one of the sets is unbounded. While not obvious,
it turns out that such I(µ) is always positive. We assume that E1 and E2 have positive logarithmic
capacity. Then the minimal energy (over all signed measures of the above form)

V (E1, E2) := inf
µ
I(µ)

is finite and positive. We then define the condenser capacity cap(E1, E2) by

cap(E1, E2) := 1/V (E1, E2).
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One can show, as with the Frostman theorem, that there exists a unique signed measure
µ∗ = µ∗1 − µ∗2 (the equilibrium measure for the condenser) for which I(µ∗) = V (E1, E2). Fur-
thermore, the corresponding potential (called the condenser potential) is constant on each plate:

Uµ∗
= c1 on E1, Uµ∗

= −c2 on E2 (5.1)

(we assume throughout that E1, E2 are regular — otherwise the above equalities hold only quasi-
everywhere). On integrating against µ∗, we deduce from (5.1) that

c1 + c2 = V (E1, E2) = 1/cap(E1, E2). (5.2)

We mention that (similar to the case of the conductor potential) the relations of type (5.1) charac-
terize µ∗. Moreover, one can deduce from (5.1) that the measure µ∗i is supported on the boundary
(not necessarily the outer one) of Ei, i = 1, 2. Therefore, on replacing each Ei by its boundary, we
do not change the condenser capacity or the condenser potential.

Example 5.1. Let E1, E2 be, respectively, the circles |z| = r1 |z| = r2, r1 < r2. These
sets are invariant under rotations. Being unique, the measure µ∗ is therefore also invariant under
rotations and we obtain that

dµ∗1 =
1

2πr1
ds, dµ∗2 =

1

2πr2
ds,

where ds denotes the arclength over the respective circles E1, E2. Applying the result of Example
1.10, we find that

Uµ∗
(z) =







0, |z| > r2
log(r2/|z|), r1 ≤ |z| ≤ r2
log(r2/r1), |z| < r1.

Therefore (recall (5.2))

cap(E1, E2) = 1/ log
r2
r1
. (5.3)

Assume now that each plate of a condenser is a single Jordan arc or curve (without self-
intersections), and let G be the doubly-connected domain that is bounded by E1 and E2, see
Fig. 4. We call such a G a ring domain. For ring domains one can give an alternative definition
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E2

G

E1

Figure 4: Ring domains

of condenser capacity. Let

u(z) :=

∫

log(z − t) dµ∗(t) + c1.
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The complex function u is locally analytic but not single-valued inG (notice that there is no modulus
sign in the integral). Moreover, if we fix t and let z move along a simple closed counterclockwise
oriented curve in G that encircles E1, say, then the imaginary part of log(z − t) increases by 2π,
for t ∈ E1, while for t ∈ E2 it returns to the original value. Since µ∗1 and µ∗2 are unit measures, it
follows that the function φ : z → w = exp(u(z)) is analytic and single-valued. Moreover, it can be
shown to be one-to-one in G. By its definition, φ satisfies

log |φ| = −Uµ∗
+ c1 = 0 on E1; log |φ| = −Uµ∗

+ c1 = c1 + c2 on E2.

Therefore φ maps G conformally onto the annulus 1 < |w| < ec1+c2 .
It is known from the theory of conformal mapping that, for a ring domain G, there exists

unique R > 1, called the modulus of G (we denote it by mod(G)), such that G can be mapped
conformally onto the annulus 1 < |w| < R. We have thus shown that

cap(E1, E2) = 1/ log(mod(G)). (5.4)

We remark that if G1 ⊃ G2 are two ring domains, then mod(G1) ≥ mod(G2).

Example 5.2. Let E1, E2 be as above, and assume that E2 is the R-th level curve for E1.
That is, |Φ(z)| = R for z ∈ E2, where Φ maps conformally the unbounded component of C \ E1

onto |w| > 1. In particular, Φ maps the corresponding ring domain G onto the annulus 1 < |w| < R,
and we conclude that mod(G) = R (so that cap(E1, E2) = 1/ logR). Applying this to the configu-
ration of Example 5.1, we see that Φ(z) = z/r1, so that R = r2/r1, and we obtain again (5.3).

We now turn to rational approximation. Let E ⊂ C be compact. We denote by Rn the collection
of all rational functions of the form R = P/Q, where P , Q are polynomials of degree at most n,
and Q has no zeros in E. For f ∈ A(E), let

rn(f ;E) = rn(f) := inf
r∈Rn

‖f − r‖E

be the error in best approximation of f by rational functions from Rn. Clearly, since polynomials
are rational functions, we have (cf. (4.1)) rn(f) ≤ en(f). A basic theorem regarding the rate of
rational approximation was proved by Walsh [W, Ch.IX]. Following is a special case of this theorem.

Theorem 5.3. (Walsh) Let E be a single Jordan arc or curve and let f be analytic on a
simply connected domain D ⊃ E. Then

lim sup
n→∞

rn(f)1/n ≤ exp(−1/cap(E, ∂D)). (5.5)

The proof of (5.5) follows the same ideas as the proof of inequality (4.3). Let Γ be a contour
in D \ E that is arbitrarily close to ∂D. Let µ∗ = µ∗1 − µ∗2 be the equilibrium measure for the

condenser (E,Γ). For any n, let α
(n)
1 , . . . , α

(n)
n be equally spaced on E (with respect to µ∗1) and let

β
(n)
1 , . . . , β

(n)
n be equally spaced on Γ (with respect to µ∗2). Then one can show that the rational
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functions rn(z) with zeros at the α
(n)
i ’s and poles at the β

(n)
i ’s satisfy





max
E

|rn|
min

Γ
|rn|





1/n

→ e−1/cap(E,Γ). (5.6)

Let Rn = pn−1/qn be the rational function with poles at the β
(n)
i ’s that interpolates f at the points

α
(n)
i ’s. Then the Hermite formula (cf. (4.2)) takes the following form:

f(z) −Rn(z) =
1

2πi

∫

Γ

rn(z)

rn(t)

f(t)

t− z
dt, z inside Γ,

and it follows from (5.6) that

lim sup
n→∞

rn(f)1/n ≤ lim sup
n→∞

‖f −Rn‖1/n
E ≤ e−1/cap(E,Γ).

Letting Γ approach ∂D, we get the result.

Remarks.
(a) Unlike in the polynomial approximation, no rate of convergence of rn(f) to 0 can ensure that
a function f ∈ C(E) is analytic somewhere beyond E.
(b) One can construct a function for which equality holds in (5.5), so that this bound is sharp.
Such a function necessarily has a singularity at every point of ∂D; otherwise f would be analytic
in a larger domain, so that the corresponding condenser capacity will become smaller. In view of
Theorem 5.3, this would violate the assumed equality in (5.5).

Although sharp, the bound (5.5) is unsatisfactory, in the following sense. Assume, for example,
that E is connected and has a connected complement, and let ΓR, R > 1, be a level curve for E.
Let f be a function that is analytic in the domain D bounded by ΓR and such that the equality
holds in (5.5). According to Example 5.2, we then obtain that

lim sup
n→∞

rn(f)1/n =
1

R
. (5.7)

By Remark (b) above, such f must have singularities on ΓR. Hence (recall Remark following The-
orem 4.1) the relation (5.7) holds with rn(f) replaced by en(f). But the family Rn contains Pn

and it is much more rich than Pn — it depends on 2n + 1 parameters while Pn depends only on
n+1 parameters. One would expect, therefore, that at least for a subsequence of n’s, rn(f) behaves
asymptotically like e2n(f). This was a motivation for the following conjecture.

Conjecture. (A.A. Gonchar) Let E be a compact set and f be analytic in an open setD containing
E. Then

lim inf
n→∞

rn(f ;E)1/n ≤ exp(−2/cap(E, ∂D)). (5.8)

This conjecture was proved by O. Parfenov [Pa] for the case when E is a continuum with connected
complement and in the general case by V. Prokhorov [P]; they used a very different method —
the so-called “AAK Theory” (cf. [Y]). However this method is not constructive, and it remains a
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challenging problem to find such a method. Yet, potential theory can be used to obtain bounds
like (5.8) in the stronger form

lim
n→∞

rn(f ;E)1/n = exp(−2/cap(E, ∂D))

for some important subclasses of analytic functions, such as Markov functions (cf. [Gon]) and
functions with a finite number of algebraic branch-points (cf. [St]).

6 Logarithmic Potentials with External Fields

Let E be a closed (not necessarily compact) subset of C and let w(z) be a nonnegative weight on
E. We define a new “distance function” on E, replacing |z − t| by |z − t|w(z)w(t). This gives rise
to weighted versions of logarithmic capacity, transfinite diameter and Chebyshev constant.

Weighted capacity: cap(w,E).
As before, let M(E) denote the collection of all unit measures supported on E. We set

Q := log
1

w

and call it the external field. Consider the modified energy integral for µ ∈ M(E):

Iw(µ) :=

∫ ∫

log
1

|z − t|w(z)w(t)
dµ(z) dµ(t) (6.1)

=

∫ ∫

log
1

|z − t| dµ(z) dµ(t) + 2

∫

Q(z) dµ(z)

and let
Vw := inf

µ∈M(E)
Iw(µ).

The weighted capacity is defined by

cap(w,E) := e−Vw .

In the sequel, we assume that w satisfies the following conditions:

(i) w > 0 on a subset of positive logarithmic capacity;

(ii) w is continuous (or, more generally, upper semi-continuous);

(iii) if E is unbounded, then |z|w(z) → 0 as |z| → ∞, z ∈ E.

Under these restrictions on w, there exists a unique measure µw ∈ M(E), called the weighted
equilibrium measure, such that

I(µw) = Vw.

The above integral (6.1) can be interpreted as the total energy of the unit charge µ, in the presence
of the external field Q (in this electrostatics interpretation, the field is actually 2Q). Since this field
has a strong repelling effect near points where w = 0 (i.e., Q = ∞), assumption (iii) physically
means that, for the equilibrium distribution, no charge occurs near ∞. In other words, the support
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supp(µw) of µw is necessarily compact. However, unlike the unweighted case, the support need not
lie entirely on ∂∞E and, in fact, it can be quite an arbitrary closed subset of E. Determining this
set is one of the most important aspects of weighted potential theory.

Weighted transfinite diameter: τ(w,E).
Let

δn(w) := max
z1,...,zn∈E





∏

1≤i<j≤n

|zi − zj |w(zi)w(zj)





2/n(n−1)

.

Points z
(n)
1 , . . . , z

(n)
n at which the maximum is attained are called weighted Fekete points. The

corresponding Fekete polynomial is the monic polynomial with all its zeros at these points.
As in the unweighted case, the sequence δn(w) is decreasing, so one can define

τ(w,E) := lim
n→∞

δn(w),

which we call the weighted transfinite diameter of E.

Weighted Chebyshev constant: cheb(w,E).
Let

tn(w) := min
p∈Pn−1

‖wn(z)(zn − p(z))‖E .

Then the weighted Chebyshev constant is defined by

cheb(w,E) := lim
n→∞

tn(w)1/n.

The following theorem generalizes the fundamental results stated in Theorem 1.18.

Theorem 6.1 (Generalized Fundamental Theorem). Let E be a closed set of positive
capacity. Assume that w satisfies the conditions (i)–(iii) and let Q = log(1/w). Then

cap(w,E) = τ(w,E) = cheb(w,E) exp

(

−
∫

Qdµw

)

.

Moreover, weighted Fekete points have asymptotic distribution µw as n→ ∞, and weighted Fekete
polynomials are asymptotically optimal for the weighted Chebyshev problem.

How can one find µw?
In most applications, the weight w is continuous and the set E is regular. Recall that the

latter means that the classical (unweighted) equilibrium potential for E is equal to VE everywhere
on E, not just quasi-everywhere. Under these assumptions, the equilibrium measure µ = µw is
characterized by the conditions that µ ∈ M(E), I(µ) <∞ and, for some constant cw, the following
variational conditions hold:

{

Uµ +Q = cw on S(µ) = supp(µ)
Uµ +Q ≥ cw on E.

(6.2)

On integrating (against µ = µw) the first condition, we obtain that the constant is given by

cw = I(µw) +

∫

Qdµw = Vw −
∫

Qdµw.
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When trying to find µw, an essential step (and a nontrivial problem in its own right!) is to determine
the support S(µw) := supp(µw). There are several methods by which S(µw) can be numerically
approximated, but they are complicated from the computational point of view. Therefore, knowing
properties of the support can be useful and we list some of them.

Properties of the support S(µw)
(a) The sup norm of weighted polynomials “lives” on S(µw). That is, for any n and for any
polynomial Pn of degree at most n, there holds

‖wnPn‖E = ‖wnPn‖S(µw).

(b) Let K be a compact subset of E of positive capacity, and define

F (K) := log cap(K) −
∫

K
QdµK ,

where µK is the classical (unweighted) equilibrium measure for K. This so-called F-functional of
Mhaskar and Saff is often a helpful tool in finding S(µw). Since cap(K) and µK remain the same
if we replace K by ∂∞K, we obtain that F (K) = F (∂∞K). It turns out that the outer boundary
of S(µw) maximizes the F-functional:

max
K

F (K) = F (∂∞S(µK)).

This result is especially useful when E is a real interval and Q is convex. It is then easy to derive
from (6.2) that S(µw) is an interval. Thus, to find the support, one merely needs to maximize F (K)
only over intervals K ⊂ E, which amounts to a standard calculus problem for the determination of
the endpoints of S(µw).

(c) S(µw) is the set of weighted polynomial peaking points; that is, if w is continuous and
E is of positive capacity at each of its points, then z belongs to S(µw) iff for every disk Dr(z)
there is a weighted polynomial wnPn that attains its maximum modulus only in Dr(z) (cf. [ST,
Sec. IV.1]).

Example 6.2. Incomplete polynomials
For the study of incomplete polynomials of type θ on the interval E = [0, 1]; that is, poly-

nomials of the form p(x) =
∑n

k=s akx
k where s/n ≥ θ, the appropriate external field is Q(x) =

log(1/w(x)) = − θ
1−θ log x which is convex. Maximizing the F-functional one gets S(µw) = [θ2, 1].

(For details, see [ST, Sec. IV.1].)

Example 6.3. Freud Weights
Here E = R and w(x) = exp(−|x|α). Hence Q(x) = |x|α is convex provided that α > 1, and

we obtain Sw = [−aα, aα], where aα can be given explicitly in terms of the Gamma function. (Ac-
tually, this result also holds for all α > 0; see [ST, Sec. IV.1].) For example, when α = 2, we get
Sw = [−1, 1].

The Generalized Weierstrass Approximation Problem mentioned in problem (v) of the intro-
duction states the following: For E ⊂ R closed, w : E → [0,∞), characterize those functions f
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continuous on E that are uniform limits on E of some sequence of weighted polynomials (wnPn),
degPn ≤ n.

To attack this problem, we begin with a crucial observation. Let E be a closed subset of R

whose complement is regular and w(x) be continuous on E. Then we have the following weighted
analogue of the Bernstein-Walsh lemma:

|wn(x)Pn(x)| ≤ ‖wnPn‖S(µw) exp(−n(Uµw(x) +Q(x) − cw)), x ∈ E \ S(µw).

With the aid of (6.2) and a variant of the Stone-Weierstrass theorem (cf. [ST]), one can show that
if a sequence (wn(x)Pn(x)), degPn ≤ n, converges uniformly on E, then it tends to 0 for every
x ∈ E \ S(µw).

Thus, if some f ∈ C(E) is a uniform limit on E of such a sequence as n → ∞, it must vanish
on E \ S(µw). The converse is not true, in general, but it is true in many important cases, such
as for incomplete polynomials where the weight w(x) = xθ/(1−θ) on [0, 1] and for Freud weights
w(x) = exp(−|x|α), α > 1, on R. The latter fact provided an essential ingredient in resolving
problem (iv) of the introduction (see [LuSa] and [LMS]).

For the case when E is a real interval and Q = log(1/w) is convex on E, this author conjectured
and Totik [To] has proved that, more generally, any f ∈ C(E) that vanishes on E \ S(µw) is the
uniform limit on E of some sequence of weighted polynomials (wnPn), degPn ≤ n.
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