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Abstract

This is a survey of some recent results concerning polynomial inequalities and polynomial
approximation of functions in the complex plane. The results are achieved by the application
of methods and techniques of modern geometric function theory and potential theory.
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1 Introduction

Constructive function theory, or more generally, the theory of the representation of functions by
series of polynomials and rational functions, may be described as part of the intersection of analysis
and applied mathematics. The main feature of the research discussed in this survey concerns new
methods based on conformal invariants to solve problems arising in potential theory, geometric
function theory and approximation theory.

The harmonic measure, module and extremal length of a family of curves serve as the main tool.
A significant part of the work depends on new techniques for the study of the special conformal
mapping of the upper half-plane onto the upper half-plane with vertical slits. These techniques
have independent value and have already been applied to other areas of mathematics.

This survey is organized as follows. Section 2 is devoted to the properties of the Green function
g
C\E and equilibrium measure µE of a compact set E on the real line R. Recently, Totik [104],

Carleson and Totik [39], and the author [13, 14, 16] suggested new methods to approach these
objects. We use a new representation of basic notions of potential theory (logarithmic capacity,
the Green function, and equilibrium measure) in terms of a conformal mapping of the exterior
of the interval [0, 1] onto the exterior of the unit disk D with finite or infinite number of radial
slits [12] – [14]. This method provides a number of new links between potential theory and the
theory of univalent functions. Later in this section, we describe the connection between uniformly
perfect compact sets and John domains. We give a new interpretation (and a generalization) of a
recent remarkable result by Totik [104, (2.8) and (2.12)] concerning the smoothness properties of
gΩ and µE. We also demonstrate that if for E ⊂ [0, 1] the Green function satisfies the 1/2-Hölder
condition locally at the origin, then the density of E at 0, in terms of logarithmic capacity, is the
same as that of the whole interval [0, 1]. We analyze the geometry of Cantor-type sets and propose
an extension of the results by Totik [104, Theorem 5.3] on Cantor-type sets possessing the 1/2-
Hölder continuous Green function. We also construct two examples of sets of minimum Hausdorff
dimension with Green function satisfying the 1/2-Hölder condition either uniformly or locally.

In Section 3, we continue to discuss the properties of the Green function, but now we motivate
this investigation by deriving Remez-type polynomial inequalities. We give sharp uniform bounds
for exponentials of logarithmic potentials if the logarithmic capacity of the subset, where they are
at most 1, is known. We also propose a technique to derive Remez-type inequalities for complex
polynomials. The known results in this direction are scarce and they are proved for relatively
simple geometrical cases by using methods of real analysis. We propose to use modern methods of
complex analysis, such as the application of conformal invariants in constructive function theory
and the theory of quasiconformal mappings in the plane, to study metric properties of complex
polynomials. Based on this idea, we discuss a number of problems motivated by [50].

In Section 4, we consider several applications of methods and techniques covered in the previous
two sections to questions arising in constructive function theory. The main idea of this section is
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to create a link between potential theory, geometric function theory and approximation theory.
We present a new necessary condition and a new sufficient condition for the approximation of the
reciprocal of an entire function by reciprocals of polynomials on the non-negative real line with
geometric speed of convergence. The Nikol’skii-Timan-Dzjadyk theorem concerning polynomial
approximation of functions on the interval [−1, 1] is generalized to the case of approximation of
functions given on a compact set on the real line. For analytic functions defined on a continuum
E in the complex plane, we discuss Dzjadyk-type polynomial approximations in terms of the k-th
modulus of continuity (k ≥ 1) with simultaneous interpolation at given points of E and decaying
strictly inside as e−cnα

, where c and α are positive constants independent of the degree n of the
approximating polynomial.

Each section concludes with a list of open problems.

2 Potential theory

2.1 Basic conformal mapping

Let E ⊂ C be a compact set of positive logarithmic capacity cap(E) with connected complement
Ω := C \ E with respect to the extended complex plane C = C ∪ {∞}, gΩ(z) = gΩ(z,∞) be the
Green function of Ω with pole at infinity, and µE be the equilibrium measure for the set E (see [62]
and [89] for further details on logarithmic potential theory). The metric properties of gΩ and µE are
of independent interest in potential theory (see, for example, [38, 68, 65, 89, 20, 39, 104, 13, 14]).
They also play an important role in problems concerning polynomial approximation of continuous
functions on E (see, for example, [99, 47, 55, 93, 19]) and the behavior of polynomials with a known
uniform norm along E (see, for example, [107, 77, 78, 32, 50, 37, 101, 102]).

Note that sets in R present an important special case of general sets in C. This, for instance, is
due to the following standard way to simplify problems concerning estimation of the Green function
and capacity. For E ⊂ C denote by E∗ := {r : {|z| = r}∩E 6= ∅} the circular projection of E onto
the non-negative real line R+ := {x ∈ R : x ≥ 0}. Then

cap(E) ≥ cap(E∗)

and
g
C\E(−x) ≤ g

C\E∗
(−x), x > 0

(provided that cap(E∗) > 0). That is, among those sets that have a given circular projection
E∗ ⊂ R+ the smallest capacity occurs for E = E∗ and the worst behavior of the Green function
occurs for the same E = E∗.

In this survey, we discuss a number of problems in potential theory, polynomial inequalities,
and constructive function theory for the case where E is a subset of R.

The main idea of our approach is to connect gΩ, µE, and cap(E) with the special conformal
mapping F = FE described below. This conformal mapping was recently investigated in [12] – [14]
(written in another form it was also discussed in [108, 64, 97]).

Let E ⊂ [0, 1] be a regular set such that 0 ∈ E, 1 ∈ E. Then [0, 1] \E =
∑N

j=1(aj, bj), where N
is finite or infinite.

Denote by H := {z : ℑ(z) > 0} the upper half-plane and consider the function

F (z) = FE(z) := exp

(∫

E
log(z − ζ) dµE(ζ) − log cap(E)

)

, z ∈ H. (2.1)
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It is analytic in H.
Since

gΩ(z) = log
1

cap(E)
−
∫

log
1

|z − t|dµE(t), z ∈ Ω,

the function F has the following obvious properties:

|F (z)| = egΩ(z) > 1, z ∈ H,

ℑ(F (z)) = egΩ(z) sin

(∫

E
arg(z − ζ) dµE(ζ)

)

> 0, z ∈ H.

Moreover, F can be extended from H continuously to H such that

|F (z)| = 1, z ∈ E,

F (x) = egΩ(x) > 1, x > 1,

F (x) = −egΩ(x) < −1, x < 0.

Next, for any 1 ≤ j ≤ N and aj ≤ x1 < x2 ≤ bj, we have

arg

(

F (x2)

F (x1)

)

= arg exp

(∫

E
log

x2 − ζ

x1 − ζ
dµE(ζ)

)

= 0,

that is,
argF (x1) = argF (x2), aj ≤ x1 < x2 ≤ bj .

Our next objective is to show that F is univalent in H. We shall use the following simple result.
Let

√
z2 − 1, z ∈ C \ [−1, 1], be the analytic function defined in a neighborhood of infinity as

√

z2 − 1 = z

(

1 − 1

2z2
+ · · ·

)

.

Then, for any −1 ≤ x ≤ 1 and z ∈ H,

ux(z) := ℜ
(√

z2 − 1

z − x

)

≥ 0. (2.2)

Using the reflection principle, we can extend F to a function analytic in C \ [0, 1] by the formula

F (z) := F (z), z ∈ C \ H,

and consider the function

h(w) :=
1

F (J(w))
, w ∈ D := {w : |w| < 1},

where J is a linear transformation of the Joukowski mapping, namely

J(w) :=
1

2

(

1

2

(

w +
1

w

)

+ 1

)

,

which maps the unit disk D onto C \ [0, 1]. Note that the inverse mapping is defined as follows

w = J−1(z) = (2z − 1) −
√

(2z − 1)2 − 1, z ∈ C \ [0, 1].
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Therefore, for z ∈ H and w = J−1(z) ∈ D, we obtain

wh′(w)

h(w)
= w(log h(w))′ = −w

(∫

E
log(J(w) − ζ) dµE(ζ)

)′

= −wJ ′(w)

∫

E

dµE(ζ)

z − ζ
= −1

4

(

w − 1

w

)∫

E

dµE(ζ)

z − ζ

=
1

2

∫

E

√

(2z − 1)2 − 1

z − ζ
dµE(ζ) =

∫

E

√

(2z − 1)2 − 1

(2z − 1) − (2ζ − 1)
dµE(ζ).

According to (2.2) for w under consideration, we have

ℜ
(

wh′(w)

h(w)

)

≥ 0.

Because of the symmetry and the maximum principle for harmonic functions we obtain

ℜ
(

wh′(w)

h(w)

)

> 0, w ∈ D.

This means that h is a conformal mapping of D onto a starlike domain (cf. [79, p. 42]).
Hence, F is univalent and maps C \ [0, 1] onto a (with respect to ∞) starlike domain C \KE

with the following properties: C \KE is symmetric with respect to the real line and coincides with
the exterior of the unit disk with 2N slits.

Note that

cap(E) =
1

4 cap(KE)
,

gΩ(z) = log |F (z)|, z ∈ Ω, (2.3)

πµE([a, b]) = |F ([a, b] ∩ E)|,

where |A| denotes the linear Lebesgue measure (length) of a Borel set A ⊂ C.
The connection between the geometry of E and the properties of the conformal mapping F can

be studied using conformal invariants such as the extremal length and module of a family of curves
(see [1, 63, 82]).

Below, we describe some typical results of this investigation.

2.2 Uniformly perfect subsets of the real line and John domains

The uniformly perfect sets in the complex plane C, introduced by Beardon and Pommerenke [28],
are defined as follows. A compact set E ⊂ C is uniformly perfect if there exists a constant c,
0 < c < 1, such that for all z ∈ E:

E ∩ {ζ : cr ≤ |z − ζ| ≤ r} 6= ∅, 0 < r < diam(E) := sup
z,ζ∈E

|z − ζ|.

Uniformly perfect sets arise in many areas of complex analysis. For example, many results for
simply connected domains can be extended to domains with uniformly perfect boundary (see, for
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example, [80, 81, 109, 33]). Pommerenke [80] has shown that uniformly perfect sets can be described
using a density condition expressed in terms of the logarithmic capacity. Namely, E is uniformly
perfect if and only if there exists a positive constant c such that for all z ∈ E:

cap(E ∩ {ζ : |ζ − z| ≤ r}) ≥ c r, 0 < r ≤ diam(E). (2.4)

It follows immediately from (2.4) that each component of C\E is regular (for the Dirichlet problem).
Note that sets E with connected complement C \ E satisfying (2.4) play a significant role in

the solution of the inverse problem of the constructive theory of functions of a complex variable.
We refer to [99] where they are called c-dense sets.

Another remarkable geometric condition used in direct theorems of approximation theory in C
(cf. [55, 7, 27]) defines a John domain [67, 82]. We consider only the case of a simply connected
domain Ω ⊂ C such that ∞ ∈ Ω. Following [82, p. 96], we call Ω a John domain if there exists a
positive constant c such that for every rectilinear crosscut [a, b] of Ω,

diam(H) ≤ c|a− b|

holds for the bounded component H of Ω \ [a, b].
There is a close connection between these two notions if E ⊂ R.

Theorem 2.1 ([12]) A set E ⊂ R is uniformly perfect if and only if C \KE , defined in Subsection
2.1, is a John domain.

Since the behavior of a conformal mapping of a John domain onto the unit disk is well-studied (see,
for example, [82]), the theorem above can be useful in the investigation of metric properties of the
Green function for the complement of a uniformly perfect subset of R.

In particular, Theorem 2.1 can be used to solve the inverse problem of approximation theory
of functions that are continuous on a uniformly perfect compact subset of the real line (see, for
details, [12]).

2.3 On the Green function for a complement of a compact subset of R

First, we discuss the following recent remarkable result by Totik [104]. Let E ⊂ [0, 1] be a compact
set of positive logarithmic capacity and let Ω be the complement of E in C. The smoothness of gΩ
and µE at 0 depends on the density of E at 0. This smoothness can be measured by the function

θE(t) := |[0, t] \E|, t > 0.

Theorem 2.2 (Totik [104, (2.8) and (2.12)]) There are absolute positive constants C1, C2,D1 and
D2 such that for 0 < r < 1,

gΩ(−r) ≤ C1

√
r exp

(

D1

∫ 1

r

θ2
E(t)

t3
dt

)

log
2

cap(E)
, (2.5)

µE([0, r]) ≤ C2

√
r exp

(

D2

∫ 1

r

θ2
E(t)

t3
dt

)

. (2.6)
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The results in [104] are formulated and proven for general compact sets of the unit disk. The theorem
above is one of the main steps in their verification. Even though the statement of this theorem
is rather particular, the theorem has several notable applications, such as Phragmén-Lindelöf-type
theorems, Markov- and Bernstein-type, Remez- and Schur-type polynomial inequalities, etc.

Observe that we can simplify the geometrical nature of the compact set E under consideration.
Indeed, it is well-known that there exists a sequence of compact sets En ⊂ [0, 1], n ∈ N := {1, 2, . . .},
such that

(i) E ⊂ En and each En consists of a finite number of closed intervals,
(ii) for 0 < r < 1, we have

gΩ(−r) = lim
n→∞

gΩn(−r), Ωn := C \ En,

µE([0, r]) = lim
n→∞

µEn([0, r]).

The set [0, 1] \En is smaller and simpler then [0, 1] \ E. For example,

θEn(t) ≤ θE(t), t > 0.

However, gΩn and µEn can be arbitrarily close to gΩ and µE. Thus, in order to establish Totik-
type results it is natural to concentrate only on compact sets consisting of a finite number of real
intervals.

Let
E = ∪k

j=1[aj , bj ], 0 ≤ a1 < b1 < a2 < · · · < ak < bk ≤ 1,

and let
E∗ := (0, 1) \E = ∪m

j=1(αj , βj), 0 ≤ α1 < β1 < α2 < · · · < αm < βm ≤ 1.

For 0 < r < 1, we set E∗
r := E∗ \ (0, r]. We are interested in the case when E∗

r 6= ∅, i.e.,

E∗
r = ∪mr

j=1(αj,r, βj,r), r ≤ α1,r < β1,r < α2,r < · · · < αmr ,r < βmr ,r ≤ 1.

Theorem 2.3 ([13]) For 0 < r < 1

gΩ(−r) ≥ c1
√
r exp



d1

mr
∑

j=1

βj,r − αj,r

βj,r
log

βj,r

αj,r



 , (2.7)

where c1 = 1/16, d1 = 10−13.

Theorem 2.3 provides a lower bound for the Green function (cf. [104, (3.5)]). Since in (2.7) only
the size of the components of E∗

r influences this bound, one cannot expect to find an upper bound
of the same form. We believe that in a Totik-type theorem not only the size of the components
(αj,r, βj,r) but also their mutual position must be important.

We fix q > 1. The set of a finite number of closed intervals {[δj , νj]}n
j=1 = {[δj(r, q), νj(r, q)]}n

j=1,
where 0 ≤ δ1 < ν1 ≤ δ2 < · · · ≤ δn < νn ≤ 1, is called a q-covering of E∗

r if

(i) E∗
r ⊂ ∪n

j=1[δj , νj ],

(ii) either 2δj ≤ νj, or q|E∗
r ∩ [δj , νj ]| ≤ νj − δj .
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Theorem 2.4 ([13]) For 0 < r < 1, q > 1 and any finite q-covering of E∗
r the inequalities

gΩ(−r) ≤ c2
√
r exp



d2

n
∑

j=1

νj − δj
νj

log
νj

δj



 log
2

cap(E)
, (2.8)

µE([0, r]) ≤ c3
√
r exp



d2

n
∑

j=1

νj − δj
νj

log
νj

δj





hold with c2 = 24, c3 = 5 and

d2 = max

(

1,
2q2

π(q − 1)2

)

.

Notice that the factor log(2/cap(E)) on the right of (2.5) and (2.8) appears only to cover patho-
logical cases. It is useful to keep in mind that

|E| ≤ 4 cap(E) ≤ 1.

Corollary 2.5 ([13]) The estimates (2.5) and (2.6) hold with C1 = 384, C2 = 80 and D1 = D2 =
120.

Corollary 2.6 ([13]) For the compact set

Ẽ := {0} ∪
∞
⋃

n=1

n2
⋃

j=1

[

n2 + j − 1

2n+1n2
,

2n2 + 2j − 1

2n+2n2

]

,

we have
g
C\Ẽ(−r) ≤ c

√
r, 0 < r < 1,

with some absolute constant c > 0, which is better than (2.5).

Indeed, let
Ẽr := Ẽ ∩ [r, 1], 0 < r < 1.

For Ẽ∗
r = (r, 1) \ Ẽr with 2−k−2 < r ≤ 2−k−1, we construct a 2-covering

[r, 2−k],







{[

n2 + j − 1

2n+1n2
,
n2 + j

2n+1n2

]}n2

j=1







k−1

n=1

,

[

1

2
, 1

]

.

By the monotonicity of the Green function and Theorem 2.4, for any 0 < r < 1 and some absolute
constant c > 0, we obtain

g
C\Ẽ(−r) ≤ g

C\Ẽr
(−r) ≤ c

√
r.

In what follows in this subsection, we assume that 0 is a regular point of E, i.e., gΩ(z) extends
continuously to 0 and gΩ(0) = 0.

The monotonicity of the Green function yields

gΩ(z) ≥ g
C\[0,1](z), z ∈ C \ [0, 1],
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that is, if E has the “highest density” at 0, then gΩ has the “highest smoothness” at the origin. In
particular,

gΩ(−r) ≥ g
C\[0,1](−r) >

√
r, 0 < r < 1. (2.9)

In this regard, we would like to explore properties of E whose Green’s function has the “highest
smoothness” at 0, that is, of E conforming to the following condition

gΩ(z) ≤ c|z|1/2, c = const > 0, z ∈ C,

which is known to be the same as

lim sup
r→0

gΩ(−r)
r1/2

<∞ (2.10)

(cf. [89, Corollary III.1.10]). Various sufficient conditions for (2.10) in terms of metric properties
of E are stated in [104], where the reader can also find further references.

There are compact sets E ⊂ [0, 1] of linear Lebesgue measure 0 with property (2.10) (see e.g.
[104, Corollary 5.2]), hence (2.10) may hold, though the set E is not dense at 0 in terms of linear
measure. On the contrary, our first result states that if E satisfies (2.10) then its density in a small
neighborhood of 0, measured in terms of logarithmic capacity, is arbitrarily close to the density of
[0, 1] in that neighborhood.

Theorem 2.7 ([14]) The condition (2.10) implies

lim
r→0

cap(E ∩ [0, r])

cap([0, r])
= 1. (2.11)

The converse of Theorem 2.7 is slightly weaker.

Theorem 2.8 ([14]) If E satisfies (2.11), then

lim
r→0

gΩ(−r)
r1/2−ε

= 0, 0 < ε <
1

2
. (2.12)

The connection between properties (2.10), (2.11) and (2.12) is quite delicate. For example, even a
slight alteration of (2.10) can lead to the violation of (2.11). As an illustration of this phenomenon,
we construct a regular set E ⊂ [0, 1] such that (2.12) holds and

lim inf
r→0

cap(E ∩ [0, r])

cap([0, r])
= 0. (2.13)

Let
bj := 2−2j−1

, aj := bj+1 log(j + 1), j ∈ N.

Consider
E := {0} ∪

(

∪∞
j=1[aj , bj ]

)

.

We have

lim
r→0

(

log
1

r

)−1 ∫ 1

r

θ2
E(x)

x3
dx = 0, (2.14)

and

lim
j→∞

bj+1

aj
= 0. (2.15)



V. V. Andrievskii 10

Thus, (2.12) follows from (2.5) and (2.14). Moreover, since

cap(E ∩ [0, aj ])

aj
≤ bj+1

4aj
,

(2.15) implies (2.13).
A comprehensive description of E satisfying (2.10) was recently provided by Carleson and Totik

[39].

2.4 Cantor-type sets

Let 0 < εj < 1 and K(j) ∈ N, j ∈ N, be two sequences. Starting from I = [0, 1] first, we remove

K(1) open intervals I1, . . . , IK(1) of I such that I \ ∪K(1)
k(1)=1Ik(1) consists of K(1) + 1 disjoint closed

intervals J1, . . . , JK(1)+1 and

|Ik(1)| =
ε1
K(1)

, 1 ≤ k(1) ≤ K(1),

|Jk(1)| =
1 − ε1
K(1) + 1

, 1 ≤ k(1) ≤ K(1) + 1.

Then, for any 1 ≤ k(1) ≤ K(1) + 1, we remove K(2) open intervals Ik(1),1, . . . , Ik(1),K(2) of Jk(1)

such that Jk(1) \∪K(2)
k(2)=1Ik(1),k(2) consists of K(2)+1 disjoint closed intervals Jk(1),1, . . . , Jk(1),K(2)+1

and

|Ik(1),k(2)| =
1 − ε1
K(1) + 1

ε2
K(2)

, 1 ≤ k(2) ≤ K(2),

|Jk(1),k(2)| =
1 − ε1
K(1) + 1

1 − ε2
K(2) + 1

, 1 ≤ k(2) ≤ K(2) + 1,

etc.
Denote the Cantor-type set so obtained by C = C({εj}, {K(j)}). That is, C := ∩∞

n=1Cn, where

Cn = Cn({εj}, {K(j)}) :=
⋃

k(n)

Jk(n)

is the set we obtain after n steps during the construction, and

k(j) := k(1), k(2), . . . , k(j), j ∈ N

is a multi-index.

Theorem 2.9 ([18]) The following two conditions are equivalent:

(i) g
C\C satisfies (2.10) with E = C;

(ii)
∑

j ε
2
j <∞.

In the case K(j) = 1, j ∈ N, this statement is equivalent to [104, Theorem 5.3], but the latter
is stated for the equilibrium measure on C. Interestingly, (ii) does not depend on the sequence
{K(j)}.
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2.5 On sparse sets with Green function of the highest smoothness

Let E ⊂ R be a compact set with positive logarithmic capacity. For simplicity, we assume that
E ⊂ [−1, 1] and ±1 ∈ E. Let Ω = C \ E. In what follows, we assume that E is a regular set, i.e.,
gΩ extends continuously to E where it takes the value 0.

We are going to discuss the metric properties of E such that gΩ satisfies the 1/2-Hölder condition

|gΩ(z2) − gΩ(z1)| ≤ c|z2 − z1|1/2, z1, z2 ∈ Ω \ {∞}, (2.16)

where c > 0 is some constant.
According to (2.9) the choice of the right-hand side of (2.16) appears to be best suited for this

theory. In this regard, we discuss the properties of E whose Green’s function has the “highest
smoothness”.

Recently Totik [103, 104] constructed two examples of a set E whose Green’s function satisfies
(2.16) and whose linear measure is zero.

We analyze the problem: how sparse can E be, in terms of its Hausdorff dimension dim(E) [82,
p. 224], if it satisfies (2.16).

First, we note that if E satisfies (2.16) then

dim(E) ≥ 1

2
. (2.17)

Indeed, from (2.16) it follows immediately (for details, see [39], proof of Proposition 1.4) that for
any interval I ⊂ R,

µE(I ∩ E) ≤ c1|I|1/2,

where c1 is a positive constant.
Hence, for any covering of E by intervals {Ij} ⊂ R, we have

∑

j

|Ij |1/2 ≥ c−1
1

∑

j

µE(Ij ∩ E) ≥ c−1
1 ,

which proves (2.17).

Theorem 2.10 ([16]) There exists a regular set E0 ⊂ R with the following properties:

(i) g
C\E0

satisfies (2.16);

(ii) dim(E0) = 1/2.

Next, we describe the construction of E0 in Theorem 2.10. For −1 ≤ a < b ≤ 1, we consider two
sequences of real numbers

· · · < x−2 < x−1 < x0 < x1 < x2 < · · · , xk − x0 = x0 − x−k

and
y0 > y±1 > y±2 > · · · , yk = y−k,

such that

x0 =
a+ b

2
, y0 =

b− a

2
exp

{

− 2

b− a

}

,
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yk = (b− xk) exp

{

− 1

b− xk

}

, k ∈ N = {1, 2, . . .},

yk

xk − xk−1
=

1

π

(

1

b− xk
− log

1

b− xk

)

, k ∈ N.

We have
lim

k→∞
x−k = a, lim

k→∞
xk = b, lim

k→∞
yk = 0.

Let zk = xk + iyk. For k ∈ Z = {0,±1,±2, . . .} consider vertical intervals Jk = [xk, zk] and
horizontal intervals Ik = [xk−1, xk]. For multi-indices, we use the notation

k(m) = k(1), k(2), . . . , k(m), k(m) − 1 = k(1), k(2), . . . , k(m− 1), k(m) − 1,

where m ∈ N and k(m) ∈ Z. We inductively define two sequences of intervals

{Jk(m)}k(m)∈Zm and {Ik(m)}k(m)∈Zm

in the following way. Denote by

{Jk(1)}k(1)∈Z
and {Ik(1)}k(1)∈Z

the sequences of vertical and horizontal intervals, which we obtain by the above procedure for
[a, b] = [−1, 1].

Next, for m > 1 denote by

{Jk(m)}k(m)∈Zm and {Ik(m)}k(m)∈Zm

the sequences of vertical and horizontal intervals, which we obtain by the above procedure for
[a, b] = Ik(m−1). The endpoints of {Jk(m)} we denote by xk(m) ∈ R and zk(m) ∈ C, respectively,

so that Ik(m) = [xk(m)−1, xk(m)]. Since

D0 = {z = x+ iy : |x| < 1, y > 0} \







⋃

m∈N

⋃

k(m)∈Zm

Jk(m)







is a simply connected domain, by the Riemann mapping theorem there exists a conformal mapping
φ0 of D0 onto the upper half plane H.

We interpret the boundary of D0 in terms of Carathéodory’s theory of prime ends (see [79]).
Let P (D0) denote the set of all prime ends of D0. For a prime end Z ∈ P (D0) denote its impression
by |Z|. By our construction, all prime ends of D0 are of the first kind, i.e., |Z| is a singleton for any
Z ∈ P (D0). For the homeomorphism between D0 ∪ P (D0) and H we preserve the same notation
φ0. We denote by ψ0 = φ−1

0 the inverse homeomorphism. We identify the prime end ψ0(w), w ∈ R,
with its impression when no confusion can arise. If z ∈ ∂D0 is the impression of only one prime
end it will also cause no confusion if we use the same letter z to designate the prime end and its
impression. For example, we write ∞,−1, zk(m), 1 for prime ends with impressions at those points.

To define φ0 uniquely, we normalize it by the boundary conditions

φ0(∞) = ∞, φ0(−1) = −1, φ0(1) = 1.
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Each point of Jk(m) \ {zk(m)} is the impression of two prime ends and zk(m) is the impression of
exactly one prime end. Moreover,

φ0({Z ∈ P (D0) : |Z| ∈ Jk(m) \ {xk(m)}})

is an open subinterval of (−1, 1) which we denote by J ′
k(m)

= (ξ−k(m)
, ξ+k(m)

). Let ξk(m) = φ0(zk(m)).

In [16], we show that the compact set

E0 = [−1, 1] \







⋃

m∈N

⋃

k(m)∈Zm

J ′
k(m)







satisfies the conditions of Theorem 2.10. The crucial fact is that for w ∈ H ∩ Ω0:

gΩ0(w) =
π

2
ℑ(ψ0(w)), (2.18)

where Ω0 = C \ E0.
In order to prove (2.18), consider the function

h(w) =







π
2ℑ(ψ0(w)) if w ∈ H ∩ Ω0,

π
2ℑ(ψ0(w)) if w ∈ C \H.

It is continuous in Ω0 \ {∞} and, according to the distortion properties of ψ0, the difference

h(w) − log |w|

is bounded in a neighborhood of ∞.
The function h is harmonic in C \R. In order to prove that h coincides with gΩ0 it is sufficient

to show that h is harmonic in some neighborhood of each

ξ ∈ (R \ E0) \







⋃

m∈N

⋃

k(m)∈Zm

ξk(m)






.

Let ε = ε(ξ) > 0 be such that

[ξ − ε, ξ + ε] ⊂ (R \ E0) \







⋃

m∈N

⋃

k(m)∈Zm

ξk(m)






.

Since all derivatives of ψ0 can be extended continuously to [ξ − ε, ξ + ε], it is enough to show that
for k = 1, 2; j = 0, 1, 2; j ≤ k and w = u+ iv:

lim
w→ξ

ℑw>0

∂kh(w)

∂uj∂vk−j
= lim

w→ξ

ℑw<0

∂kh(w)

∂uj∂vk−j
,

which can be easily done.
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It is also natural to consider the problem of how sparse can sets E be such that the following
local version of (2.16) is valid:

gΩ(z) = gΩ(z) − gΩ(−1) ≤ c |z + 1|1/2, z ∈ Ω \ {∞}, (2.19)

where c > 0 is a constant. The structural properties of compact sets satisfying (2.19) are discussed
in [39, 14] (cf. Subsection 2.3), where the density of E near −1 is measured in terms of logarithmic
capacity.

Theorem 2.11 ([16]) There exists a regular set E1 ⊂ R with the following properties:

(i) g
C\E1

satisfies (2.19);

(ii) dim(E1) = 0.

We describe the construction of E1 in Theorem 2.11. We begin with two sequences of real numbers

1 = x0 > x1 > x2 > · · · > −1 and 4 = y0 > y1 > y2 > · · · > 0

such that
yk = (xk + 1)2, k ∈ N,

lim
k→∞

xk = −1, lim
k→∞

yk = 0,

yk

xk−1 − xk
≥ 2

π
log

1

xk−1 − xk
, xk−1 − xk <

1

2
, k ∈ N.

Starting with the set of intervals

Ik = [xk−1, xk], Jk = [xk, xk + iyk] = [xk, zk], k = k(1) ∈ N,

we construct the sets of intervals {Ik(m)} and {Jk(m)} in the following manner.

Let, for m ≥ 2, intervals {Ik(m−1)} and {Jk(m−1)} be constructed, and let

(Ak(m−1))
2 = exp







m2 + π
m−1
∑

j=1

|Jk(j)|
|Ik(j)|







.

We define δk(m−1) > 0 such that

|Jk(m−1)|
δk(m−1)

≥ 4m

π
log

Ak(m−1)

δk(m−1)

.

Next, we select a finite number of points

xk(m−1)−1 = xk(m−1),0 > xk(m−1),1 > · · · > xk(m−1),K(m) = xk(m−1)

such that for any 1 ≤ k(m) ≤ K(m),

1

2
δk(m−1) ≤ xk(m−1),k(m)−1 − xk(m−1),k(m) ≤ δk(m−1).
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Let

yk(m) =
1

2
yk(m−1), zk(m) = xk(m) + iyk(m), 0 ≤ k(m) ≤ K(m),

Jk(m) = [xk(m), zk(m)], 0 ≤ k(m) ≤ K(m),

Ik(m) = [xk(m), xk(m)−1], 1 ≤ k(m) ≤ K(m).

Denote by φ1 a conformal mapping of the simply connected domain

D1 = {z = x+ iy : |x| < 1, y > 0} \







⋃

m∈N

⋃

1≤k(j)≤K(j)
1≤j≤m

Jk(m)






,

where K(1) = ∞, onto H.
Let P (D1) be the set of all prime ends of D1. The reasoning about the structure of P (D0)

applies to P (D1).
We extend φ1 to the homeomorphism φ1 : D1 ∪ P (D1) → H and denote the inverse mapping

by ψ1 = φ−1
1 . Sometimes, for simplicity, we identify ψ1(w), w ∈ R, with the impression of ψ1(w).

We normalize φ1 by the boundary conditions

φ1(∞) = ∞, φ1(−1) = −1, φ1(1) = 1.

For 1 ≤ k(j) ≤ K(j), 1 ≤ j ≤ m− 1 and 1 ≤ k(m) ≤ K(m) − 1 define intervals

J ′
k(m)

= (ξ−k(m)
, ξ+k(m)

) = φ1({Z ∈ P (D1) : |Z| ∈ Jk(m) \ {xk(m)}})

and points ξk(m) = φ1(zk(m)).

In [16], we show that the compact set

E1 = [−1, 1] \









⋃

m∈N

⋃

1≤k(j)≤K(j),1≤j≤m−1
1≤k(m)≤K(m)−1

J ′
k(m)









satisfies the conditions of Theorem 2.11. The basic idea is to apply the formula

gΩ1(w) =
π

2
ℑ(ψ1(w)), w ∈ H ∩ Ω1,

where Ω1 = C \ E1, whose proof is the same as the proof of (2.18).
We conclude this section with the following remark. One of the natural ways to construct sparse

sets with Hölder continuous Green function is to consider (nowhere dense) Cantor-type sets (see
[77, 32, 65, 101, 103], [104, Chapter 5]).

Let {εj} be a sequence with 0 < εj < 1. Starting from [−1, 1], we first remove the middle ε1
part of this interval. Then, in the second step, we remove the middle ε2 part of both remaining
intervals, etc. Denote the so obtained Cantor set by C = C({εj}). According to [104, Theorem
5.1] and the reasoning in the same monograph [104, p. 48, after Corollary 5.2] the following three
conditions are equivalent:

(i) g
C\C satisfies (2.16);
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(ii) g
C\C satisfies (2.19);

(iii)
∑

j ε
2
j <∞.

At the same time, by [82, Theorem 10.5] each Cantor type set C({εj}) with the property

lim
j→∞

εj = 0

has Hausdorff dimension 1. Therefore, Cantor-type sets cannot be used in the proof of either
Theorem 2.10 or Theorem 2.11.

2.6 Open problems

We begin with a new construction of nowhere dense sets. It is well-known that Cantor-type sets
present a remarkable example of nowhere dense sets which are “thick” from the point of view of
potential theory (cf. [38, 73, 104]). Motivated by results of this section, we suggest the following
new construction of such sets. Let ak > 0, k ∈ N, be such that limk→∞ ak = 0. Starting from the
half-strip

Σ0 := {z = x+ iy : |x| < 1, y > 0},
we first divide the base I0 := [−1, 1] of Σ0 into two intervals I1,1 := [−1, 0] and I1,2 := [0, 1]
and remove the vertical slit J1,1 := [0, ia1] (with one endpoint in the middle of I0). Then, in the
second step, we divide each of the two new horizontal intervals from the previous step into two
subintervals of the same length 1/2 and remove the vertical slits J2,1 := [−1/2,−1/2 + ia2] as
well as J2,2 := [1/2, 1/2 + ia2] (with one endpoint in the middle of the base intervals I1,1 and I1,2,
respectively), etc.

As a result, we have a simply connected domain

Σ = Σ({ak}) := Σ0 \




⋃

k,m

Jk,m



 .

By the Riemann mapping theorem there exists a conformal mapping φ of Σ onto the upper half
plane H.

We interpret the boundary of Σ in terms of Carathéodory’s theory of prime ends (see [79]). Let
P (Σ) denote the set of all prime ends of Σ. By our construction, all prime ends of Σ are of the first
kind, i.e., |Z| is a singleton for any Z ∈ P (Σ). For the homeomorphism between Σ ∪ P (Σ) and H,
which coincides with φ in H, we preserve the same notation φ.

To define φ uniquely, we normalize it by the boundary conditions

φ(∞) = ∞, φ(−1) = −1, φ(1) = 1.

Each interior point of the slit Jk,m = [xk,m, xk,m+iak] is the impression of two prime ends. Moreover,

J ′
k,m := φ({Z ∈ P (Σ) : |Z| ∈ Jk,m \ {xk,m}})

is an open subinterval of (−1, 1).
Hence,

E = E({ak}) := [−1, 1] \




⋃

k,m

J ′
k,m




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is a nowhere dense subset of [−1, 1].
It seems to be an interesting problem to investigate the connection between the geometry of E

(for example, its Hausdorff dimension and Hausdorff measure), the rate of decrease of ak as k → ∞,
and continuous properties of the Green function g

C\E .

The crucial fact is that for w ∈ H ∩ Ω:

gΩ(w) =
π

2
ℑ(φ−1(w)),

where Ω = C \ E.
For example, the following problems can be considered.

Problem 1. Are the following two conditions

(i) gΩ satisfies the the 1/2-Hölder property, i.e.,

gΩ(z) ≤ cdist(z,E)1/2, z ∈ Ω,

where c = c(E) > 0 is a constant and

dist(A,B) := inf
ζ∈A,ζ∈B

|z − ζ|, A,B ⊂ C,

(ii)
∑

j a
2
j <∞,

equivalent?

(cf. [104, Theorem 5.1] concerning Cantor-type sets).

Problem 2. Use the ideas of this section to streamline the proof of the Carleson-Totik [39, Theorem
1.1] characterization of compact sets E ⊂ R such that the Green function g

C\E satisfies a Hölder

condition, i.e., there are constants c > 0 and 0 < α ≤ 1/2 such that

g
C\E(z) ≤ cdist(z,E)α, z ∈ C \E.

We conjecture that a more general choice of horizontal intervals Ik,m and slits Jk,m in the procedure
described above will allow one to construct nowhere dense sets with various extremal properties.

Consider a typical example. Let h(r), 0 ≤ r ≤ 1/2, be a monotone increasing function and
h(0) = 0. Denote by Λh(E) the Hausdorff measure of a set E ⊂ C with respect to h (see [82,
p. 224]). A well-known metric criterion for sets of zero capacity states that (see [62, Theorem 3.14])
if

Λh(E) <∞, h(r) = | ln r|−1,

then cap(E) = 0.

Problem 3. Show that for any monotone increasing function g(r), 0 ≤ r ≤ 1/2, satisfying

lim
r→0

g(r)

h(r)
= 0,

there exists a compact set Eg ⊂ R such that

cap(Eg) > 0 and Λg(Eg) <∞.

(cf. [38, Chapter IV]).
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3 Remez-type inequalities

3.1 Remez-type inequalities in terms of capacity

Let Πn be the set of all real polynomials of degree at most n ∈ N. The Remez inequality [86] (see
also [49, 37, 56]) asserts that

‖pn‖I ≤ Tn

(

2 + s

2 − s

)

(3.1)

for every pn ∈ Πn such that

|{x ∈ I : |pn(x)| ≤ 1}| ≥ 2 − s, 0 < s < 2, (3.2)

where I := [−1, 1], Tn is the Chebyshev polynomial of degree n, and ‖ · ‖A means the uniform norm
along A ⊂ C.

Since
Tn(x) ≤ (x+

√

x2 − 1)n, x > 1,

we have by (3.1) that a polynomial pn with (3.2) satisfies

‖pn‖I ≤
(√

2 +
√
s√

2 −√
s

)n

. (3.3)

The last inequality (more precisely its n-th root) is asymptotically sharp.
Remez-type inequalities give bounds for classes of functions on a line segment, on a curve

or on a region of the complex plane, given that the modulus of the functions is bounded by 1
on some subset of prescribed measure. Remez-type inequalities play a central role in proving
other important inequalities for generalized nonnegative polynomials, exponentials of logarithmic
potentials and Müntz polynomials. There are a number of recent significant advances in this area.
A survey of results concerning various generalizations and numerous applications of this classical
inequality can be found in [49], [37] and [56]. In particular, a pointwise, asymptotic version of (3.1)
is also obtained [48, Theorem 4]. Namely

|pn(x)| ≤ exp

(

c n min

{

s√
1 − x2

,
√
s

})

(3.4)

holds for x ∈ I and every pn ∈ Πn satisfying (3.2), where c > 0 is some universal constant.
In this section, we discuss an analogue of (3.2) – (3.3) in which we use logarithmic capacity

instead of linear length. Our main results deal not only with polynomials, but also with exponentials
of potentials (see [49, 50]).

Given a nonnegative Borel measure ν with compact support in C and finite total mass ν(C) > 0
as well as a constant c ∈ R, we say that

Qν,c(z) := exp(c− Uν(z)), z ∈ C,

where

Uν(z) :=

∫

log
1

|ζ − z| dν(ζ), z ∈ C,

is the logarithmic potential of ν, is an exponential of a potential of degree ν(C).
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Let
Eν,c := {z ∈ C : Qν,c(z) ≤ 1}.

Theorem 2.1 and Corollary 2.11 in [50] assert that for 0 < s < 2 the condition

|Eν,c ∩ I| ≥ 2 − s (3.5)

implies

‖Qν,c‖I ≤
(√

2 +
√
s√

2 −√
s

)ν(C)

. (3.6)

Theorem 3.1 ([9]) Let 0 < δ < 1/2. Then the condition

cap(Eν,c ∩ I) ≥ 1

2
− δ (3.7)

yields that

‖Qν,c‖I ≤
(

1 +
√

2δ

1 −
√

2δ

)ν(C)

. (3.8)

Since |Eν,c ∩ I| ≤ 4 cap(Eν,c ∩ I) [79, p. 337], the assertion (3.5) – (3.6) follows from (3.7) – (3.8).
Furthermore, for 0 < δ < 1/2, set

ν = νδ := µ[−1,1−4δ], c = cδ := log
2

1 − 2δ
.

Then ν(C) = 1, Eν,c = [−1, 1 − 4δ],

Qν,c(x) =
1

1 − 2δ

(

x+ 2δ + ((x+ 2δ)2 − (1 − 2δ)2)1/2
)

, x ≥ 1 − 4δ.

Therefore, in this case

cap(Eν,c ∩ I) =
1

2
− δ,

‖Qν,c‖I = Qν,c(1) =
1 +

√
2δ

1 −
√

2δ
,

which shows the sharpness of Theorem 3.1.
Note that the modulus of any complex polynomial pn(z) = c

∏n
j=1(z − zj), 0 6= c ∈ C, can be

written as an exponential of a potential in the following way. Let

νn :=
n
∑

j=1

δzj
, (3.9)

where δz is the Dirac unit measure in the point z ∈ C. For z ∈ C, we have

Qνn,log |c|(z) = exp(log |c| + log
n
∏

j=1

|z − zj |) = |pn(z)|. (3.10)

Therefore, applying Theorem 3.1, we obtain for 0 < δ < 1/2: the condition

cap({x ∈ I : |pn(x)| ≤ 1}) ≥ 1

2
− δ
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implies

‖pn‖I ≤
(

1 +
√

2δ

1 −
√

2δ

)n

(cf. (3.2) – (3.3)).
The previous remark can be rewritten in a form as in [41, Theorem 1.1]. Namely, let r > 0 and

pn ∈ Πn be such that ‖pn‖[−r,r] = 1. Then for 0 < ε < 1,

cap({x ∈ [−r, r] : |pn(x)| ≤ εn}) ≤ 2rε

(1 + ε)2
.

This inequality is asymptotically sharp for any fixed ε and r.
Next, we present an analogue of the above results for complex polynomials. By Pn we denote

the set of all complex polynomials of degree at most n ∈ N. Let

Π(pn) := {z ∈ C : |pn(z)| > 1}, pn ∈ Pn.

From the numerous generalizations of the Remez inequality, we cite one result which is a di-
rect consequence of the trigonometric version of the Remez inequality (and is equivalent to this
trigonometric version, up to constants).

Assume that pn ∈ Pn, T := {z : |z| = 1} and

|T ∩ Π(pn)| ≤ s, 0 < s ≤ π

2
. (3.11)

Then, qn(t) := |pn(eit)|2 is a trigonometric polynomial of degree at most n and, by the Remez-type
inequality on the size of trigonometric polynomials (cf. [48, Theorem 2], [37, p. 230]), we have

‖pn‖T ≤ e2sn, 0 < s ≤ π

2
. (3.12)

Our next objective is to discuss an analogue of (3.11) – (3.12) in which we use logarithmic capacity
instead of linear length. As before, our main result deals not only with polynomials, but also with
exponentials of potentials.

Theorem 3.2 ([10]) Let 0 < δ < 1. Then the condition

cap(Eν,c ∩ T) ≥ δ

implies that

‖Qν,c‖T ≤
(

1 +
√

1 − δ2

δ

)ν(C)

.

In order to examine the sharpness of Theorem 3.2, we consider the following example.
Let 0 < α < π/2, and let

L = Lα := {eiθ : 2α ≤ θ ≤ 2π − 2α}. (3.13)

Since the function

z = Ψ(w) = −w w − a

1 − aw
,
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where a = 1/ cosα, maps ∆ = C \ D onto Ω := C \ L (cf. [57]) and since the Green function of Ω
with pole at ∞ can be defined via the inverse function Φ := Ψ−1 by the formula

gΩ(z) = log |Φ(z)|, z ∈ Ω,

we have

cap(L) = lim
w→∞

Ψ(w)

w
=

1

a
= cosα, (3.14)

as well as

max
z∈T\L

gΩ(z) = gΩ(1) = log |Φ(1)|

= log(a+
√

a2 − 1) = log
1 +

√

1 − cap(L)2

cap(L)
. (3.15)

Let c = cα := − log cap(L) and let ν = να := µL be the equilibrium measure for L; that is,
ν(C) = 1. Since, for z ∈ C,

Uν(z) = −g
C\L(z) − log cap(L),

and therefore
Qν,c(z) = exp(g

C\L(z)),

we have Eν,c = L as well as

‖Qν,c‖T =
1 +

√

1 − cap(L)2

cap(L)
.

This shows the exactness of Theorem 3.2.
Applying Theorem 3.2 to the exponential of a potential defined by (3.9) – (3.10), we obtain the

following: for pn ∈ Pn the condition

cap(T \ Π(pn)) ≥ δ, 0 < δ < 1, (3.16)

yields

‖pn‖T ≤
(

1 +
√

1 − δ2

δ

)n

. (3.17)

Since, for any E ⊂ T, we have cap(E) ≥ sin |E|
4 (see [82]), (3.16) – (3.17) imply the following

refinement of (3.11) – (3.12): For pn ∈ Pn the condition

|T ∩ Π(pn)| ≤ s, 0 < s < 2π, (3.18)

implies

‖pn‖T ≤
(

1 + sin s
4

cos s
4

)n

. (3.19)

This result is also sharp in the following sense. Let 0 < s < 2π, α = s/4, and let L = Lα be defined
as in (3.13). By (3.14) and (3.15),

gΩ(1) = log
1 + sin s

4

cos s
4

.
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We denote by fn(z) the n-th Fekete polynomial for a compact set L (see [89]). Hence, condition
(3.18) holds for the polynomial pn(z) := fn(z)/‖fn‖L. At the same time, since

lim
n→∞

( |fn(z)|
‖fn‖L

)1/n

= exp(gΩ(z)), z ∈ Ω \ {∞}

(see [89, p. 151]), we have

lim
n→∞

|pn(1)|1/n =
1 + sin s

4

cos s
4

(cf. (3.19)).

3.2 Remez-type inequalities in the complex plane

Let m2(A) be the two-dimensional Lebesgue measure (area) of a set A ⊂ C. The analogue of (3.1),
where the unit interval [−1, 1] is replaced by the closure G of some bounded Jordan domain G ⊂ C
and (3.2) by

m2

({

z ∈ G : |pn(z)| ≤ 1
})

≥ m2(G) − s, 0 < s < m2(G), (3.20)

is studied by Erdélyi, Li, and Saff [50]. Let Pn(G, s) denote the subset of polynomials in Pn

satisfying (3.20), and let

Rn(z, s) := sup
pn∈Pn(G,s)

|pn(z)|, z ∈ L := ∂G.

If L is a C2-curve it is established in [50] that there is a constant cj = cj(G) > 0 where j = 1, 2,
such that

Rn(z, s) ≤ exp(c1n
√
s), z ∈ L, 0 < s ≤ c2 < m2(G). (3.21)

Actually, this result is established in a more general context of exponentials of logarithmic po-
tentials, where it is used to prove Nikol’skii-type inequalities (cf. [49],[50]). The same problem
was investigated recently [61, Theorem 2.3] for domains with smooth boundary (under weaker
restrictions on the smoothness rate than in [50]).

We generalize the above results in two directions: we obtain pointwise bounds for Rn(z, s),
depending on z ∈ L, and we replace the strong C2 restriction for the boundaries of G by weaker
ones. Our results can easily be generalized to exponentials of logarithmic potentials as well. The
method to obtain our (sharp up to constants) estimates differs from the approaches used elsewhere
[50],[61]. We make use of properties of Green’s functions (cf. [89]), principles of symmetrization
(cf. [26]), and the technique of moduli of families of curves (cf. [1], [63]), combined with a useful
estimate from [23].

To aid in further discussion, we introduce additional notation. For z ∈ C and r > 0, let

D(z, r) := {ζ : |z − ζ| < r} , D(r) := D(0, r),

C(z, r) := {ζ : |z − ζ| = r} , C(r) := C(0, r).

Let G ⊂ C be a bounded Jordan domain, C := C ∪ {∞} and

L := ∂G, Ω := C \G, γz(r) := Ω ∩ C(z, r).

We use the convention that c1, c2, . . . denote positive constants and ε1, ε2, . . . sufficiently small
positive constants. If not stated otherwise, we assume that both types of constants depend only
on G.
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Theorem 3.3 ([25]) Let G be a bounded domain and z ∈ L := ∂G. Suppose that there are
constants ε1, ε2 such that

ε1r ≤ |γz(r)| ≤ (2π − ε1)r, 0 < r < ε2. (3.22)

Then there exist constants c1, c2, c3 > c2 and ε3 <
(

ε2
2c3

)2
depending only on ε1 and ε2 such that

Rn(z, s) ≤ exp






c1n exp






−π

ε2/2
∫

c3
√

s

dr

hz,c2
√

s(r)












, 0 < s < ε3, (3.23)

where
hz,δ(r) := sup

|t−r|≤δ
|γz(t)|, 0 < δ < r.

Moreover, for any arbitrary bounded domain G

Rn(z, s) ≤
(

c4

m2(G) − s

)n

, 0 < s < m2(G), (3.24)

where c4 > 2m2(G) depends only on the diameter of G.

The inequality (3.23) is the main statement of the theorem. The estimate (3.24) is included for the
completeness of the result. The condition (3.22) excludes any domain with a cusp at z.

In the proof of Theorem 3.3, we exploit the following deep connection between estimates which
express the possible growth of a polynomial with a known norm on a given compact set E ⊂ C
and the behavior of the Green function for Ω = C \ E.

For z ∈ Ω and u > 0, the following two conditions are equivalent:

(i) gΩ(z) ≤ u;

(ii) for any p ∈ Pn and n ∈ N,
|p(z)| ≤ eun‖p‖E .

Indeed, (i) ⇒ (ii) follows from the Bernstein–Walsh lemma [107, p. 77]. (ii) ⇒ (i) is a consequence
of a result by Myrberg and Leja (see [79, p. 333]).

We study the properties of the Green function by methods of geometric function theory (using
symmetrization, moduli of curve families, distortion theorems, harmonic measure, etc.) which allow
us, according to the implication (i) ⇒ (ii), to get (3.23).

Note that the sharpness of the results for the Green function means, by virtue of the equivalence
(i) and (ii), the sharpness (up to constants) of the corresponding Remez-type inequalities.

Since for an arbitrary Jordan domain G, z ∈ L and 0 < δ < r,

hz,δ(r) ≤ 2π(r + δ),

according to (3.23), for each domain satisfying (3.22), we obtain

Rn(z, s) ≤ exp(c5ns
1/4), 0 < s < ε3. (3.25)
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An example below shows that for domains with cusps at z the inequality (3.25) in general does not
hold (i.e., the restriction (3.22) in Theorem 3.3 is essential).

Indeed, let k > 2 be fixed and let

G = Gk :=

{

z = x+ iy : 0 < x < 1, 0 < y <
1

2
xk−1

}

. (3.26)

For 1/2 < δ < 1, we have

m2(G \D(1, δ)) ≤ 1

2

2(1−δ)
∫

0

xk−1dx =
2k−1

k
(1 − δ)k.

For 0 < s < 1/(2k) = m2(Gk), let

δ = δ(s) := 1 −
(

ks

2k−1

)1/k

.

The polynomial

pn(z) :=

(

z − 1

δ

)n

belongs to Pn(G, s). However,

|pn(0)| =
1

δn
≥ exp(ε4ns

1/k).

Hence, for k > 4 and G defined by (3.26), the inequality (3.25) is violated.
If more information is known about the geometry of the domain G, the expression in (3.23)

can be made more explicit. The following example illustrates this point. A Jordan curve is called
Dini-smooth (cf. [82, p. 48]) if it is smooth and if the angle β(s) of the tangent, considered in terms
of the arclength s, satisfies

|β(s2) − β(s1)| < h(s2 − s1), s1 < s2,

where h(x) is an increasing function for which

1
∫

0

h(x)

x
dx <∞. (3.27)

We call a Jordan arc Dini-smooth if it is a subarc of some Dini-smooth curve.

Theorem 3.4 ([25]) Let L = ∂G consist of finitely many Dini-smooth arcs lj , which form exterior
angles αjπ, 0 < αj < 2, at their junction points zj, j = 1, . . . ,m. Let z ∈ L be arbitrary and let zk
be the nearest point to z among the zj , i.e.,

|zk − z| = min
1≤j≤m

|z − zj |.

Then, for 0 < s < m2(G) the inequality

Rn(z, s) ≤ exp

(

c6 n
√
s

(
√
s+ |zk − z|)1−1/αk

log

(

c4

m2(G) − s

))

(3.28)

holds.
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Note that Theorem 3.4 implies (and extends) (3.21) since we can choose α1 = α2 = 1 and arbitrary
distinct points z1, z2 ∈ L.

Now, let us proceed with the discussion of the sharpness of (3.28).
Let Φ denote the Riemann function that maps Ω conformally and univalently onto ∆ := C\D,

where D := {z : |z| < 1} is the unit disk, and is normalized by the conditions

Φ(∞) = ∞, Φ′(∞) > 0.

We extend Φ to the homeomorphism Φ : Ω → ∆. For z ∈ C and δ > 0, let

Lδ := {z ∈ Ω : |Φ(z)| = 1 + δ},

ρδ(z) := dist(z, Lδ).

Let the function δ(z, t) be defined by the relation

ρδ(z,t)(z) = t, z ∈ L, t > 0.

Observe that under the assumptions of Theorem 3.4

δ ≍ ρδ(z)

(ρδ(z) + |z − zk|)1−1/αk
, 0 < δ < 1,

where a ≍ b denotes the double inequality ε5 b ≤ a ≤ c7 b.
Indeed, let w := Φ(z), wk := Φ(zk), wδ := (1 + δ)w, zδ := Φ−1(wδ). According to the distortion

properties of conformal mappings of domains with piecewise Dini-smooth boundary (cf. [82, p. 52]
or [20, p. 33]), we have

ρδ(z) ≍ |z − zδ| ≍ δ(δ + |w − wk|)αk−1 ≍ δ(ρδ(z) + |z − zk|)1−1/αk .

Hence (3.28) is equivalent to

Rn(z, s) ≤ exp

(

c8 n δ(z,
√
s) log

(

c4

m2(G) − s

))

, 0 < s < m2(G). (3.29)

In [25] the sharpness of (3.29) is established for an arbitrary quasidisk G, i.e., a Jordan domain
bounded by a quasiconformal curve L := ∂G.

Recall that, by Ahlfors’ theorem (see, for example, [63, p. 100]), a Jordan curve L is quasicon-
formal if and only if there exists a constant c9 such that for z1, z2 ∈ L

min{diam(L′),diam(L′′)} ≤ c9|z1 − z2|, (3.30)

where L′ and L′′ denote the two components of L\{z1, z2}. Thus, we exclude from our consideration
the regions with cusps on the boundary.

Using Ahlfors’ criterion, one can easily verify that convex curves, curves of bounded varia-
tion without cusps, and rectifiable Jordan curves which have the same order of arc length and
chord length are quasiconformal. At the same time, each part of a quasiconformal curve can be
nonrectifiable.

The domain from Theorem 3.4 is a quasidisk.
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There is a simple way to show that there exists ε6 such that for

m2(G) − ε6 < s < m2(G)

the inequality (3.29) is sharp (up to constants). Indeed, let L = ∂G be quasiconformal, z ∈ L.
Denote by z∗ ∈ L an arbitrary point satisfying

|z − z∗| ≥ 1

2
diam(G).

Choose 0 < r < |z − z∗| such that

m2(D(z∗, r) ∩G) = m2(G) − s

(this is always possible if ε6 is sufficiently small). Since G is a quasidisk, for any z ∈ L (3.22) holds.
Therefore,

r ≤ c10(m2(G) − s)1/2

holds as well.
The polynomial

pn(ζ) :=
(ζ − z∗)n

rn

belongs to Pn(G, s). At the same time

Rn(z, s) ≥ |pn(z)| ≥
(

ε7

m2(G) − s

)n/2

= exp

(

n

2
log

ε7

m2(G) − s

)

,

which shows the sharpness of (3.29) for values of s close to m2(G).
If 0 < s ≤ m2(G) − ε6, then (3.29) implies

lim sup
n→∞

logRn(z, s)

nδ(z,
√
s)

≤ c11 = c11(ε6), z ∈ L.

Theorem 3.5 ([25]) Let G be a quasidisk. There exists a constant ε8 = ε8(ε6) such that for z ∈ L
and 0 < s ≤ m2(G) − ε6 the inequality

lim inf
n→∞

logRn(z, s)

nδ(z,
√
s)

≥ ε8 (3.31)

holds.

The inequality (3.31) demonstrates that (3.29) is asymptotically sharp (with respect to n) for all
z ∈ L and 0 < s ≤ m2(G) − ε6.

3.3 Pointwise Remez-type inequalities in the unit disk

Observe that (3.21) states a uniform bound. Our objective is to derive the pointwise extension
of this bound. Note that the pointwise extension (3.4) of the classical Remez inequality (3.1) was
established relatively recently by Erdélyi [48, Theorem 4]. The proof of this theorem is based on
a Remez-type inequality for trigonometric polynomials (cf. [37, p. 230], [56]). Our approach is
quite different. We use ideas from potential theory in the plane [84], [89], principles of circular
symmetrization [26], and estimation of conformal invariants such as moduli of families of curves
[1], [63].

For simplicity, we formulate the appropriate result only for the unit disk.
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Theorem 3.6 ([17]) The condition

m2(D ∩ Eν,c) ≥ π − s, 0 < s < π,

yields

Qν,c(z) ≤ exp

(

c1ν(C)
√
s exp

(

−c2
(1 − |z|)2

s

))

, z ∈ D,

where c1 and c2 are positive absolute constants.

Theorem 3.6 is sharp in the following sense. Given 0 < s < π/2 and 0 ≤ x < 1, let δ := 1− x. Set,
for 0 < r < 1,

Ẽr,δ := D \ ({ζ : |ζ − x| < r} ∪ {ξ + iη : x < ξ ≤ 1, |η| < r}) . (3.32)

Since

m2(Ẽr,δ) > π − πr2

2
− 2δr,

taking r such that (πr2)/2 + 2δr = s, i.e.,

r = r(δ, s) :=
s

δ +
√

δ2 + (π/2)s
,

we have for Ẽ := Ẽr,δ,
m2(Ẽ) > π − s. (3.33)

In [17] it is shown that

g
C\Ẽ(x,∞) ≥ c3

√
s exp

(

−4
(1 − x)2

s

)

, c3 =
e−10π

2
√

2
. (3.34)

Let
ν = mµẼ , c = −m log cap(Ẽ),

where m > 0 is an arbitrary number. Since

Uµ
Ẽ (z) =







−g
C\Ẽ(z,∞) − log cap(Ẽ), z ∈ C \ Ẽ,

− log cap(Ẽ), z ∈ Ẽ,

we have
ν(C) = m, Eν,c = Ẽ.

Moreover, (3.34) implies

Qν,c(x) ≥ exp

(

c3m
√
s exp

(

−4
(1 − x)2

s

))

. (3.35)

Relations (3.33) and (3.35) show the sharpness of Theorem 3.6 for z ∈ D (its sharpness for z ∈ T
is known [50]).

Applying Theorem 3.6 to the exponential of a potential defined by (3.9) – (3.10), we obtain the
following: for any complex polynomial pn ∈ Pn, the condition

m2({z ∈ D : |pn(z)| ≤ 1}) ≥ π − s, 0 < s < π,
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implies

|pn(z)| ≤ exp

(

c1 n
√
s exp

(

−c2
(1 − |z|)2

s

))

, z ∈ D.

The last inequality is sharp for large n. That is, given 0 < s < π/2 and 0 ≤ x < 1, let Ẽ be defined
as in (3.32). It was shown in [17] that for

n >
8 log 2

c3
√
s

exp

(

4
(1 − x)2

s

)

there exists a polynomial Pn ∈ Pn such that

|Pn(z)| ≤ 1, z ∈ Ẽ,

|Pn(x)| ≥ exp

(

c3
2
n
√
s exp

(

−4
(1 − x)2

s

))

.

3.4 Remez-type inequalities in terms of linear measure

Next, we discuss analogues of (3.1) and (3.12) with an arbitrary Jordan arc or curve instead of
[−1, 1], and a quasismooth (in the sense of Lavrentiev) curve instead of T, respectively. Our results
deal not only with polynomials but also with exponentials of logarithmic potentials (cf. [49, 50]).

Let L ∈ C be a bounded Jordan arc or curve. For a (Borel) set V ⊂ L, we consider its covering
U = ∪jUj ⊃ V by a finite number or countably many open (i.e., without endpoints) subarcs Uj of
L. Let

σL(V ) := inf
∑

j

diam(Uj),

where the infimum is taken over all such open coverings of V .
Note that

σL(V ) ≤ min{|V |,diam(L)}. (3.36)

For an exponential of a potential Qν,c set

E∗
ν,c := C \ Eν,c = {z ∈ C : Qν,c(z) > 1}.

Theorem 3.7 ([24]) Let L be an arbitrary Jordan arc or curve, and let

σL(E∗
ν,c ∩ L)

diam(L)
=: u <

1

2
.

Then

‖Qν,c‖L ≤
(

1 +
√

2u

1 −
√

2u

)ν(C)

. (3.37)

Theorem 3.7 extends [50, Theorem 2.1] from the case where L = [−1, 1] to the case where L is an
arbitrary Jordan arc or curve.

Theorem 3.9 and the left-hand side of (3.42) below show that (3.37) is sharp (with respect to
the degree 1/2 of u) even for the case of Jordan curves. However, if we take into consideration
additional information about the geometry of L, the estimate (3.37) can be improved.
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Let L be a quasismooth (in the sense of Lavrentiev) curve which is defined by the following
condition. For any z1, z2 ∈ L,

min{|L′|, |L′′|} ≤ c1|z1 − z2|, c1 = c1(L) ≥ 1, (3.38)

where L′ and L′′ are the connected components of L \ {z1, z2}.
According to (3.36) and (3.38), for any quasismooth curve L and a (Borel) set V ⊂ L, we have

ε1|V | ≤ σL(V ) ≤ |V |.

We proceed with the case where E is a Lavrentiev domain, i.e., L = ∂E is quasismooth.
Denote by Φ the conformal mapping of Ω = C \E onto the exterior ∆ := C\D of the unit disk

D normalized by the conditions

Φ(∞) = ∞, Φ′(∞) := lim
z→∞

Φ(z)

z
> 0.

Let
Lδ := {z ∈ Ω : |Φ(z)| = 1 + δ}, δ > 0,

and let the function δ(t, L), t > 0, be defined by the relation

dist(L,Lδ(t,L)) = t.

Theorem 3.8 ([24]) Let L be a quasismooth curve and suppose that

|E∗
ν,c ∩ L| ≤ s <

1

2
diam(L).

Then
‖Qν,c‖L ≤ exp(c2 δ(s, L) ν(C))

holds with c2 = c2(L).

In order to discuss the sharpness of the bound of Theorem 3.8, we consider an important particular
case of exponentials of potentials. Let V ⊂ L consist of a finite number of open subarcs of L whose
closures are disjoint, J := L \ V , and let c = c(V ) := − log cap(J). Since

UµJ (z) = −g
C\J(z) − log cap(J), z ∈ C,

we have
QµJ ,c(z) = exp(g

C\J(z)), E∗
µJ ,c ∩ L = V.

For 0 < s < diam(L), we set

U(s, L) := {V ⊂ L : V = ∪m
j=1Vj , Vj is an open arc , Vj ∩ Vk = ∅,

m
∑

j=1

diam(Vj) ≤ s},

λ(s, L) := sup
V ∈U(s,L)

sup
z∈V

g
C\J(z).

For any quasismooth curve L, Theorem 3.8 implies that

λ(s, L) ≤ c2 δ(s, L), 0 < s <
1

2
diam(L). (3.39)
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Theorem 3.9 Let L be a quasismooth curve. Then

λ(s, L) ≥ ε2δ(s, L), 0 < s < diam(L), (3.40)

holds with ε2 = ε2(L).

Theorem 3.8 and inequalities (3.39) and (3.40) show that the growth of the exponentials of loga-
rithmic potentials can be related to the function δ(s, L) which depends only on the geometry of L.
Below, we state some remarks concerning its properties.

By the Ahlfors criterion (3.30), any quasismooth curve is quasiconformal. Therefore, Φ can be
extended to a quasiconformal homeomorphism Φ : C → C. Taking into account the distortion
properties of conformal mappings with a quasiconformal extension (cf. [79, pp. 289, 347]), for any
quasismooth curve L, we have

δ(s, L) ≤ c3s
α, 0 < s < diam(L),

where c3 = c3(L) and α = α(L) > 1/2. Thus, for any particular quasismooth curve L, Theorem
3.8 presents better estimates (with respect to the order of s) than Theorem 3.7.

Next, we introduce the notion of Dini-convex curves. In the remainder of this section, we assume
that L is a quasismooth curve. The set C \L consists of two Jordan domains: a bounded one G :=
int(L) and an unbounded one Ω := ext(L). Let h be a positive nondecreasing function satisfying
the Dini-condition (3.27) and let, for 0 < ε ≤ 1,

W (h, ε) := { ζ = reiθ : 0 < r < ε, πh(r) < θ < π(1 − h(r)) }.
We say that L is Dini-convex with respect to G if there exist 0 < ε = ε(L) ≤ 1 and a function
h = hL satisfying (3.27) such that h(ε) < 1/2 and for any z ∈ L

{ζ = z + eiθξ : ξ ∈W (h, ε)} ⊂ G

holds with some 0 ≤ θ = θ(z) < 2π.
For example, if there is 0 < r < 1 depending only on L such that for each z ∈ L there exists

an open disk Dz with radius r such that Dz ⊂ G and Dz ∩ L = {z}, then L is Dini-convex with
respect to G (with h(x) = c4 x and ε = r).

Theorem 3.10 ([24]) Let L be a quasismooth curve which is Dini-convex with respect to G. Then

ε3s ≤ δ(s, L) ≤ c5s, 0 < s < diam(L). (3.41)

Comparing Theorem 3.8 with the right-hand side of (3.41), we obtain an analogue of (3.12) for
curves L instead of the unit circle T (see also [11]). This result is sharp because of Theorem 3.9
and the left-hand side of (3.41).

If L consists of a finite number of Dini-smooth arcs which meet in the angles α1π, . . . , αmπ
(with respect to Ω), 0 < αj < 2,

α := max(1, α1, . . . , αm),

then according to the distortion properties of a conformal mapping of a domain with piecewise
Dini-smooth boundary onto a disc (cf. [82, Chapter 3]), we have

ε4s
1/α ≤ δ(s, L) ≤ c6s

1/α, 0 < s < diam(L). (3.42)

Notice that Theorem 3.8 and the right-hand side of (3.42) imply a new Remez-type inequality for
domains with a piecewise Dini-smooth boundary which is sharp because of Theorem 3.9 and the
left-hand side of (3.42).
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3.5 Open problems

We conjecture that the following sharp pointwise extension of (3.1) and (3.4) is valid.
Let 0 < s < 2 and −1 < x < 1. We define a = a(s, x) and b = b(s, x) such that:

(i) −1 < a < x < b < 1 and b− a = s;

(ii) the conformal mapping F = FE defined by (2.1) for E = [0, a
2 + 1

2 ] ∪ [ b
2 + 1

2 , 1] maps x
2 + 1

2
into the point w0 = maxw∈KE

|w|.
Let T̃n,s(ξ) = ξn + · · · ∈ Πn be the Chebyshev-Akhiezer polynomial deviating least from zero on

E, that is,
‖T̃n,s‖E = min

p∈Πn−1

‖ ·n +p(·)‖E .

Let Tn,s(ξ) := T̃n,s(ξ)/‖T̃n,s‖E .

Problem 4. Is it true that the inequality

|pn(x)| ≤ |Tn,s(x)|

holds for every pn ∈ Πn satisfying (3.2)?

Our next problem concerns the Remez-type inequality for polynomials on a quasidisk.

Problem 5. Let G be a quasidisk, i.e., a Jordan domain bounded by a quasiconformal curve L. Is
it true that for z ∈ L and arbitrary sufficiently small positive constant ε the inequalities

exp(c1nδ(z,
√
s)) ≤ Rn(z, s) ≤ exp(c2nδ(z,

√
s))

hold for any 0 < s ≤ m2(G) − ε with some constants cj = cj(G, ε), j = 1, 2?

4 Polynomial Approximation

4.1 Approximation on an unbounded interval

We consider functions f , continuous and real valued on the non-negative real line R+ and possessing
also the properties

f > 0 on R+, lim
x→∞

f(x) = ∞ . (4.1)

For every positive integer n ∈ N, we define

ρn(f) := inf
pn∈Πn

‖1

f
− 1

pn
‖R+ .

In the present section, we discuss necessary and sufficient conditions for the geometric convergence
of reciprocals of polynomials to the reciprocal of the function f on R+, i.e., the inequality

lim sup
n→∞

ρn(f)1/n =
1

q
< 1 . (4.2)

The first results in this area were due to Cody, Meinardus and Varga [40] concerning the function
exp(x). Later, Meinardus and Varga [69] extended these results to the class of entire functions of
completely regular growth. The paper [71] gave rise to investigations devoted to enlarging the class
of functions that admit geometric approximation by reciprocals of polynomials on R+.
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We introduce some notations. Given two numbers r > 0 and s > 1, denote by Er(s) the closed
ellipse with foci at the points x = 0 and x = r such that the ratio between the semimajor axis and
semiminor axis equals (s2 + 1)/(s2 − 1).

The following theorem states remarkable necessary conditions for geometric convergence.

Theorem 4.1 (Meinardus [70], Meinardus, Reddy, Taylor, Varga [71]) Let f satisfy (4.2). Then

(i) the function f can be extended from R+ to an entire function of finite order;

(ii) for every number s > 1, there exist positive constants c1 = c1(s, q), θ = θ(s, q) and r0 =

r0(s, q) such that the inequality
‖f‖Er(s) ≤ c1‖f‖θ

[0,r] (4.3)

holds for all r ≥ r0.

After the appearance of [71], a lot of work was done to find sufficient conditions for (4.2) (cf. [34]
– [36], [85], [87], [59]). The most general known result in this direction is the following statement.

Theorem 4.2 (Blatt, Kovacheva [36]) Assume that f is an entire function with (4.1) and, in
addition to condition (4.3), the inequality

‖f‖[0,r] ≤ µ(r)λ, (4.4)

where µ(r) := minx≥r{f(x)}, holds for some number λ > 1 and for every r > r0. Then (4.2) is
true.

On the other hand, Henry and Roulier [59] have shown that the conditions (i) and (ii) of Theorem
4.1 are not sufficient for geometric convergence. For example, in [59] it was proved that

f(x) = 1 + x+ ex sin2 x (4.5)

cannot be approximated with geometric speed. Their proof was based on the fact that f satisfying
(4.2) cannot oscillate too often.

The main goal of this section is to discuss a new necessary and a new sufficient condition for
geometric convergence found in [21].

We begin with a necessary condition. Let f be as above, i.e., f is an entire function with (4.1).
For r > 0, we define the set

Zr := { 0 < x <∞ : f(x) < r } .
Then Zr is the union of a finite number of disjoint open intervals. This follows from (4.1) and the
uniqueness theorem for analytic functions. Now, we consider the closure Z̄r of Zr, which is regular
and possesses a Green’s function

gr(z) := g
C\Z̄r

(z)

with respect to the region C \ Z̄r with pole at infinity, where gr := 0 on Z̄r. For s > 1, we denote
by Er(f, s) the set which consists of the interior of the level set of gr(z) and the level set itself for
a fixed parameter s, i.e.,

Er(f, s) := { z ∈ C : 0 ≤ gr(z) ≤ log s } .

Then the new necessary condition for geometric convergence can be formulated as follows.
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Theorem 4.3 ([21]) Let f satisfy (4.2). Then for every 1 < s < q there exist positive constants
c = c(s, q), θ = θ(s, q) and r0 = r0(s, q) such that

‖f‖Er(f,s) ≤ c rθ, r ≥ r0 . (4.6)

Next, we are going to discuss the geometrical meaning of condition (4.6). For ∞ > H > h >
minx∈R+ f(x) > 0, we introduce the strip domain

S(h,H) := { (x, y) : −∞ < x <∞, h < y < H }

as well as the intersection of this strip with the graph of f , i.e.,

Y (f, h,H) := S(h,H) ∩ { (x, y) : x ≥ 0, y = f(x) } ,

and define N(f, h,H) to be the number of connected components of Y (f, h,H) joining the line
{ℑ(z) = h} with the line {ℑ(z) = H}. Since f satisfies (4.1), the number N(f, h,H) is finite and,
moreover, it is odd.

Theorem 4.4 ([21]) Let f be an entire function satisfying (4.1). If, in addition, for some s > 1
and θ > 1, the function f satisfies (4.6), then, for each M > θ,

lim sup
h→∞

N(f, h, hM )

log h
<∞ . (4.7)

Note that the result of Theorem 4.4 is sharp in the following sense: For each M > 1 there exists
an entire function f = fM which satisfies (4.6) with some s > 1 and 1 < θ < M and

lim sup
h→∞

N(f, h, hM )

log h
> 0 . (4.8)

Indeed, consider the function

fM(x) := ex + e2Mx sin2 πx .

Obviously, it satisfies the conditions of Theorem 4.2. Therefore, fM guarantees the geometrical
convergence of best approximants in the sense of (4.2), and, by Theorem 4.3, f satisfies (4.6) in
which case we can take s so close to 1 that θ < M . The relation (4.8) immediately follows if we set
h = ek, k ∈ N, and let k → ∞.

The new sufficient condition for geometrical convergence of best approximants can be stated in
the following form.

Theorem 4.5 ([21]) Let f be an entire function satisfying (4.1) and (4.6) with some s > 1 and
θ > 1. In addition, assume that there exists a constant M = M(f) > 1 such that

lim sup
h→∞

N(f, h, hM ) <∞ .

Then f satisfies (4.2).
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It is easy to see that Theorem 4.2 follows from Theorem 4.5, because under the assumptions of
Theorem 4.2, for M > λ and h sufficiently large, we have N(f, h, hM ) = 1. At the same time,
condition (4.3) is weaker than (4.6). The example of the function (4.5) shows that conditions (4.3)
and (4.6) are not equivalent. Indeed, f given by (4.5) obviously satisfies (4.3). On the other hand,
some straightforward calculations show that relation (4.7) does not hold for this function. Thus, f
does not possess (4.6).

The fact that Theorem 4.5 is essentially stronger than Theorem 4.2 is not so obvious.

Theorem 4.6 ([21]) There exists an entire function f satisfying the assumptions of Theorem 4.5,
but not possessing property (4.4).

The proof of Theorem 4.5 is based on an analogue of the classical result due to Bernstein concerning
polynomial approximation of functions analytic in the neighborhood of a subinterval of the real
axis, for the case of several intervals.

Let E =
⋃k

j=1 Ij be the union of k disjoint intervals Ij = [αj , βj ] of the real axis R and let

Ω := C\E. The set
Es := {z ∈ Ω : gΩ(z) = log s }, s > 1,

consists of at most k (mutually exterior) curves. Denote by ext(Es) the unbounded component of
C\Es and set int(Es) := C\ext(Es). Denote by C(E) the class of all real functions continuous on
E.

Theorem 4.7 ([21]) For each f ∈ C(E) satisfying the following two conditions:

for some s > 1, f can be extended analytically into int(Es) , (4.9)

f has at least one zero on each Ij , (4.10)

there exist constants q > 1 and c > 0 depending only on s and k such that

inf
pn∈Πn

‖f − pn‖E =: En(f,E) ≤ c ‖f‖Es q−n, n ∈ N . (4.11)

Note that (4.11) can be interpreted as a result concerning geometric convergence of the polynomials
of best approximation to the function f , independent of the geometry of E.

The proof of Theorem 4.7 is based on a new concept of Faber-type polynomials for E which can
be described as follows. Let E be as defined in Theorem 4.7. Denote by gΩ(z, z0), z, z0 ∈ Ω := C\E,
the Green function for Ω with pole at z0. It has a multiple-valued harmonic conjugate g̃Ω(z, z0).
Thus, the analytic function

Φ(z, z0) := exp(gΩ(z, z0) + ig̃Ω(z, z0))

is also multiple-valued.
Let Φ(z) := Φ(z,∞) and let n ∈ N be arbitrary. If Φ(z)n is single-valued in Ω, we set

Wn(z) := Φ(z)n, z ∈ Ω .

If Φ(z)n is not single-valued in Ω, then according to [108, pp. 159, 227], there exist q ≤ k−1 points
x1,n, . . . , xq,n ∈ [α1, βk]\E such that the function

Wn(z) :=
Φ(z)n

Πq
i=1Φ(z, xi,n)

, z ∈ Ω,
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is single-valued in Ω. In both cases the function

Fn(z) :=
1

2πi

∫

Γ

Wn(ζ)

ζ − z
dζ, z ∈ int(Γ),

where Γ ∈ C \E is any curve surrounding E, is a polynomial of degree n, which coincides with the
classical Faber polynomial in the case of connected E.

4.2 The Nikol’skii-Timan-Dzjadyk-type theorem

Let E ⊂ R be a compact set, and let ω(δ), δ > 0, be a function of modulus of continuity type, i.e.,
a positive nondecreasing function with ω(0+) = 0 such that for some constant c ≥ 1,

ω(tδ) ≤ c t ω(δ), δ > 0, t > 1.

Let Cω(E) consist of all f ∈ C(E) such that

|f(x1) − f(x2)| ≤ c1 ω(|x2 − x1|), x1, x2 ∈ E,

with some c1 = c1(f) > 0.
For ω(δ) = δα, 0 < α ≤ 1, we set Cω(E) =: Cα(E).
One of the central problems in approximation theory is to describe the relation between the

smoothness of functions and the rate of decrease of their approximation by polynomials when the
degree of these polynomials tends to infinity. The following well-known statement is the starting
point of our consideration.

Theorem 4.8 (Nikol’skii [76], Timan [100], Dzjadyk [44]) Let f ∈ C([−1, 1]) and let ω be a
function of modulus of continuity type satisfying the inequality

δ

1
∫

δ

ω(t)

t2
dt ≤ c2 ω(δ), 0 < δ < 1, (4.12)

with some constant c2 > 0. Then the following assertions are equivalent:

(i) f ∈ Cω([−1, 1]);

(ii) for any n ∈ N there exists pn ∈ Πn such that the inequality

|f(x) − pn(x)| ≤ c3 ω

(

1

n2
+

√
1 − x2

n

)

, −1 ≤ x ≤ 1, (4.13)

holds with some constant c3 > 0.

In the late 50s – early 60s Dzjadyk [45], [46] laid the foundation for a new constructive theory of
functions on continua in the complex plane (a survey of the results and a bibliography can be found
in the monographs [99], [47], [55], [91], [19]). He used the following simple but fundamental idea.

Denote by I1/n, n ∈ N, the ellipse with foci at ±1 and sum of semiaxes equal to 1 + 1/n. Such

an ellipse is the image of the circle {w : |w| = 1+1/n} under the conformal mapping z = 1
2(w+ 1

w )
of ∆ := {w : |w| > 1} onto C \ [−1, 1], i.e., I1/n is the level line of the conformal mapping

Φ(z) = z +
√

z2 − 1
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of C \ [−1, 1] onto ∆, where the square root is chosen so that Φ(z) = 2z+O( 1
|z|) in a neighborhood

of ∞.
Then for −1 ≤ x ≤ 1 and n ∈ N,

1

n2
+

√
1 − x2

n
≍ ρ1/n(x),

where
ρ1/n(x) := dist(x, I1/n).

The concepts of Cω,Φ, I1/n and ρ1/n(x) are also meaningful for an arbitrary bounded continuum
in the complex plane. This is the key to a generalization of the Nikol’skii-Timan-Dzjadyk theorem
to classes of functions on continua in C.

If E ⊂ C is a compact set, then the interpretation of the Nikol’skii-Timan-Dzjadyk theorem
above can be rephrased by consideration of the Green function gΩ and its level lines. The case when
Ω = C \E is multiply connected is discussed in [74, 75, 93, 95, 72, 8]. Each time the extension of a
result from the case of a continuum to the case of a compact set uses quite specific and non-trivial
constructions.

In [15], we found how, in the case of finitely connected Ω, the extension of the Nikol’skii-Timan-
Dzjadyk theorem can be obtained by using the well-known Bernstein-Walsh lemma on the growth
of a polynomial outside the compact set and Walsh’s theorem on polynomial approximation of a
function analytic in a neighborhood of a compact set with connected complement. Our approach
is based on the following theorem.

Theorem 4.9 ([15]) Let E = ∪m
j=1Ej consist of m ∈ N, m ≥ 2, disjoint continua Ej, f ∈

A(E), ‖f‖E ≤ 1, and let z1, . . . , zN ∈ E be distinct points. Let, for any n > n0 ∈ N and
j = 1, . . . ,m, there be a polynomial pn,j ∈ Pn such that

|fj(z) − pn,j(z)| ≤ εj

(

1

n
, z

)

, z ∈ ∂Ej ,

pn,j(zl) = fj(zl), zl ∈ Ej ,

where fj := f |Ej
is the restriction of f to Ej, and the function εj(δ, z), 0 < δ ≤ 1, z ∈ ∂Ej , satisfies,

for any j = 1, . . . ,m and z ∈ ∂Ej , the properties:

(i) εj(δ, z) is monotonically increasing in δ;

(ii) |εj(δ, z)| ≤ 1, δ ≤ δ0 ≤ 1.

Then for any n ∈ N, n > c4(n0 + 1/δ0) there exists a polynomial pn ∈ Pn such that

|f(z) − pn(z)| ≤ εj

(

c5
n
, z

)

+ c6 e
−c7n, z ∈ ∂Ej , j = 1, . . . ,m,

pn(zl) = f(zl), l = 1, . . . , N,

where ck, k = 4, 5, 6, 7, depend only on E and the choice of points z1, . . . , zN .

The case of infinitely connected Ω is extremely difficult to handle. This can be seen from a recent
paper by Shirokov [95].

In what follows, we are going to discuss the case E ⊂ R, where the number of components
of E can be infinite. It turns out that the appropriate analogue of the Nikol’skii-Timan-Dzjadyk
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theorem is valid for some E that are not “too scarce” (see Theorem 4.11) and that in general a
result of such kind is not true (see Theorem 4.10).

More precisely, let E ⊂ R be a regular compact set. For δ > 0 and z ∈ C set

Eδ := {z ∈ Ω : gΩ(z) = δ},

ρδ(z) := dist(z,Eδ).

It turns out that even for f ∈ Cα(E), polynomials satisfying an analogue of (4.13) cannot be
constructed for any E under consideration.

Theorem 4.10 ([8]) There exist a regular compact set E0 ⊂ R and, for any 0 < α ≤ 1, a function
fα ∈ Cα(E0) such that the following assertion is false: for any n ∈ N there is a polynomial pn ∈ Πn

with the property:
|fα(x) − pn(x)| ≤ c ρα

1/n(x), x ∈ E0, (4.14)

where the constant c > 0 is independent of n and x.

The construction of E0 in Theorem 4.10 uses ideas from Section 2. That is, let

U0 := {w = ξ + iη : −π
2
< ξ <

π

2
, η > 0} \

∞
⋃

k=−∞
k 6=0

J ′
k,

where

J ′
k :=

[

1

k|k| ,
1

k|k| +
6i

|k|

]

.

Consider the conformal mapping ψ0 of U0 onto H, normalized by the boundary conditions

ψ0(∞) = ∞, ψ0

(

±π
2

)

= ±1.

We extend the inverse mapping φ0 := ψ−1
0 continuously to H (because of the symmetry of U0, we

have φ0(0) = 0) and set
Jk := {x ∈ R : φ0(x) ∈ J ′

k},

Ik = [x′k, x
′′
k] :=























ψ0(
[−π

2 ,−1
] ∪ [1, π

2

]

), k = 0,

ψ0([ 1
(k+1)2 ,

1
k2 ]), k ∈ N,

ψ0([− 1
k2 ,− 1

(k−1)2
]), −k ∈ N.

Then

E0 :=





∞
⋃

k=−∞
Ik



 ∪ {0}

satisfies the conditions of Theorem 4.10.
The analysis of the construction above shows that E0 is “too scarce” in a neighborhood of 0 ∈ E0.

Hence, to admit estimates like (4.13) or (4.14), E has to be “thick enough” in a neighborhood of
each of its points. In order to formulate the appropriate restrictions, we need some notations.

The set R \E consists of a finite or infinite number of components, i.e., disjoint open intervals.
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We say that E ∈ E(α, c), α > 0, c > 0, if for any bounded component J of R \E the inequality

dist(J, (R \E) \ J) ≥ c |J |1/(1+α) (4.15)

holds.
By definition, we relate a single closed interval to E(α, c).
We can now state the analogue of the Nikol’skii-Timan-Dzjadyk theorem for functions contin-

uous on a compact subset of the real line.

Theorem 4.11 ([8]) Let the regular set E ⊂ R consist of a finite number of disjoint compact sets,
each of which belongs to the class E(α, c) with some α, c > 0. Suppose that f ∈ C(E) and that
the function ω of modulus of continuity type satisfies (4.12). Then the following conditions are
equivalent:

(i) f ∈ Cω(E);

(ii) for any n ∈ N there exists a polynomial pn ∈ Πn such that

|f(x) − pn(x)| ≤ c8 ω(ρ1/n(x)), x ∈ E,

where the constant c8 > 0 does not depend on x and n.

The simplest example of E satisfying the assumptions of Theorem 4.11 is the union of a finite
number of disjoint closed intervals. The compact set

Eα := {0} ∪
∞
⋃

n=nα

[

1

n+ 1
,

1

n
− 1

n2+α

]

, α > 0, nα > 21/α,

which obviously satisfies the conditions of Theorem 4.11, illustrates a nontrivial extension of (4.13)
to compact subsets of the real line.

The proof of Theorem 4.11 uses the results and ideas concerning approximation of functions
by complex polynomials on continua of the special class H∗ introduced and discussed in the next
subsection. We outline the main steps of this proof. As usual, we use c1, c2, · · · to denote positive
constants that depend on parameters inessential to the argument.

(ii)⇒(i). Since by our assumption (4.15), for any x ∈ E and 0 < δ < 1 the length of the set
Ex,δ := E ∩ {ζ : |ζ − x| ≤ δ} satisfies |Ex,δ| ≥ c1 δ, the compact set E is uniformly perfect. Hence,
(ii)⇒(i) follows from Tamrazov’s inverse theorem (see [99, p. 138]).

(i)⇒(ii). Let f ∈ Cω(E). Applying the procedure described, for example, in [19, Chapter 1],
we extend f continuously to R such that

|f(x2) − f(x1)| ≤ c2ω(x2 − x1), −∞ < x1 < x2 <∞,

f(x) = 0, dist(x,E) > 3.

Further, we consider the Poisson integral

f(z) :=
1

π

∞
∫

−∞

y f(s) ds

(x− s)2 + y2
, z = x+ iy ∈ H,
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which extends f harmonically to the upper half-plane H.
It can be shown that for any z1, z2 ∈ H such that |z1| < c, |z2| < c, |z1 − z2| ≤ δ < c, where

c > 0 is an arbitrary (fixed) constant, we have the inequality

|f(z1) − f(z2)| ≤ c3ω(δ). (4.16)

First, we consider the case E ∈ E(α, c). Without loss of generality, we assume that E consists of a
finite number of components, that is, E = ∪m

k=1Ik, Ik = [x′k, x
′′
k],

x′1 < x′′1 < · · · < x′m < x′′m.

Important is that the estimates below do not depend on m. Using a linear transformation, if
necessary, we can also assume that x′1 = −1 and x′′m = 1.

For k = 1, . . . ,m− 1, set
Jk := [x′′k, x

′
k+1],

Sk := [x′′k + 2itk, x
′
k+1 + 2itk]

⋃

{z = x+ iy : x′′k − tk ≤ x ≤ x′′k, |z − (x′′k + itk)| = tk}
⋃

{z = x+ iy : x′k+1 ≤ x ≤ x′k+1 + tk, |z − (x′k+1 + itk)| = tk},

where

tk :=
1

3
min(|Jk|, |Ik|, |Ik+1|).

According to our assumption (4.15), for sufficiently large positive constants c and α the curve

l := {x+ iy : −1 ≤ x ≤ 1, y = c (1 − |x|)1+α}

satisfies the condition
dist(Sk, l) ≥ 2 diam(Sk).

We denote by G the Jordan domain bounded by

∂G = L := E ∪ (
m−1
⋃

k=1

Sk) ∪ l,

and let Ω∗ := C \G.
It can be proved that G ∈ H∗ (for the definition of H∗, see Subsection 4.3). Therefore by [4]

and (4.16), for any n ∈ N there exists a harmonic polynomial

tn(z) = Re
n
∑

j=0

aj z
j, aj ∈ C,

(of degree at most n) such that

|f(z) − tn(z)| ≤ c4ω(ρ∗1/n(z)), z ∈ L, (4.17)

where for z ∈ C and δ > 0,
ρ∗δ(z) := dist(z, Lδ),
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Lδ := {ζ : |Φ(ζ)| = 1 + δ},
and Φ is the conformal mapping of Ω∗ onto ∆ := {w : |w| > 1} normalized by the conditions

Φ(∞) = ∞, Φ′(∞) > 0.

A calculation shows that
ρ∗δ(x) ≤ c5ρδ(x), x ∈ E, 0 < δ < 1. (4.18)

Thus, (4.17) and (4.18) imply (ii).
Let now E = ∪s

j=1Ej , where Ej ∈ E(α, c) and Ej ∩ Ek = ∅ for j 6= k. For each Ej (consisting
of a finite number of components), we construct an auxiliary domain Gj as above and join all Gj

in H by smooth arcs so that a new set K ⊃ ∪s
j=1Gj belongs to H∗.

The distances from x ∈ Ej to the δ-level sets of the Green function for E and for Ej , denoted
by ρδ,E(x) and ρδ,Ej

(x), are equivalent, i.e.,

ρδ,E(x) ≍ ρδ,Ej
(x), x ∈ Ej , 0 < δ < 1.

The same property holds for the distances ρ∗δ,E(x) and ρ∗δ,Ej
(x) from x ∈ Ej to the (1 + δ)-level line

for the Riemann mapping function Φ constructed for C \K and C \Gj respectively. That is,

ρ∗δ,K(x) ≍ ρ∗
δ,Gj

(x), x ∈ Ej , 0 < δ < 1.

Since by (4.18),
ρ∗

δ,Gj
(x) ≤ c6ρδ,Ej

(x), x ∈ Ej , 0 < δ < 1,

we have
ρ∗δ,K(x) ≤ c7ρδ,E(x), x ∈ Ej , 0 < δ < 1.

Hence, applying (4.16) and [4], we obtain (ii).

4.3 Simultaneous approximation and interpolation of functions on continua in

the complex plane

Let E ⊂ C be a compact set with connected complement Ω := C \ E. Denote by A(E) the class
of all functions continuous on E and analytic in E0, the interior of E (the case E0 = ∅ is not
excluded). For f ∈ A(E) and n ∈ N0 := {0, 1, 2, · · ·} define

En(f,E) := inf
pn∈Pn

‖f − pn‖E .

By the Mergelyan theorem (see [47]),

lim
n→∞

En(f,E) = 0, f ∈ A(E).

The following assertion on “simultaneous approximation and interpolation” quantifies a result of
Walsh [107, p. 310]: Let z1, · · · , zN ∈ E be distinct points, f ∈ A(E). Then for any n ∈ N, n ≥ N ,
there exists a polynomial pn ∈ Pn such that

‖f − pn‖E ≤ cEn(f,E), (4.19)
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pn(zj) = f(zj), j = 1, . . . , N,

where c > 0 is independent of n and f .
A suitable polynomial has the form

pn(z) = p∗n(z) +
N
∑

j=1

q(z)

q′(zj)(z − zj)
(f(zj) − p∗n(zj)),

where

q(z) :=
N
∏

j=1

(z − zj),

and p∗n ∈ Pn satisfies
‖f − p∗n‖E = En(f,E).

It is natural to ask whether it is possible to interpolate the function f as before at arbitrary
prescribed points and to simultaneously approximate it in a “more subtle way” than in (4.19).
The theorem of Gopengauz [58] about simultaneous polynomial approximation of real functions
continuous on the interval [−1, 1] and their interpolation at ±1 is a useful example. For a recent
account of improvements and generalizations of this remarkable statement (for real functions), we
refer the reader to [83], [98], [60].

We are going to make use of the D-approximation (named after Dzjadyk, who found in the
late 50s – early 60s a constructive description of Hölder classes requiring a nonuniform scale of
approximation) as a substitute for (4.19). In [5] it is shown that for the D-approximation to hold
for a continuum E it is sufficient, and under some mild restrictions also necessary, that E belongs
to the class H∗ which can be defined as follows (cf. [3], [6]).

From now on, we assume that E is a continuum, i.e., Ω := C \ E is simply connected. Let
diam(E) > 0 and L := ∂E be the boundary of E.

We say that E ∈ H if any points z, ζ ∈ E can be joined by an arc γ(z, ζ) ⊂ E whose length
|γ(z, ζ)| satisfies the condition

|γ(z, ζ)| ≤ c |z − ζ|, c = c(E) ≥ 1. (4.20)

Let us compactify the domain Ω by prime ends in the sense of Carathéodory (see [82]). Let Ω̃ be
this compactification, and let L̃ := Ω̃\Ω. Supposing that E ∈ H, then all the prime ends Z ∈ L̃ are
of the first kind, i.e. have singleton impressions |Z| = z ∈ L. The circle {ξ : |ξ − z| = r}, 0 < r <
1
2diam(E), contains one arc, or finitely many arcs, dividing Ω into two subdomains: an unbounded
subdomain and a bounded subdomain such that Z can be defined by a chain of cross-cuts of the
bounded subdomain. Let γZ(r) denote that of these arcs for which the unbounded subdomain is
as large as possible (for given Z and r). Thus, the arc γZ(r) separates the prime end Z from ∞
(cf. [29], [19]).

If 0 < r < R < 1
2diam(E), then γZ(r) and γZ(R) are the sides of some quadrilateral QZ(r,R) ⊂

Ω whose other two sides are parts of the boundary L. Let mZ(r,R) be the module of this quadri-
lateral, i.e., the module of the family of arcs that separate the sides γZ(r) and γZ(R) in QZ(r,R)
(see [1], [63]).

We say that E ∈ H∗ if E ∈ H and there exist c = c(E) < 1
2diam(E) and c1 = c1(E) such that

|mZ(|z − ζ|, c) −mZ(|z − ζ|, c)| ≤ c1 (4.21)



V. V. Andrievskii 42

for any prime ends Z,Z ∈ L̃ with their impressions z = |Z|, ζ = |Z| satisfying |z − ζ| < c.
In particular, H∗ includes domains with quasiconformal boundary (see [1], [63]) and the classes

B∗
k of domains introduced by Dzjadyk [47]. For a more detailed investigation of the geometric

meaning of conditions (4.20) and (4.21), see [6].
We study functions defined by their k-th modulus of continuity (k ∈ N). There are a number of

different definitions of these moduli in the complex plane (see [106], [99], [43], [90]). The definition
by Dyn’kin [43] is the most convenient for our purpose.

From now on suppose E ∈ H∗. The quantity

ωf,k,z,E(δ) := Ek−1(f,E ∩D(z, δ)),

where f ∈ A(E), k ∈ N, z ∈ E, δ > 0 and D(z, δ) := {ζ : |ζ − z| ≤ δ} is called the k-th local
modulus of continuity, and

ωf,k,E(δ) := sup
z∈E

ωf,k,z,E(δ)

the k-th (global) modulus of continuity of f on E.
By definition, the function w = Φ(z) maps Ω conformally and univalently onto ∆ := {w : |w| >

1} and is normalized by the conditions

Φ(∞) = ∞, Φ′(∞) > 0.

Let
Lδ := {ζ : |Φ(ζ)| = 1 + δ}, δ > 0,

ρδ(z) := dist(z, Lδ), z ∈ C, δ > 0.

Theorem 4.12 ([22]) Let E ∈ H∗, f ∈ A(E), k ∈ N, and let z1, · · · , zN ∈ E be distinct points.
Then for any n ∈ N, n ≥ N + k, there exists a polynomial pn ∈ Pn such that

|f(z) − pn(z)| ≤ c1 ωf,k,E(ρ1/n(z)), z ∈ L, (4.22)

pn(zj) = f(zj), j = 1, · · · , N (4.23)

with c1 > 0 independent of n.
Moreover, if E0 6= ∅ and for 0 < δ < 1,

δ
∫

0

ωf,k,E(t)
dt

t
≤ c2 ωf,k,E(δ), c2 = constant > 0, (4.24)

then in addition to (4.22) and (4.23),

‖f − pn‖K ≤ c3 exp(−c4nα) (4.25)

for every compact set K ⊂ E0, where the constants c3, c4 and α ≤ 1 are independent of n.

The existence of a polynomial pn satisfying (4.22) is called a D-approximation of the function f
(D-property of E, Dzjadyk-type theorem). For k > 1, (4.22) generalizes the corresponding direct
theorems of Belyi and Tamrazov [30] (E is a quasidisk) and Shevchuk [90] (E belongs to the Dzjadyk
class B∗

k). More detailed history can be found in these papers.
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It was first noticed by Shirokov [92] that the rate of D-approximation may admit significant
improvement strictly inside E. Saff and Totik [88] proved that if L is an analytic curve, then
an exponential rate is achievable strictly inside E, while on the boundary the approximation is
“near-best”. However, even for domains with piecewise smooth boundary without cusps (and
therefore belonging to H∗) the error of approximation strictly inside E cannot be better than
e−cnα

(cf. (4.25)) with α which may be arbitrarily small (see [66], [96]). In the results from [66],
[96] and [94] containing estimates of the form (4.25) it is usually assumed that Ω satisfies the wedge
condition. For a continuum E ∈ H∗ this condition can be violated.

We denote by Ar(E), r ∈ N, the class of functions f ∈ A(E) which are r-times continuously
differentiable on E and set A0(E) := A(E). Keeping in mind the Gopengauz result [58], we
generalize Theorem 4.12 to the case of Hermite interpolation and simultaneous approximation of a
function f ∈ Ar(E) and its derivatives. For simplicity we formulate this assertion only for the case
of boundary interpolation points and without the analog of (4.25).

Theorem 4.13 ([22]) Let E ∈ H∗, f ∈ Ar(E), r ∈ N, k ∈ N, and let z1, . . . , zN ∈ ∂E be distinct
points. Then for any n ∈ N, n ≥ Nr + k, there exists a polynomial pn ∈ Pn such that for
l = 0, . . . , r,

|f (l)(z) − p(l)
n (z)| ≤ c ρr−l

1/n(z)ωf(r),k,E(ρ1/n(z)), z ∈ L,

p(l)
n (zj) = f (l)(zj), j = 1, . . . , N

with c independent of n.

Our next goal is to allow the number of interpolation nodes N in Theorem 4.12 to grow infinitely
with the degree of the approximating polynomial n. To this end, we specify the choice of points
z1, . . . , zN . In order to do it optimally from the point of view of interpolation theory, we have to
require that the discrete measure

νN =
1

N

N
∑

j=1

δzj
,

where δz denotes the unit mass placed at z, is close to the equilibrium measure for E (for details,
see [89]). Fekete points (see [79], [89]) are natural candidates for our purpose. Even in this case the
number N−1 cannot be equal to the degree n of the approximating polynomial (cf. Faber’s theorem
[53] claiming that for E = [−1, 1] there is no universal set of nodes at which to every continuous
function the Lagrange interpolating polynomials converge in the uniform norm). However, it was
first observed by Bernstein [31] that for any continuous function on [−1, 1] and any small ε > 0, there
exists a sequence of polynomials interpolating in the Chebyshev nodes and uniformly convergent
on [−1, 1], such that n ≤ (1 + ε)N . This result was developed in several directions. In particular,
Erdös (see [51] and [52]) found a necessary and sufficient condition on the system of nodes, for
this type of simultaneous approximation and interpolation to be valid. We generalize the results of
Bernstein and Erdös in the following theorem.

Theorem 4.14 ([22]) Let E be a closed Jordan domain bounded by a quasiconformal curve L.
Let f, r, k be as in Theorem 4.12 and let z1, . . . , zN ∈ E be the points of an N -th Fekete point set
of E. Then for any ε > 0 there exists a polynomial pn ∈ Pn, n ≤ (1 + ε)N , satisfying conditions
(4.22) and (4.23). Moreover, if (4.24) holds then in addition to (4.22) and (4.23) we have (4.25),
and the constants c1, c3, c4 and α are independent of N .
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4.4 Open problems

We begin with a question that would be a complete resolution of the Meinardus-Varga problem on
the structure of an entire function with geometric convergence on the positive real axis of reciprocals
of polynomials to the reciprocal of the function.

Problem 6. Let an entire function f satisfy (4.1). Are the following two conditions

(i) f satisfies (4.2),

(ii) There exist s > 1 and positive constants c, θ, and r0 such that

‖f‖Er(f,s) ≤ c rθ, r ≥ r0,

equivalent?

Note that (i) ⇒ (ii) is proved in [21] (cf. Theorem 4.3). The inverse implication (ii) ⇒ (i) appears
to be much more complicated to prove. One of the possibilities is to use an extension of the
classical result of Bernstein on polynomial approximation of functions analytic in a neighborhood
of a subinterval of the real axis (see [42]) to the case of several intervals.

Problem 7. Let E =
⋃k

j=1 Ij be the union of k disjoint intervals Ij = [αj , βj ] ⊂ R. Is it true that
for each function f satisfying (4.9) and (4.10), there exists a constant c > 0 depending only on
s > 1 such that

En(f,E) ≤ c ‖f‖Es s−n, n ∈ N ? (4.26)

Note that (4.26) does not depend on the geometry of E. This fact makes Problem 7 much more
difficult to study compared to the known results on polynomial approximation of functions on a
finite number of intervals (cf. [54]).

Our prior research (see Theorem 4.11) indicates that there exists a connection between the
Nikol’skii-Timan-Dzjadyk approximation theorem and the concept of uniformly perfect sets. We
propose to investigate the details of this connection.

Problem 8. Let E ⊂ R be uniformly perfect. Suppose that f ∈ C(E) and that the function ω of
modulus of continuity type satisfies (4.12). Are the following conditions

(i) f ∈ Cω(E),

(ii) For any n ∈ N, there exists a polynomial pn ∈ Πn such that

|f(x) − pn(x)| ≤ c ω(ρ1/n(x)), x ∈ E,

where the constant c > 0 does not depend on x and n,

equivalent?

This conjecture is motivated by the connection between uniformly perfect sets and John domains
described in Subsection 2.2. Since the behavior of a conformal mapping of a John domain onto the
disk is well-studied (see, for example, [82]), this can be used for constructing polynomials with the
desired properties.
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Moreover, we conjecture that uniformly perfect sets present exactly the class of sets to which
Theorem 4.8 can be generalized as in Problem 8.

Problem 9. Suppose that the compact set E ⊂ R is not uniformly perfect. Does it follow that, for
any 0 < α < 1, there exists a function fα ∈ Cα(E) such that the following assertion is false? For
any n ∈ N, there is a polynomial pn ∈ Πn with the property

|fα(x) − pn(x)| ≤ c ρα
1/n(x), x ∈ E,

where the constant c > 0 is independent of n and x.

Next, we discuss the description of classes of functions with a given rate of decrease of their
uniform polynomial approximations. Let E ⊂ R be a regular compact set and let f ∈ C(E).
The following fundamental problem of approximation theory is another example of the interplay
between smoothness properties of a function f ∈ C(E), the rate of decrease of its best polynomial
approximations En(f,E), and the geometry of the set E: for fixed α > 0 describe all functions
f ∈ C(E) such that

En(f,E) = O(n−α), n→ ∞. (4.27)

For x ∈ E and t > 0 let the function δ(x, t) be defined by the equality

ρδ(x,t)(x) = t.

Problem 10. Let E ⊂ R be uniformly perfect, f ∈ C(E), and let 0 < α < 1. Are the following
two conditions

(i) The inequality (4.27) holds,

(ii) For all x1, x2 ∈ E,
|f(x2) − f(x1)| ≤ c δ(x1, |x2 − x1|)α,

where c > 0 is independent of x1 and x2,

equivalent?

So far, a positive answer to this question is confirmed for E = [a, b] being a closed interval [42,
p. 265]. In general, the problem is open. The proof of (i) ⇒ (ii) is given in [12]. The inverse
implication (ii) ⇒ (i) needs new ideas.
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