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Abstract

Let W : R — (0,1] be continuous. Bernstein’s approximation problem, posed in 1924,
deals with approximation by polynomials in the weighted uniform norm f — |[fW/||.__ (). The
qualitative form of this problem was solved by Achieser, Mergelyan, and Pollard, in the 1950’s.
Quantitative forms of the problem were actively investigated starting from the 1960’s. We
survey old and recent aspects of this topic, including the Bernstein problem, weighted Jackson
and Bernstein Theorems, Markov—Bernstein and Nikolskii inequalities, orthogonal expansions
and Lagrange interpolation. We present the main ideas used in many of the proofs, and different
techniques of proof, though not the full proofs. The class of weights we consider is typically
even, and supported on the whole real line, so we exclude Laguerre type weights on [0, 00).
Nor do we discuss Saff’s weighted approximation problem, nor the asymptotics of orthogonal
polynomials.
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1 Bernstein’s Approximation Problem

The first quarter of the twentieth century was a great period for approximation theory. In that time,
Dunham Jackson and Sergei Bernstein completed their great works on the degree of approximation.
Miintz proved his theorem on approximation by powers {x’\j io’ solving a problem of Bernstein,
Faber introduced Faber polynomials and Faber series, and gzegé was developing the theory of
orthogonal polynomials on the unit circle. Right at the end of that quarter, in 1924, Bernstein
[4] came up with a problem that became known as Bernstein’s approzimation problem, and whose
ramifications continue to be explored to this day.
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One can speculate that one day Bernstein must have felt confined in approximating on bounded
intervals, and so asked: by Weierstrass, we know that we can uniformly approximate any continuous
function on a compact interval by polynomials. Are there analogues on the whole real line? The
first thing to deal with is the unboundedness of polynomials on unbounded intervals. Clearly we
need to damp the growth of a polynomial at infinity, by multiplying by a weight. For example,
consider

P(z) exp(—x?), x € R,

where P is a polynomial, or more generally,
Here W must decay sufficiently fast at £00 to counteract the growth of every polynomial. That is,

lim z"W(z) =0, n=0,1,2,.... (1.1)

|x|—o0

What can be approximated, and in what sense? This problem is known as Bernstein’s ap-
proximation problem. A more precise statement is as follows: let W : R — [0, 1] be measurable.
When is it true that for every continuous f : R — R with

lim (fW)(z) =0,

|z|—o00
there exists a sequence of polynomials {P,} -, with
lim ||(f — P)WllL @ =07
n—oo

If true we then say that the polynomials are dense, or that Bernstein’s problem has a positive
solution. The restriction that fW has limit 0 at +oo is essential: if z¥W (z) is bounded on the real
line for every non-negative k, then ¥ (z) has limit 0 at +o0o for every such k, and so the same
is true of every weighted polynomial PW. So we could not hope to approximate, in the uniform
norm, any function f for which fW does not have limit 0 at +ooc.

When W vanishes on a set of positive measure, or is not continuous, extra complications ensue.
So in the sequel, we shall assume that W is both positive and continuous. The more general case
is surveyed at length in [67]. The case where we approximate only on a countable set of points is
included in that study.

In his early works on the problem, Bernstein often assumed that 1/W is the restriction to the
real line of an even entire function with positive (even order) Maclaurin series coefficients. Other
major contributors were N. I. Akhiezer, K. I. Babenko, L. de Branges, L. Carleson, M. M. Dzrbasjan,
T. Hall, S. Izumi, T. Kawata, S. N. Mergelyan, and V. S. Videnskii. Yes, that’s Lennart Carleson,
and the same Mergelyan of Mergelyan Theorem fame (on uniform approximation by polynomials
on compact subsets of the plane).

Bernstein’s approximation problem was solved independently by Achieser, Mergelyan, and Pol-
lard, in the 1950’s. Mergelyan [67, p. 147] introduced a regularization of the weight

P(t t
Q(z) = sup {]P(z)| : P a polynomial and sup M < 1} .
teR 14 ¢2
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Theorem 1.1 (Mergelyan) Let W : R — (0, 1] be continuous and satisfy (1.1). There is a
positive answer to Bernstein’s problem iff

/oo log (1) ,, _

oo 1412

In another formulation, there is a positive answer iff
Q(z) = 0

for at least one non-real z (and then €2(z) = oo for all non-real z). We shall outline the proof of
this in the next section.
Akhiezer (and perhaps Bernstein?) [67, p. 158] used instead the regularization

W.(z) = sup {|P(z)| : P a polynomial with I1PW] 1 m) < 1}.

Theorem 1.2 (Akhiezer) Let W : R — (0, 1] be continuous and satisfy (1.1). There is a positive
answer to Bernstein’s problem iff
/°° log W, (t) g —

O e
Finally, Pollard [161], [67, p. 164] showed:

Theorem 1.3 (Pollard) Let W : R — (0,1] be continuous and satisfy (1.1). There is a positive
answer to Bernstein’s problem iff both

[ e,

O
and there exists a sequence of polynomials { P, } such that for each x,

lim P,(z)W(x) =1,

n—oo

while
sup || B W[ ®) < o0
n>1

Pollard later [162] reformulated this as

> log |P(x . '
o {/ %dw : P a polynomial with [PW /|1 ) < 1} = 0.
—0oQ

Of course, these are not very transparent criteria. When the weight is in some sense regular,
simplifications are possible.

Theorem 1.4 Let W be even, and log (1/W (e”)) be convex. There is a positive answer to Bern-

stein’s problem iff
/°° log (1/W(z)) ,
0

22 xr = 00. (1.2)
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This result was proved by Lennart Carleson in 1951 [10], although Misha Sodin pointed out
to the author that it appeared in a 1937 paper of Izumi and Kawata [51]. On perusing the latter
paper, I agree that it is clearly implicit in the results there, though not explicitly stated. I have
also seen the result attributed to M. Dzrbasjan. The reader should conclude that the “history”
presented in this survey is by no means authoritative, but merely what could be deduced (often
from secondary sources) in the available time.

Corollary 1.5 Let a > 0 and
Wa(x) = exp(—|z|¥). (1.3)

There is a positive answer to Bernstein’s problem iff a > 1.

As regards necessary conditions, Hall showed that (1.2) is necessary for density. When density
fails, only a limited class of entire functions can be approximated [70]. A comprehensive treatment
of this topic is given in Koosis’ book [67]. A concise elegant exposition appears in [86, p. 28 ff.]. A
more abstract solution to Bernstein’s problem was given by Louis de Branges (of Bieberbach fame)
in 1959 [29]. The ideas in that paper have had several recent ramifications [174], [175].

What about extensions to L,? At least when W is continuous, the answer is the same:

Theorem 1.6 Let W : R — (0,1] be continuous and satisfy (1.1). Let p > 1. Then any of the
conditions of Achieser, Mergelyan, or Pollard is necessary and sufficient so that for every measurable
f:R—Rwith [[fW],®) < oo, there exist polynomials { P,} with

Jim [[(f = Ba)W @) =0

There is even a generalization of this theorem to weighted Miintz polynomials [188]. As regards
the proof of the L, case, let us quote Koosis [67, p. 211]: “In general, in the kind of approximation
problem considered here, (that of the density of a certain simple class of functions in the whole
space), it makes very little difference which L, norm is chosen. If the proofs vary in difficulty, they
are hardest for the L; norm or the uniform norm.” Indeed, in his 1955 paper [162], Pollard added
about two pages to deal with the L, case.

In the special case of Lg, there are connections to the classical moment problem. Let {sx} be a
sequence of real numbers. If there is a positive measure o on the real line such that

sk:/ thdo(t), k=0,1,2,... , (1.4)

—0o0

then we say that the Hamburger Moment Problem for {s;x} has a solution. If there is only one
solution o, of the equations (1.4), we say the moment problem is determinate. Existence of o is
equivalent to positivity of certain determinants. The determinacy of the moment problem is often
a deeper and more difficult issue. If we define

o0
¥(z) = sup {|P(z)|2 : P a polynomial with / |P|2do < 1} ,
—00
then a necessary and sufficient condition for determinacy is [67, p. 141]

[e%¢) 1 -+
/ og"X(t) ., _
oo 1422
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Here logt z := max {0,log #}. In particular, for the measure
do(t) = exp(—[t|*)dt,

one can use this to show that the corresponding moment problem is determinate iff & > 1. Recall
that Bernstein’s approximation problem also had a positive solution iff o > 1.

There are still closer connections to Bernstein’s problem [38, Thm. 4.3, p. 77]. It is noteworthy
that this was obtained by M. Riesz in 1923 even before Bernstein’s problem was formulated.

Theorem 1.7 Suppose that o is a positive measure on the real line, with finite moments {sy}, as in
(1.4). Suppose, moreover, that o has no point masses, so that x — ffoo do is a continuous function
of x. Then the moment problem associated with {sy} is determinate iff for every o-measurable
function f with [ f 2do finite, and for every € > 0, there exists a polynomial P such that

/mu:Jﬂ%a<a

—0o0

Without assuming the continuity of [ do, determinacy still implies density of the polynomials
[38, p. 74 fI.]. There is also an important result on one-sided approximation [38, Theorem 3.3,
p. 73]:

Theorem 1.8 Suppose that o is a positive measure on the real line, with finite moments {sy}, as
in (1.4). Suppose moreover, that the moment problem associated with {sj} is determinate. Let
e >0and f: R — R be a function that is Riemann—Stieltjes integrable against do over every finite
interval, and improperly Riemann integrable over the whole real line, and of polynomial growth at
o0o. Then there exist polynomials R and S such that

R<f<S mR

and

([:@—Rﬂa<a

Some recent work related to Bernstein’s approximation problem and its Lo analogue appear in
(6], 7], [8], [79], [155], [157], [163], [164], [165], [173], [174], [175], [188].

2 Some Ideas for the Resolution of Bernstein’s Problem

In this section, we present some of the ideas used by Akhiezer, Mergelyan, Pollard, to resolve Bern-
stein’s Approximation problem. It’s relatively easy to derive the necessary parts of the conditions.
We follow [67, p. 147 ff.] and [86, p. 28 ff.]. Recall Mergelyan’s regularization of W :

P)W(t
Q(z) = sup {P(z)| : P a polynomial and sup POWD)] < 1} .
teR 1+ ¢2
In the sequel, C,C1,Cs,... denote positive constants independent of n,x,t and polynomials P of
degree < n. The same symbol does not necessarily denote the same constant in different occur-
rences. We write C = C(a) or C # C(a) to respectively show that C' depends on «, or does not
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depend on a. We use the notation ~ in the following sense: given sequences of real numbers {c, }
and {d,}, we write
cp ~ dp

if for some positive constants C7, Cy independent of n, we have

Cl S Cn/dn S 02'

Lemma 2.1 In order that Bernstein’s approximation problem has a positive solution, it is neces-
sary that for all z € C\R,
Q(z) = oo. (2.1)

Proof. Suppose that Bernstein’s problem has a positive solution. Fix z € C\R. Since the function
f(t) = (t — 2)~! is continuous, and fW has limit 0 at co, we can find polynomials {R,} such that
on = I(f = Ri)WllLoor) = 0, (2.2)

as n — oo. Let o R(1 .
Ry = T 22 gy,

Then for all t € R,

‘ Da(t)
(t—2)

Next, for some constant C' independent of ¢, we have

W(t)’ - éu CROW() < 1.

t_
’ Z <C, teR.
t—1
Then p - P
()W (¢ t— (¢
teR V1 +t2 ter |t — || (t—2)

It follows that P, /C' is one of the polynomials considered in forming the sup in Q(z), so

P.(z)
C

Q(z) >

n—oo. O

Let’s think how we can reverse this to show the condition is also sufficient. If Q(z) = oo,
then reversing the above argument, we see that there are polynomials {R,,} satisfying (2.2), with
f(t) = (t —2)7'. If Q(2) = oo for all z, we can approximate linear combinations

s
t) = £
fO =3 = =
j=1
by polynomials in the norm | - W/||;__(r). For small ¢, we can then approximate
1 1 1 B 1
26 |(t—2)—e (t—2)+e] (t—2)2—¢2



D. S. Lubinsky 8

and hence also 1/(t — z)%. Tterating this, we can approximate 1/(t — z)™ for any non-real z, and
m > 1. We can then approximate polynomials in 1/(¢ — z). The latter can in turn uniformly
approximate on the real line, any continuous function f(¢) that has limit 0 at co. (Use Weierstrass’
Theorem and make a transformation = = 1/(t — ¢).) Since W < 1, we then obtain a positive
solution to Bernstein’s problem, for continuous functions that have limit 0 at oo. This class of
continuous functions is big enough to approximate arbitrary ones for the Bernstein problem. For
full details, see [67, p. 148 ff. |.
Next, we show:

Lemma 2.2 In order that Bernstein’s approximation problem has a positive solution, it is neces-

sary that log (/W) (8
> log t) .
/OO e dt = oco. (2.3)

Proof. The basic tool is the inequality

. 1 [ log|P(t)]
log | P < - — 2.4
gl <+ [ (2.4

—o
valid for all polynomials P. To prove this, suppose first that P has no zeros in the closed upper
half-plane. We can then choose an analytic branch of log P there, and the residue theorem gives

. 1 [ log P(t)
log P(1) = — .
og P(7) 71'/_00 12 &

Taking real parts, we obtain (2.4), with equality instead of inequality. When P has no zeros in
the upper half-plane, but possibly has zeros on the real axis, a continuity argument shows that
(2.4) persists, but with equality. Finally when P(z) contains factors (z — a) with a in the upper
half-plane, we use

1 [ log|a—t 1 /% logla— ¢t
log|a—i|§loga—i\:_/ %dt:—/ %dt
™ —00 ™ 0

and divide such factors out from P. So we have (2.4). Now if

up [POW ()

<1, (2.5)
teR 1+1¢2
we obtain | ( 2)
1 [ log|P(t)] 1 [ log (1/W(t)) 1 (> log(l+t
— ————dt < — — 2 dt+ — ————=dt
w/_oo 1+¢2 _77/_00 1+ 2 +27r/_oo 142
and hence | ( 2)
_ 1 [ log (1/W(t)) 1 [ log(l+t
log |P < - _— — ———=dt.
og | (m—w/oo 1+¢2 dt+27r/oo 11z U

Taking sup’s over all P satisfying (2.5) gives
N1 [ log (1/W(t)) 1 [ log (1+¢?)
log Qi) < — —— —dt+ — ———~dt.
o8 (1)—77/00 1+ ¢2 +27r/oo 1+¢2

As we assumed Bernstein’s approximation problem has a positive solution, Lemma 2.1 shows that
Q(i) = oo, and hence (2.3) follows. O
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With a little more work, this proof also gives

< logQ(t) ,
/_00714-1?2 dt = o0,

see [67, p. 153].

3 Weighted Jackson and Bernstein Theorems

In the 1950’s the search began for quantitative estimates, rather than theorems establishing the
possibility of approximation. Bernstein and Jackson had provided quantitative forms of Weierstrass’
Theorem in 1911 and 1912, two wonderful years for approximation theory. Recall first the classical
(unweighted) case. Jackson and Bernstein independently proved that

Eulflei= it 17 = Plicin < S0 a1, (3)
with C independent of f and n, and the inf being over (algebraic) polynomials of degree at most n.
The rate is best possible amongst absolutely continuous functions f on [—1, 1] whose derivative is
bounded. More generally, if f has a bounded kth derivative, then the rate is O(n~*). In addition,
Jackson obtained general results involving moduli of continuity: for example, if f is continuous,
and its modulus of continuity is

w(f;0) =sup{|f(z) — f(y)|: 2,y € [-1,1] and [z —y| <4},
then .
En[f]y £ Cw <f;5>,

where C' is independent of f and n.

Bernstein also obtained remarkable converse theorems, which show that the rate (or degree)
of approximation is determined by the smoothness of f. These are most elegantly stated for
trigonometric polynomial approximation. Let

En [g] = degi(Ill%f;Sn Hg - RHLOO[O,QW}

denote the distance from a periodic function g to the set of all trigonometric polynomials R of
degree < n. Let 0 < a < 1. Bernstein showed that

Enlgl=0(n™%), n—oo <= w(g;t)=0("), t — 0+,

where w (g;-) is the modulus of continuity of g on [0, 27], defined much as above. That is, the error
of approximation of a 2m-periodic function g on [0, 27| by trigonometric polynomials of degree at
most n decays with rate n= iff g satisfies a Lipschitz condition of order c. Moreover, if k > 1,

Elgl =0n ), nooo = w(@®;t) =001, t—0+.

Here in the converse implication, the existence and continuity of the kth derivative ¢(*) is assured.
Bernstein never resolved the exact smoothness required for a rate of decay of n~!, or more generally
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O(n~"). The case k = 1 was solved much later in 1945 by A. Zygmund, the father of the Chicago
school of harmonic analysis, and author of the classic “Trigonometric Series” [193]. Zygmund used
a second order modulus of continuity.

For approximation by algebraic polynomials, converse theorems are more complicated, as better
approximation is possible near the endpoints of the interval of approximation. Only in the 1980’s
were complete characterizations obtained, with the aid of the Ditzian—Totik modulus of continuity
[36]. An earlier alternative approach is that of Brudnyi-Dzadyk—Timan [31]. We shall discuss only
the Ditzian—Totik approach, since that has been adopted in weighted polynomial approximation.
Define the symmetric differences

Mfr) = ot g) -~ flo- o)

AL f(z) = Ap(Anf(2));

BI@) = M (88 5)

so that
k

k ; h
Af f(z) = —1)’ k= —ih). 3.2
=3 (§) st kg - (32)
If any of the arguments of f lies outside the interval of approximation ([—1,1] in this setting), we
adopt the convention that the difference is 0. The rth order Ditzian—Totik modulus of continuity
in L,[—1,1] is
olfihlp = sup 114y /r=ef @)y 1.0

Note the factor
p(x) = V1-—a?

multiplying the increment h. This forces a smaller increment near the endpoints +1 of [—1,1],
reflecting the possibility of better approximation rates there.
For 1 < p < oo, Ditzian and Totik [36, Thm. 7.2.1, p. 79] proved the estimate

. o1
En [f]p = degl(%f)‘én ||f - PHLp[—l,l] S Cw(p(f? E)pv

with C independent of f and n. This implies the Jackson (or Jackson-Favard) estimate [31, p. 260]
Enlfl, < On 16 £l o

n > r, provided fO=1 is absolutely continuous, and the norm on the right-hand side is finite.
Moreover, they showed that if 0 < o < r, then [31, p. 265]

Ealfl, =0(n™), n—os, (3.3)
iff
WL (fih), = O(h®),  h—0+.

For example, if (3.3) holds with o = 3%, this implies that f has 3 continuous derivatives inside
(—1,1) and f" satisfies a Lipschitz condition of order 1/2 in each compact subinterval of (—1,1).



Weighted Approzimation 11

This equivalence is easily deduced from the Jackson inequality above and the general converse
inequality [36, Theorem 7.2.4, p. 83|

W (fit), <Mt Y (n+ 1) B [f],,  te(0,1).

0<n<%

The constant M depends on r, but is independent of f and ¢. Of course, this subject has a long and
rich history, and all we are attempting here is to set the background for developments in weighted
approximation. Please forgive the many themes omitted!

For weights on the whole real line, the first attempts at general Jackson theorems seem due to
Dzrbasjan [37]. He obtained the correct weighted rates, but only when restricting the approximated
function to a finite interval. In the 1960’s and 1970’s, Freud and Nevai made major strides in this
topic [150]. That 1986 survey of Paul Nevai is still relevant, and a very readable introduction to
the subject.

Let us review some of the fundamental features discovered by Freud, in the case of the weight
Wo(z) = exp (—|z|*),a > 1. A little calculus shows that the weighted monomial "W, (z) attains
its maximum modulus on the real line at Freud’s number

Gn = (n/a)l/a.

Thereafter it decays quickly to zero. With this in mind, Freud and Nevai proved that there are
constants C and Cs such that for all polynomials P, of degree at most n,

HPnWaHLp(R) < CQHPnWozHLP[fcml/a,cml/a]~ (3-4)

The constants C7 and Cy can be taken independent of n, P, and even the L, parameter p €
[1,00]. Outside the interval [—C’lnl/a,Clnl/a], P,W,, decays quickly to zero. This meant that
one cannot hope to approximate fW by P,W outside [—Clnl/o‘, C’lnl/o‘]. So either a “tail term”
Il fWall Ly[Jz[>Cini/e] must appear in the error estimate, or be handled some other way. Inequalities

of the form (3.4) are called restricted range inequalities, or infinite-finite range inequalities.

The sharp form of these was found later by Mhaskar and Saff, using potential theory [136],
[138], [139], [140], [167]. Let W = exp(—Q), where @ is even, and xQ’(x) is positive and increasing
in (0,00), with limits 0 and co at 0 and oo, respectively. For n > 1, let a, = a,(Q) denote the

positive root of the equation
2 (1 a,tQ (ant)
n=— —————dt. 3.5
e (3.5)

We call a,, the nth Mhaskar—Rakhmanov—Saff number. For example, if « > 0, and W, (z) =

exp(~|["). 1
fpaaT@21"
ap = T'(a) n'.

Mhaskar and Saff established the Mhaskar—Saff identity: for polynomials P, of degree at most
n?

IPaW Lo @) = [PaW | Lo [~ ,an)- (3.6)

Moreover, if P, is not the zero polynomial,

HPHWHLOO(]R\[fan,an}) < HPHWHLoo[fan,an}
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and a,, is asymptotically the “smallest” such number.
There are L, analogues, valid for all p > 0. For example, if € > 0, there exists C' > 0 such that
for n > 1 and polynomials P,, of degree < n,

IPaW |2, R\ [an(14e)an (112)) < € " I1PaW |1, (—an,an]- (3.7)

We shall discuss these more in Section 4.6.

The next task is to determine what happens on [—Ca,,Cay]. Now if we had to approximate
in the unweighted setting on this interval, a scale change in the Jackson—Bernstein estimate (3.1)
gives

. A () pr
degl(llﬂ};San = PllL o [~Can,Can] < CCH;Hf | Loe [=Can,Can]-

Remarkably, the same is true when we insert the weight W, in both norms:

. Qan
degl(llgf)gn [(f = PYWallLoo[-Can.Can] < 03;||f’WaHLOQ[—can,can]- (3.8)

Very roughly, this works for the following reason: it seems that if C' is small enough, we can
approximate 1/W, on [-Cayp,Ca,] by a polynomial R, /, of degree < n/2, and then use the
remaining part n/2 degree polynomial in P to approximate fW, itself on [-Ca,,Ca,]. In real
terms, this approach works only for a small class of weights. Nevertheless, it at least indicated the
form that general results should take. To obtain an estimate over the whole real line, Freud then
proved a “tail inequality”, such as

Gnp
[fWallL,[z>Can) < C4Z||f/Wa||Lp(R)a (3.9)

with C4 independent of f and n. Combining (3.8), (3.9), and that suitable weighted polynomials
are tiny outside [—C1ay, Ciay] yielded the following:

Theorem 3.1 Let 1 < p < oo, > land f: R — R be absolutely continuous, with || f'Wa||, &) <
oo. Then .
E,[f;W,] = inf — P)W, < Cs—=|| f' Wy , 1
£iWalyi= | nt 0 = PWallzy e < G522 Wall o (3.10)

with C5 independent of f and n.

While this might illustrate some of the ideas, we emphasize that the technical details underlying
proper proofs of this Jackson (or Jackson—Favard) inequality are formidable. Some of these ideas
will be illustrated in the next section. Freud and Nevai developed an original theory of orthogonal
polynomials for the weights W2 partly for use in this approximation theory.

We note that Freud proved (3.10) for W, for a« > 2 [41], [42]. The technical estimates required
to extend this to the case 1 < aw < 2 were provided by Eli Levin and the author [80]. What about
a < 17 Well, recall that the polynomials are only dense if a > 1, so there is no point in considering
a < 1. But @ =1 is still worth consideration, and we shall discuss that below in Section 5.

One consequence of (3.10) is an estimate of the rate of weighted polynomial approximation of
f in terms of that of f’. Indeed, if P, is any polynomial of degree < n — 1, then

an
E, [f» Wa]p =E, [f — Pp; Wa]p < 05?” (f - Pn), Wa”Lp(R)a
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and since P) may be any polynomial of degree < n — 1, we obtain the Favard or Jackson-Favard
inequality
a
En [f;Wa]p < C5WnEn71 [f/;Wa]p- (311)

This can be iterated:

Corollary 3.2 Let 1 <p<oo,r>1,a>1land f:R—R have r — 1 continuous derivatives.
Assume, moreover, that f") is absolutely continuous, with || f") W, |z, ) < oo. Then for some C
independent of f and n,

En1fi Wal, < G5 (%) 1O Wal 1,0 (3.12)

Freud also obtained estimates involving moduli of continuity. Here one cannot avoid the tail
term, and has to build it directly into the modulus. Partly for this reason, there are many forms
of the modulus, and more than one way to decide which interval is the principal interval, and over
what interval we take the tail. However it is done, it is awkward. We shall follow essentially the
modulus used by Ditzian and Totik [36], Ditzian and the author [33], and Mhaskar [136]. All these
owe a great deal to earlier work of Freud.

The first order modulus for the weight W, has the form

W, t) = Wy (A f — )W, )
0 W) = 3 W (BTt g + BN =Wl o o

Why the inf over the constant ¢ in the tail term? It ensures that if f is constant, then the
modulus vanishes identically, as one expects from a first order modulus. Why the strange interval

1 1
[-hT-a, hT-2]7 It ensures that when we substitute

then . L
[~hT-a hi-a] = [—nl/o‘,nl/a} = [-Ciap, Ciay],

for an appropriate constant C; (independent of n). More generally if > 1, the rth order modulus
is

Wr,P(fv WOHt) = 0S<1}1LgtHWOC( f> H _hI-a a 1= a]

inf —PW, .
+ deg(zl%grqw ) HLP<R\[tﬁ,t11—a]>

(3.13)
Again the inf in the tail term ensures that if f is a polynomial of degree < r — 1, then the modulus
of continuity vanishes identically, as is expected from an rth order modulus. The Jackson theorem
takes the form a

n

En[fi Wal, < Clory(F, Wa, 2. (3.14)

This is valid for 1 < p < 0o, and the constant C' is independent of f and n (but depends on p and
Wa).
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One can consider more general weights than W,. Almost invariably the weight considered has
the form W = exp(—@Q), and the rate of growth of @ has a major impact on the form of the
modulus. Let us suppose, for example, that @ is of polynomial growth at oo, the so-called Freud
case. The most general class of such weights for which a Jackson theorem is known is the following.
It includes W,,a > 1, but excludes Wj.

Definition 3.3 (Freud Weights) Let W = exp(—Q), where @ : R — R is even, Q' exists and is
positive in (0,00). Moreover, assume that xQ'(x) is strictly increasing, with right limit 0 at 0, and
for some \,A,B > 1,C >0,

Q' (Az)

Q'(x)

A< <B, 1>C. (3.15)

Then we write W € F.

For such W, we take a,, to be the positive root of the equation (3.5) (the existence and uniqueness

1
of a,, is guaranteed by the strict monotonicity of z@Q’(x)). To replace the function t7-=, we can use
the decreasing function of ¢,

o(t) := inf {an cIn < t} . t>0. (3.16)

n

The modulus of continuity becomes

wrp(F, W) = sup WAL L, 1-om,om) +
T gL N = PIW L, o000 (3.17)

The reader new to this subject will be encouraged to hear that this strange looking creature
has all the main properties of more familiar moduli of continuity [33], [35], [36], [48], [78], [136]:

Theorem 3.4 (Properties of w,;,) Let W € F,r > 1,0 <p <oo. Let f: R— R, and if p < oo,
assume that fW € L, (R). If p = oo, assume in addition that f is continuous and that fW has
limit 0 at too.

(a) wrp (f, W,t) is an increasing function of t > 0.
(b)

Jim wp (W, 8) = 0.

(c) Assume that p > 1, or assume that W admits a Markov—Bernstein inequality
n
IP'W L, m®) < Ca 1PW L, ) » (3.18)

valid for n > 1, and polynomials P of degree < n, where C # C(n, P). Then there exists
Cy # Ci(t, f) such that

wrp(f, W, 2t) < Crwrp(f, W, 1), t>0.
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(d) Assume that p > 1. Then for t > 0,
wrp(f, W t) < O fOW |, ).

provided ("1 is absolutely continuous and the norm on the right-hand side is finite.

(e) Let r > 1. There exists C # C(f,t), such that
wTaP(f? W7 t) S Cw’l‘—l,p(f7 W7 t)7 t Z 0. (319)

(f) Assume the Markov—Bernstein inequality (3.18). Then if ¢ = min {1, p}, there is the Marchaud
inequality

C2 i, (f, W,y u) Ha
Wr,p(f: W7 t) < Cltr {/t —HUTTdu + ”fW”%p(R)} ’

where C; # C;(f,t),7 =1,2.

(g) Assume that > 1 and 0 < p < g < co. Then there is the Ulyanov type inequality

t 11 d 1/q
wrg(f, Wa,t) < C{/O [ui ;w,,,p(f,W[;,u)}q;u} : t>0,

where C # C(f,1t).

(h) Assume that p > 1 and for some 0 < o <,

wrp(f, W, 1) = O(t%), t—0+. (3.20)
Let k = ||, the integer part of o. Then f*) exists a.e. in the real line, and
wrkp(fB, W) =0t F), =0+, (3.21)

If p = o0, f¥) is continuous on the real line.
Proof. (a) This is immediate as o(t) is a decreasing function of t.

(b) This follows as for classical moduli of continuity. One first establishes it for suitably re-
stricted continuous functions, and then approximates an arbitrary function by a continuous one.

(c) This is part of Theorem 1.4 in [33, p. 104].
(d) This is part of Corollary 1.8 in [33, p. 105].

(e) This follows easily from the definition (3.13) and the recursive definition of the symmetric
differences.

(f) This is Corollary 1.7 in [33, p. 105].
(g) This is part of Theorem 9.1 in [35, p. 133].

(h) See [36, pp. 62-64] for the analogous proofs on a finite interval. O
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Note all the strictures for p < 1. Fundamentally these arise because we cannot bound norms
of functions in terms of their derivatives when p < 1. At least the Jackson theorem is the obvious
analogue of the result for finite intervals [33, Theorem 1.2, p. 102]:

Theorem 3.5 Let W e F,r>1, and 0 < p < co. Let fWW € L, (R). If p = oo, we also require f
to be continuous and fW to have limit 0 at +oo. Then forn > r — 1,

Gnp,
E, [fa W]p < Clwr,p(fa w, 02;)’ (3'22)
where C7 and Cy are independent of f and n.

In the case where p > 1, or W admits the Markov—Bernstein inequality (3.18), one can omit
the constant C5 inside the modulus. This follows directly from Theorem 3.4(c). We shall say much
more about Markov—Bernstein inequalities in Section 7.

Corollary 3.6 Let 1 <p<oo,r>1, W € F and f : R — R have r — 1 continuous derivatives.
Assume, moreover, that f(") is absolutely continuous, with || f"W/|| L,(®) < 00. Then for some C
independent of f and n,
a T
En£i W], < C5 (Z2) 1O W1, x- (3.23)
The converse inequality, which can be interpreted as a Bernstein type converse theorem, has
the form [33, p. 105]:

Theorem 3.7 Let 0 < p < oo, r > 1, W € F. Assume that W admits the Markov—Bernstein
inequality (3.18). Let ¢ = min {1, p}. For t < ay, define the positive integer n = n(t) by

n = n(t) == inf {k: : % < t} . (3.24)
Then for some C # C (t, f),

[logy 1] i\ Tq
n\ 74 23
wop(f W <0 ()7 <—> Ey [/ W], (3.25)
j

—1 \G2
where we define Ey-1 := Ey and |log, n| denotes the largest integer < log,n.
From this one readily deduces:

Corollary 3.8 Assume the hypotheses of the previous theorem, and let 0 < o < r. Then

wrp(f, W, 1) =0(t%), t—0+ < En[f;W]p:O«a—n)a), n — 00.

n

A related smoothness theorem is given by Damelin [14].

One of the important tools in establishing this is K-functionals and the concept of realization.
This is a topic on its own. In the setting of weighted polynomial approximation, it has been explored
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by Freud and Mhaskar, and later Ditzian and Totik, Damelin and the author. See [11], [27], [33],
[44], [45], [136], [137]. In our context, an appropriate K-functional is

Krp(£ Wt = inf {I(f = )W llz, @ + I W @}, t20,

where the inf is taken over all g whose (r — 1)st derivative is locally absolutely continuous. It works
only for p > 1, again because of the problems of estimating functions in L, p < 1, in terms of their
derivatives. The K-functional is equivalent to the modulus of continuity in the following sense [33,
Thm. 1.4, Cor. 1.9, pp. 104-105]:

Theorem 3.9 Let W € F and p > 1. Then for some C1,Cs > 0 independent of f,t,
Clwr,p(fa VV, t) S Kr,p (f> Wa tr) S C2wr,p(f7 VV> t)

The appearance of fairly general functions g in the inf defining K., helps to explain its use-
fulness. In fact, many of the properties of the modulus described above, go via the K-functional.
When p < 1, the K-functional is identically zero, so instead we use the realization functional,
introduced by Hristov and Ivanov [50] and analyzed by those authors and Ditzian [32]:

Kop(f W) 1= inf {|I(f = PIWllp, ) + PO W, } o >0,

Here the inf is taken over all polynomials P of degree < n(t) and n(t) is defined by (3.24). For
p>1, K, ) and K, , are equivalent [32]. For all p, one can prove [33, Thm. 1.4, p. 104]:

Theorem 3.10 Assume W € F and W admits the Markov—Bernstein inequality (3.18). Then for
some C1,Cs > 0 independent of f,t,

Clwr,p(fa w, t) < Kr,p (fv w, tT) < OQWr,p(f7 w, t)-

Observe that if we choose ¢t = a,,/n, the above result actually gives more than the Jackson
estimate Theorem 3.5, at least when ay/k decreases strictly with k. We obtain

an

,
el G = P gy (50) IPOW o)} < o (W52,
so there is an automatic bound on the rth derivatives of best approximating polynomials.

The Freud weights above have the form W = exp(—Q), where @ is of polynomial growth at oo,
with Q(z) growing at least as fast as |z|* for some o > 1. For the special weight exp (—|z|), the
polynomials are still dense, but we have not established anything about the degree of approximation.
We shall devote a separate section to this. The case where @ is of faster than polynomial growth
is often called the Erdds case, and also has received some attention. The main difference is that
the modulus of continuity becomes more complicated. Here is a suitable class of Erdés weights:

Definition 3.11 (Erd8s Weights) Let W = exp(—Q), where Q : R — R is even, Q' exists and
is positive in (0,00). Assume that xQ'(z) is strictly increasing, with right limit 0 at 0, and the

function
_2Q'(x)

Q(x)

T(x) : (3.26)
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is quasi-increasing in the sense that for some C' > 0,
0<z<y = T(z) <CT(y), (3.27)

while
lim T'(z) = oc.

T— 00

Assume, moreover, that for some C1,Cy and Cs > 0,

yQ'(y) Qy)\
x@/<m>§01<62<x)) |

Then we write W € £.
Examples of weights in this class include
W (z) = exp(—expy(|z[*) + expy(0)),

where o > 0 and for k > 1,
expy, = exp(exp(- - - exp()))

denotes the kth iterated exponential. We set expy(z) = x. For this weight,
k-1
T(z) ~ ax® H exp; (z%),
j=1

for large x [85, p. 9], while the Mhaskar-Rakhmanov—Saff number has the asymptotic [85, p. 29]

1
k1 [o

an = { log,_; | logn — 5 Z log;n 4+ O(1) = (logy n)/* (1 + o(1)),
j=1

n — o0; log;, denotes the kth iterated logarithm.
For general W € £, the modulus of continuity involves the function

xT) = —ﬂ o(t)~1/?
Pife) =\ 1= s + T )2

where o(t) is as in (3.16). One may think of this as an analogue of the function v/1 — z2 which
appears in the Ditzian—Totik modulus of continuity, and it appears for the same reason: in ap-
proximating by polynomials with Erdés weights, the rate of approximation improves towards the
endpoints of the Mhaskar—Rakhmanov—Saff interval. The modulus is

wr,P(fa W, t) = OS<1}11I<)t ||W(:B) (A;':Dt(z)f(l‘)) HLP[—U(Qt),U(Qt)}
+ deg(g)lfg_l [(f = PYWI|L,®\[-o(4t),0(4t)])- (3.28)

Once one has this modulus, the Jackson estimate goes through [27, Thm. 1.2, p. 337]:
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Theorem 3.12 Let W € £, r > 1, and 0 < p < oo. Let fWW € L, (R). If p = oo, we also require
f to be continuous and fW to have limit 0 at +co. Then for n > 1,

(7%
where C7 and Cy are independent of f and n.

There are also converse estimates [11], [16], [27]. The details are more difficult than for Freud
weights, because of the more complicated modulus. Analogous results for exponential weights on
(—1,1) are given in [15], [92], [93]. For exponential weights multiplied by a generalized Jacobi
weight or other factor having singularities, see [49], [120], [121], [122], [178]. For Laguerre and
other exponential weights on (0, 00), see [28], [62], [115]. Geometric rates of approximation in the
weighted setting have been explored in [70], [127], [128], [135], [136].

4 Methods for Proving Weighted Jackson Theorems

In this section, we shall outline various methods to prove weighted Jackson Theorems, but will
not provide complete expositions. In the unweighted case, on [—1,1], many of the elegant meth-
ods involve convolution operators. However, unfortunately these depend heavily on translation
invariance, so fail for the weighted case. We begin with two of the oldest, used by Freud and Nevai.

4.1 Freud and Nevai’s One-sided L; Method

The L; method is primarily a tool to obtain estimates on the degree of approximation for special
functions such as characteristic functions. Once one has it, one can use duality and other tricks
to go to Lo, and then interpolation for 1 < p < oo, and this will be done in the next section.
The method is based on the theory of orthogonal polynomials, and Gauss quadratures. Under the
tutelage of Géza Freud and Paul Nevai, the two subjects of weighted approximation and orthogonal
polynomials for weights on the real line, developed in tandem throughout the 1970’s and 1980’s.
Mhaskar’s monograph [136] provides an excellent treatment of the material in this and the next
section.
Corresponding to the weight W, we define orthonormal polynomials

pn(x) = po(W2 ) = vz + - -,

where v, > 0, satisfying
o0
/ pnme2 = 5mn

—0o0
Note that the weight is W?2, not W. This convention simplifies some formulations later on. Let us
denote the zeros of p, by
Tpn < Tp—1n < < Top < Tip.

The nth Christoffel function for W?2 is

Joo (PW)?
)\n 2 — inf 00
<W 7$) deg(]ljr)lgn—l Pz(ﬂf)
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It also satisfies .
n—

2) =1/ > pia)
=0

Try this as an exercise: expand an arbitrary polynomial of degree < n —1 in {p;}._
use Cauchy—Schwarz, and orthonormality.

Many readers unfamiliar with the detailed theory of orthogonal polynomials, will nevertheless
have seen the Christoffel functions in the Gauss quadrature formula:

e 0, and then

/ PW? = Z)\ (W2, 2jn)P(2)n),

valid for all polynomials P of degree < 2n — 1. For fixed &£, one can also develop similar quadrature
formulae, based on the zeros of

pn($)pn—1(£) - pn—l(‘r)pn(g)'

These zeros are real and simple and include £. There are important inequalities, the Posse-Markov—
Stieltjes inequalities, that are used to analyze these quadratures. In the simple Gauss case, they
assert that if f is a function with its first 2n — 1 derivatives positive in (—o0, Zky,), then

Z An (W x]n (xjn) / fW2<Z)\ x]n f(@jn)-

=k+1

See [38, p. 33], [136, p. 13]. This may be used to prove [136, p. 17]:

Lemma 4.1 Let n > 1, and § € (41,0, Tkn). Then there exist upper and lower polynomials Ry
and r¢ such that
?"5 S X(—oo,f} S Rg in R

and -
/ (R£ - TE) W2 < )‘H(W2’ xkn) + )‘n(W2a $k+1,n)‘

—00

Thus once we have upper estimates on the Christoffel functions, we have bounds on the error of
one-sided polynomial approximation. One could write a survey on methods to estimate Christoffel
functions, there are so many. Paul Nevai paid homage to them and their applications in his still
relevant survey article [150], as well as in his earlier memoir [148]. We shall present a very simple
method of Freud in a very special case:

Lemma 4.2 Assume that W = exp(—Q) € F, and in addition that @) is convex. Then there exists
C1,Co > 0 such that for n > 1 and || < Ciay,

Mn(W2,6) < 0r° WQ(E) (4.2)
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Proof. Let

denote the mth partial sum of the exponential function. Fix £, n and let
R(z) = WH(&)eny) ((z = 6)Q'(€)) -
Here, |n/2] denotes the integer part of n/2. Now
‘etn/QJ (u)‘ < Cyexp(u),

for |u| < §. Moreover, given ¢ > 0, we have if [z < 2a,, and [{] < ea,,

(2 = OQ'(9)] < 3anQ(can) < g, (4.3)

if only ¢ is small enough. To see this, we use the definition of a,, and the monotonicity of t — tQ’'(t) :

n—g/l gyl t>g/1 A5 (3)
™ 0 1—t2 oo 1/2 1—t2 2 2 ’
Thus a
/ _n < .
an@ (2 ) < Cin

Using the lower bound in (3.15) of Definition 3.3, we obtain for m > 1,
anQ’ (A—m%") < A M, Q) (%”) < CLA™™n.
There we had A\, A > 1, so choosing € = A\™™/2 with large enough m, gives (4.3). Next,

|R(2)] < CaWH(€) exp((z — €)Q'(€)) = Caexp(Q(E) + (z — £)Q'(€)) < C2exp(Q(2)),

by convexity of (). Thus
|R(z)|W (z) < Cy for all |z| < 2ay,.

Moreover,
(RW)(§) = 1.

Now, we use the extremal property (4.1) of Christoffel functions. We set P = Rp, there, where p
is a polynomial of degree < |n/2|. We see that

A(W2.6)/W2E) = nf [ /°°<PW>2} JPWY(E)

deg(P)<n | J_o

IN

(212 U or) 2] [(PRW)(E)

— 00

IA

C it [ / " (pRW)Q} /(pRW)(€),

deg(p)<[n/2] [J—-2q,



D. S. Lubinsky 22

by the restricted range inequality (3.7). Now we use the upper bound on RW and (RW)(&) =1 to
continue this as

2an
< 002 inf </ 2) 2(¢) = C’C’22an inf </ > 5?2 ( >
acs(o)<n/2) \)_aa, " A 277 deg(8)< (/2] /5 2

The latter is the Christoffel function of order |n/2| for the Legendre weight on [—1, 1], evaluated
at £/(2ay,). Using classical estimates for these [38, p. 103], we continue this as

a
An(W2,/WHe < Cx O
Now we present a very special case of the L approximation:

Theorem 4.3 Assume the hypotheses of Lemma 4.2 on W. Assume that f’ is continuous, and
f'W? € Li(R), while f is of polynomial growth at co. Then there exist upper and lower polynomials
Sy and s, such that

Spn < f< S, inR (4.4)

and

/ (Sn - Sn)W2 < C% </ |f/| W2 + ||fIW2’Loo(ﬁ?|zcan)> :

—0o0

Main idea of the proof. We assume that f’ > 0, and that f’ = 0 outside (2, x15,) to simplify
the proof. Recall that z,, and z1, are the largest and smallest zeros of pn(WQ, x). We write the
fundamental theorem of calculus
xX
+ [ e

f@»=f@)+Awax<mﬂ €)de / (@) (©)de.

in the form

To check this, consider separately z > 0 and 2 < 0. We use the upper and lower polynomials R
and r¢ of Lemma 4.1 and define

5,(0) = 100+ [ (1= rela)) (€16 - /
and
sawzﬂm+ému—& £)de - / Re(x) ' (€)de.

As f' >0 and r¢ < X(—oog < Re, we obtain (4.4). Moreover,

(&rﬂ0@%=/wGQ—%X@f@M5

—0o0
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SO

/“wwwmwﬂs/mifi&—ammW@Mxf@@.

—00 —00 —Oo
Now by Lemmas 4.1 and 4.2, and some other minor considerations,

| e = @A a)as < 2w,

—00

at least for [{| < Cayp. Thus,

00 Can
/ (Sp—s)W?2 < % [T 2
— 50 n J_Can
+ ”f/WZHqumzcun) /|§|>Ca [W2(§) /oo(Rg—Tg)(af)WQ(x)dx dg.

The first term on the right-hand side has the correct form. The second tail term does not. One
can still use estimates for Christoffel functions, and some other tricks. See [40], [46] or [136, p. 83
ff.] for more details. O

This is what Freud proved in 1974 [40, p. 297], using these ideas:

Theorem 4.4 Let () be an even and convex function on the real line. Assume that () is increasing
and Q' exists in (0,00), and that for some Cy,Cy > 0,

Q'(2z)
Q'()

Let r > 0 and f") be of bounded variation over every finite interval, and of polynomial growth at
00, satisfying for some A, B > 0 and integer m,

1+C1 < <14+ Cs.

|f(x)] < A+ Ba®™.

Then there exist upper and lower polynomials S,, and s,, of degree < n such that (4.4) holds and

/OO (Sn—sn)W2 SC(G—”>T+1 </°O W2|df(r)|+A—|—B>.

oo n
The constant C' is independent of f,n, A, B.

While this is a one-sided Lq result, it also implies
2 an\7 1 % 2 e(r)
En[f;W]léC(;) W2ldf")| + A+ B).

This can be extended to other L, spaces, using duality. See [120] for an extension to weights with
inner singularities.
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4.2 Freud’s Method involving de la Vallée Poussin Means

This is based on orthogonal expansions, and for the finite interval, was used before Freud. Freud
was the first to make it work on infinite intervals [41], [42]. For a measurable function for which
[°5 (fW)? is finite, we can form the orthonormal expansion

o0
f ~ chpja
7=0

where

o 2
cj =/ foiW=, Jj>0.
— 00

Define the partial sums of the orthonormal expansion,

n—1
Sulfl = cipj.
j=0
The classic minimum property asserts that
[(f = Sn[f]) W||L2(R) =En 1 [[; W], = deg(}})lin_l 1(f = P)W||L2(R) )
and the classic Bessel’s inequality asserts that
1/2

n—1
150 FIW lpyy = | D leil? <Nl L, w) -
7=0

In particular, {S,} is a uniformly bounded sequence of operators in a weighted Ly space.
Sometimes it is more convenient to use the de la Vallée Poussin operators

1 2n
Valfl=— > Sl

Jj=n+1

We see that still
Ve FIW Ly S Wy wy

so the {V,} are uniformly bounded in this weighted Lo setting. They also reproduce polynomials:
Vo [P]=P

if P is a polynomial of degree < n — 1. However, they are not projection operators, as V;, [P] is a
polynomial of degree 2n — 1 in general. The real advantage is that in spaces other than Lo, {V,,}
is often uniformly bounded when {S,} is not.

Another crucial ingredient are estimates for the Christoffel functions defined by (4.1). Let us
outline some of the main ideas of Freud’s method to prove the Jackson—Favard inequality

En[fi W], < CZ2B, 1 [£5 W], (4.5)
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(a) We show that {V,,} is a uniformly bounded sequence of linear operators, first in Lo, and then
in Ly (using duality) and then in L,,1 < p < oo (using interpolation).

(b) We approximate a very special function, something like a characteristic function, in Li, using
the method of the previous section.

(c) We prove the estimate in Lo, using {V,,} and the special function.
(d) We extend to Ly, 1 < p < oo.
In our outline, we shall do this only for p = oco.

The first step is to show, for some C' # C(n, f), that
Eo [fiWle < I(f =Va D WL ) < CEn [f; W] - (4.6)

Lemma 4.5 The inequality (4.6) holds, provided we assume the estimate (4.13) below.

Proof. The left inequality here is immediate, as V,,[f] is a polynomial of degree < 2n — 1. It is
the right-hand inequality that requires work. We follow Freud [42]. The idea goes back at least to
Torsten Carleman. The partial sum s,, [f] admits the representation

m—1

smlf) @)= 3 emilo) = | ) Ko, )W (1), (4.7)
=0 o0

where
m—1

Kin(x,t) =) pj(a)p;(t).

‘]:
The Christoffel-Darboux formula [38] asserts that
_ Ym—1Pm (m)pm—l (t) — Pm—1 (@Pm (t)

Kp(z,t) = - o . (4.8)

We now fix z and n, and define
g = f(x)x(x_%’tyx_f_a?n)

and
h = f—g = fXR\(x—aTn7x+aTn)

Here x g denotes the characteristic function of a set S. Thus g = f in an interval of radius <* about
x, and is 0 elsewhere, while h is the “rest” of f. We have

sm [f1(x) = sm [9] () + sm [h] (2). (4.9)
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Now

< 1W e / Ko (2, 1) W (8)dt

2an 1z Sy 2 2 v
< ||fW||Lw<R>( ) [ s owa)

_an
n

/H% f) Ky (2, t)W2(t)dt

by the Cauchy—Schwarz inequality. Here, using orthogonality,

r+ o0 0
/ K2 (z,t) W2(t)dt < / K2 (2, t)W?(t)dt

_an

2n—1

m—1
- Z p? Z p] = Ay (W2, 2),
j=0

provided m < 2n. Thus for m < 2n,

2ap, 1,9 1/2
s I @)1 < Wl (220072,

and hence, averaging over s,,, n +1 < m < 2n,

2%, 1/2
Vala) @) < W lgmy (Z2050020)) (1.10)
Now comes the clever idea. Let "
np =" g,
x—1

and denote its Fourier coefficients with respect to {p;} by {c¢; [H]}, so that

oo
H~> o [H
j=0

We use the Christoffel-Darboux formula (4.8) to write

s @ = 2= ) [~ H @A OW 0~ ps(o) [ HH OB OW 00
= 2 pm(@)em1 [H] = pe (@) [H]]

Then summing and using Cauchy—Schwarz,

. 1/2 ;o9 1/2
\vn[hnx)rsg[ggﬁ %} (me ) (Zc?nw)) . (4.11)

m=0
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Yet another clever idea: use Bessel’s inequality on the Fourier coefficients of H (recall, this holds
for any orthogonal system in any inner product space),

2n 00 9
2 2 o0 2 _ fFOYW(t) 9 n
mzo m(H) < mzo m(H)S/_OO(HW) /{t:|t_x|>z—y}( 1 ) dtSHfWHLOO(R)Qan.

Then (4.11) becomes

[Va [2] (z)] < 2v2 [max vm_l} <a—1)\27}+1(W2,m)>1/2.

n m<2n  Ym

Finally, combining this with (4.9) and (4.10) gives

Vo [ @) < Il gy Oz (W2, ) ™72 { (2—)/ + 2 g 1] 52 <£>/} |

n m<2n Yy

(4.12)

Up to this stage, we have not used any properties of the weight, it’s completely general. But now
we use lower bounds for the Christoffel function

(W2, 2) > Cn W2( ), 2x€R, n>1, (4.13)
and an upper bound
max 1L < Cay, (4.14)
m<2n  Ym

to deduce that uniformly for n > 1, and z € R,
Vo lf1 (@)W (z) < ClIfWI L @)
Thus, for some C, # C(n, f),
Ve Wl @y < Cx IV L, m)
Then for any polynomial P of degree < n, the reproducing property of V,, gives
[(f=ValfDWlpow = IIF=P=Valf =PDWl_m

< N =PWlp @+ 1Valf = PIWIL, @)

< A+ G =PI )

Taking the inf over all P of degree < n gives the right-hand inequality in (4.6).
We turn to the discussion of (4.13) and (4.14). For the latter, we can just use restricted range
inequalities: if m < 2n

Tmel /_Ooxpm 1 ()P () W2 ()

Tm

2am
< C/ |21 (%) ()| W2(2)dz < C2ay,,

2am

by Cauchy—Schwarz. The lower bound (4.13) is more difficult; see for example [83], [136], [150]. O
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As an aside, let us see how duality also gives this bound in L;. We use duality of L, norms:

o0

Vi Wl ey = s / v, [f] gW?. (4.15)

—00

where the sup is over all measurable g with [[gW|[, ) < 1. (Sorry, we used g above in a different
sense.) Now we use the self-adjointness of V}, :

/ TV g = / AR (4.16)

—00

This follows easily, once we prove the self-adjointness of s,, :

| sinigwt= [ gsala

—00 —

We leave the latter as an exercise (just substitute in the definitions of s, [f] and sy, [¢g]). Combining
(4.15) and (4.16) gives

Ve AW, ) = Slglp/ an[g]WQSS;lprWHLI(R) Ve 9l WlLw)

< CIfWlgm (4.17)

using the case p = co. With this bound, we can finish off the rest of the proof as we did for the
case p = co. For 1 < p < oo, one can use interpolation of operators. It is possible to improve the
estimate (4.6) to include factors that vanish near +a,, reflecting improved approximation there,
see [101]. A partially successful attempt to extend (4.5) to general exponential weights was given
in [102].

An obvious question is for which weights, we have the lower bound (4.13) for the Christoffel
functions. They have not been established for the class F of Definition 3.3. However, they were
established in [83] for the following class:

Definition 4.6 Let W = exp(—Q), where Q" exists and is positive in (0,00), while @' is positive
there, with limit 0 at 0, and for some A, B > 1,

Q' (2)
Q' ()

A-1< <B-1, z € (0,00). (4.18)

Then we write W &€ F*.

For weaker (but difficult to formulate) hypotheses, these estimates were proved in [85]. An
excellent exposition is given in [136, Chapter 3]. The Christoffel function bound (4.13) there is
proved assuming Q" is increasing. This is true for W = W, if a > 2, while (4.18) holds for a > 1.

The next step is an inequality that is a distant relative of Hardy’s inequality:

Lemma 4.7 Let n > 1 and g be a function such that
oo
/ gPW? =0, (4.19)
—o0
for all polynomials P of degree < n. Then there exists C' # C(n,g) such that

sup W(z)
z€eR

z an,
< (O— . .
/0 9‘ <0 l9W L. m) (4.20)
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Main idea of the proof. Fix z > 0, and let

6a(t) = W2 (#)xj0.0)(1).

For g as above, and any polynomial P of degree < n,

[l = | stroomoa

= | [ 0.0 - P10

< NoWliamy [ 60— PI

— 00

Taking the inf over all such P gives
x
I
0

W(z)Ey [¢o; W]y < C%", (4.21)

< HgWHLOO(R) Ep [¢a; W], -

Once we have the estimate

for some C # C(n,x), the result follows. To prove this, one can use one-sided approximation as in
Section 4.1. See, for example, [42, p. 34]. O

Now we can give the Jackson—Favard inequality in the case p = co:

Theorem 4.8 Let W € F*. Let f be absolutely continuous in each finite interval, with ||f’W||LOO(R)
finite. Then for some C # C(n, f),

EnlfiWle < O£ W], s (4.22)

and
Bulfi Wl < OBy [f5W] . (4.23)

Proof. Let
g(x) = f'(z) = Vi [f'] ().

This does satisfy (4.19). Indeed, if P is a polynomial of degree < n, self-adjointness of V,, gives

/Oogpw2 = /_Zf’PW?—/Oo Vi, [f] PW?

= / f'PW? — / f'Va [PYW? =0,

as V,, [P] = P. Next, let
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so that . -
(f—Un)(a?)—/O (F = Vi [F]) —/0 0.
Then
T an
W= Uy = HW [ <o
0 Loo(R) n

= C%n ("= Va [£]) WHLOO(IR) < %En [f/;W]oo'
Here we applied Lemma 4.7 and then Lemma 4.5. This also gives, as U,, has degree < 2n,
Bon [[iWo < OB [15W] < T2 IFW gy -
Replacing n by n/2, and using the fact that a,, /o < a,, we obtain
En[fi W]y < C%n Hf,WHLOO(R) :
Finally, we observe that for any polynomial P of degree < n,
Bulfi Wl = Bulf = PsW] < CZ2[|(F = PYW||,_ s -
Choosing P’ suitably gives (4.23). O

For the extension to all 1 < p < oo, see [136, Chapter 4].

4.3 The Kro6—Szabados Method

The idea here [69] is to make use of the alternation/equioscillation for best polynomial approxi-
mants, together with some clever tricks. On a finite interval, the idea was used by Bojanov [5],
Babenko and Shalaev. While it works quite generally, it does not yield the correct Jackson rate.
Maybe some clever tweaking can repair that?

Let us fix a function f, and n > 1, and let P} be its best polynomial approximation of degree
< n in the weighted uniform norm. Thus

— PYW = inf — P)W =B, [f;W]_ .
I = POW oy = 0 = PW sy = Ea[F Wi

Then there exist equioscillation points {y; };Li& such that for 0 < 7 <n +1,

[(f = POW] (y;) = e(=1Y B, [f; W], .

The number € € {—1, 1} is independent of j. In terms of these, there is the determinant expression
U < fo1r ... an )
Yo Y1 .- Ynitl

U( g )
Yo Y1 .-+ Yn+tl
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where for functions {¢;}
b0 P11 ... Ont1 ) -
< Yo Y1 .-+ Yntl et (¢ (y‘]))z,]io

and ¢ is a function such that
(GW) (y;) = (-1,  0<j<n+l.

A proof of this formula may be found in [170, p. 28]. By some elementary determinantal manipu-
lations, one can show that

n

U(f Lo x"):(—m (“1)* [f (gess) — f ()] B
k

Yo Y1 - Yn+l —~

and

U< g L x">: ”HZ (Yrs1) + W' (4)] B

Yo Y1 .-+ Yntl
Here By is the determinant of a matrix with entries 1nv01v1ng only {y;}. Then one obtains

n

= D (DRI () — f (wr)) di| (4.24)

where

By,
Yo Wt (yj) + Wt (yy)] By

Suppose we define the (unusual!) modulus

di, =

el If@ - )
S(fit) = v |£ A<t W(@) 7 + W (y)

where v € (0,1). Then from (4.24),

< 1del (W ()™ + W (i) 77) wn (F5 lmsn — wal) -
k=0

Now one uses properties of the modulus w, and then has to estimate the {dj}. This involves tricks
such as needle polynomials. Here is a sample of what can be achieved:

Theorem 4.9 Let Q : R — R be an even continuous function, which is positive and differentiable

for large x, and with

e wQ () 2Q'(x)

0 < liminf < limsup < 00. 4.25

P Qw =P QW) (429)

Let Q=Y denote the inverse of Q, defined for sufficiently large positive z. For small n, take Q1] (n)
to be 1. Assume that 0 <y < 1, and f : R — R is continuous, with

lim f(x)W7(z) =0.

|z|—o0
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(a) Then for some C; # Cj (f,n),

QY (n)logn

En [f7W]oo S Clwv(f; (1 —’y)n

)+ e W - (4.26)

(b) Let 0 <e < é:—z Then for some C # C (f,n),

_ 1=
Eo[fi W)y < Crws(fi I, ), (4.27)
where for large enough n,
QI=1(n) "
I, = / —th ) at. (4.28)
1

Note that (4.25) requires less than we required for W € F, but the restrictions on f are more
severe than in Theorem 3.5, and instead of % inside the modulus, we obtain essentially a"l%.
The boundary case Q(x) = |z| satisfies the above conditions, and in this case we obtain

B [f; W), < Cruws(f; (logn) 73 7).

Here by choosing v small enough, the exponent of logn can be made arbitrarily close to —1.
This method is interesting, and general. The challenge is how to tweak it, if possible, to get the
correct Jackson rate.

4.4 The Piecewise Polynomial Method

This is undoubtedly the most direct and general method, and Ditzian and the author used it to
prove Theorem 3.5. However, it does pose substantial technical challenges. For finite intervals, it
has been used for a long time, and in spirit goes back to Lebesgue’s proof of Weierstrass’ Theorem.
Lebesgue first approximated by a piecewise linear function, and then polynomials. It has served
as a powerful tool on finite intervals, for example in investigating shape preserving polynomial
approximation, the degree of spline approximation, and even approximation by rational functions
[30], [156].

The function f is first approximated by a piecewise polynomial (or spline). Each of the piecewise
polynomials is generated via Whitney’s Theorem. Then special polynomials that approximate
characteristic functions are used to turn the spline approximation into a polynomial approximation.
We illustrate the method as it is used to prove Theorem 3.5 for Freud weights.

Step 1: Partition [—a,, a,]. Recall that our modulus w; , involves a tail piece that will take care
of the behavior of f(x) for very large . So we fix n and concentrate on approximation on the
Mhaskar-Rakhmanov-Saff interval [—ay,, a,]. We partition this interval into small intervals, all of
length <o

—Op =T < T1I < T << Top = Ap.

Set
Ij = [Tj,Tj+1], OS‘]Sanl
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Step 2: Use Whitney’s Theorem to develop a piecewise polynomial approximation.
We fix r — this will be the order of the modulus. We approximate f on I; by a polynomial p; of
degree < r, and then form the piecewise polynomial

2n—1
Ji=po+ Z = Pi=1) Xfryan]

where, as usual, X[, 4, denotes the characteristic function of the interval [7j,an]). When restricted
to Ix, the sum becomes a telescopic sum: we see that in the interior of I, namely in (7%, Tk11),

k
= ji: —Pj— 1 = Pk-

Then, if p < oo,

2n—1 2n—1

I =S DW= X / I=p)WP < CX WIS =l 020

In this step, we use the fact that because the intervals I; have length <=, TV does not grow or decay
by more than a constant. The idea is that for x,y € I,

W(@)/W(y) = exp(Qy) — Q@) = exp(Q(E) (@ —y)) exp (QO) <C. (430)

since Q' is bounded by C';- throughout [—ay, a,]. (This is true for Freud weights in the class 7~
but fails for Erdés weights.) Now comes the application of Whitney. Let

]; ::JELJ]3+1.
By Whitney’s Theorem on the interval I [156, p. 195, p. 191], we can choose p; of degree < r such
that
no o P D
_n.|P _ r _.
IIf ijLp(I;) < C'an /0 , |ALf (@)[P dz ds =: CQF.
Here C' is independent of f,n,j. The strange creature on the right is really the pth power of an
rth order integral modulus of continuity on the interval I;. In forming the rth difference in this

integral, one uses the convention that the difference is taken as 0 if any of the arguments of the
function are outside the interval I7. Substituting this in (4.29) and using (4.30) gives

an/n  fan
n T
G =SUDWI g < Co [ [ WAL do ds

< C sup [WA] f“L[ anan] * (4.31)
O<h<Lon

Step 3: Approximate the characteristic function (., 4,]. Now comes the difficult part. We
approximate X[, 4, by a polynomial R; of degree < Ln giving the polynomial

2n—1

PoJrZ —pj-1) R
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which is of degree at most Ln 4+ r. Here the constant L is independent of n, and arises in the
challenging task of generating R;. We see that then

2n—1

SU) = PUI= Y 05 =pi-1) (X — i) - (4.32)

j=1

To estimate this, we compare p; and p;_1 on the common interval where they approximate f,
namely ;. (That is why we used Whitney on I =Lu I;1+1.) We obtain, even for p < 1,

s = pi1llp, ) < C (-1 + ).

Now we use Nikolskii inequalities, which compare the norms of polynomials in L, and L, and the
Bernstein—Walsh inequality, which bounds the growth of polynomials outside an interval, once we
know their size on the interval. Together they yield for all real x,

n

n 1/p n r
p-pal@ = ¢ ()7 (14 2o nl) @), (1.33)

Again, the constant C' does not depend on z, or n, or f. It does however depend on r, which
crucially remains fixed. The % factor arises from the length of I;. Suppose now that for a given /,

W(x
X[Tj,an] - R]‘ (x)W(( ))

Tj

¢
_C(l—i—ﬁla:—Tj\) , x €R, (4.34)
Qn

where C' is independent of f,n,j,z. Then substituting this and (4.33) into (4.32) gives

n 1/p2n—1 n r—{
SU- Pl @WE <c ()73 (14 Zl-nl) W)@+ 9).

From here on, we need to proceed a little differently for p < 1 and p > 1. Let us suppose p > 1.

By Holder’s inequality, with ¢ = 5,

S - PUP @@ < o |3 (14 Lo

(4.35)

We also use the fact that 1+ ;- |z — 7;] is bounded by a constant times 1+ ;- [z — 7;_1| throughout

(r—£)a/2
the real line. Next, if £ > r, the function u — (1 + o= |z —uf is increasing in (—oo, x) and

decreasing in (z,00), so we can bound the second sum by an integral:

2n—1 (r—0)q/2 00 (r—0)q/2
Z(l—i—aﬁ\x—q) 2%/ <1+aﬁ\x—u\> du+1<C,

=1

IN
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with C' # C (n,z), provided only (r — ¢) g/2 < —1. So all we need is that ¢ is large enough. Now
we integrate (4.35):

n 2n—1 ) n (r—£€)p/2
1= PIOWE, g < O S w @ [~ (14 2e-nl)  do
n j=1 —00 n
2n—1
< CY WP (r)QF, (4.36)

again, provided / is so large that (r — £) p/2 < —1. Finally,

2n—1 an/n 2n—1
S wrme - - ZWP 7 / ATf()Pdz]| ds
=1 "

< C sup / (W (z)A} f(z)Pde=C sup ||[WA} f”L[anan]

0<h§“7" —an O<h§“

Combining this, (4.31), and (4.36), gives

I(f = PUDWITL, @) < C{ sup (WALFIL (—a a0 + IIFWIIZ, |m|>an)}~

O<h<4n “"

That’s it! Reformulating this in terms of the modulus of continuity is relatively straightforward.
Of course we assumed:

Step 4: Construction of the {R;}. Recall we want R; of degree < Ln, satisfying

W(z) n -
|X[‘r,an} o Rj} (x)m <C (1 + a ‘1‘ - T’) ) reR, 7€ [_aman] ) (4'37)

with constants independent of 7,n,z. The problem here is the W(7) in the denominator. It’s tiny
for 7 close to a,, and we want R; to approximate 1 in [7,a,], and to approximate 0 elsewhere in
R. One starts with an even entire function

o

2

z) = goa”
=0

with all ga; > 0 such that
Cl < (GW)(I’) < 027 z e R.
Such functions were constructed in [87]. We let G, denote the nth partial sum. One can show that

(GTLW) (I) < Cla T € R?

and
Cl S (GnW) (.%') S 02, ’.’L“ S C’lan.
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Next, we need needle or peaking polynomials V;, ¢, built from Chebyshev polynomials, satisfying

HVn,éHLm[_Ll] = Vn,f(f) =1

B4/1—[¢] ,
Vae®)] < BT te [-1,1]\{};
and
ez, l-g <ol

The constants B, C' are independent of n, &, z. We define [33, p. 121]

_ Jo Grnja(s)Vage(s/aznn)"ds

R(l’) T*
! o Grn/a(s)Vae(s/agrn)tds

where L and 7* are appropriately chosen, and £ = 7/ar,,. To prove this works, we split the integral
into various pieces, consider several ranges of x, and reduce other ranges to the main range, where
T €[S, ay], for some fixed S. All the details appear in [33].

We note that for Erdés weights, or exponential weights on [—1, 1], the technical details are still
more complicated — the subintervals I; of the [—ay,ay] are no longer of equal length. See [27],
[92], [93].

5 Weights Close to exp(—|z|)

The weight exp(—|z|) sits “on” the boundary of the class of weights admitting a positive solution
to Bernstein’s problem. That boundary is fuzzy, but if you recall that W, (x) = exp(—|z|*) admits
a positive solution iff o > 1, this makes sense. So it is not surprising that results like Jackson’s
theorem, tend to take a different form. Freud was interested in this boundary case right throughout
his research on weighted polynomial approximation. In 1978, Freud, Giroux and Rahman [43,
p. 360] proved that

E,[f;Wi]l1 = inf — PYW; <(C
[fi Wil degl(flg)SnH(f Wiz, w)

1
w(ﬂﬁﬁ)+ﬁpﬁVWﬂwmr

where
o0

o(re) = sup [ W@~ W@ deve [0

<eJ—-o0 —00

Here C' is independent of f and n, and /n could be replaced by n'=9 for any fixed § € (0,1).
Compare the @ inside the modulus to the n~'1/® we obtained for Wy, o > 1. This suggests
that

lim n~ T/ = L, (5.1)
a—1+ logn
at least in the sense of Jackson rates! Ditzian, the author, Nevai and Totik [34] later extended
this result to a characterization in L;. The technique used by Freud, Giroux and Rahman was
essentially an L technique, using the relation between one-sided weighted approximation, Gauss
quadratures, and Christoffel functions — as we discussed in Section 4.1.
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Only recently has it been possible to establish the analogous results in L,, p > 1 [98]. The
author modified the spline method discussed in Section 4.4 above. The challenge is that however
you tweak the construction of {R;} there, it does not work. So a new idea was needed. As
the peaking polynomials used there do not work for Wj, they were replaced by the reproducing
kernel for orthogonal polynomials for W2, and in the proofs, the author needed bounds for these

orthogonal polynomials, implied by recent work of Kriecherbauer and McLaughlin [68].
1 1

If we examine the modulus used in (3.13) for Wy, a > 1, we see that the interval [—-hT-a hT-o]
is no longer meaningful for o = 1. It turns out to be replaced by [— exp (1—;5) , eXp (1—25)]
some fixed € € (0,1). The modulus becomes

LUT,p(fa Wla t) = Oilizt HWI ( hf) ||Lp[_ eXp(lze),EXp(lzs)]
+ deg(;%i’l’—l H(f - P)WlHLP(R\[—exp(¥)+1’eXP(1;6)_1]). (52)

The author proved [98]:

Theorem 5.1 For 0 < p < oo, and n > (C},

1

En [f; Wl}p < Crwrp(f, Wi, W) (5.3)

Here C1, Cy are independent of f and n.

While this may be a technical achievement, it is scarcely surprising, given that Freud, Giroux and

Rahman already had the rate O (10;1) in the Ly case. What about a Jackson—Favard inequality?

The “limit” (5.1) suggests that an analogue of (3.10) should have the form

¢
E, [f;], < @Hf WillL,®)-
Remarkably enough this is false, and there is no Jackson—Favard inequality for W7, not even if we
replace 10;1 by a sequence decreasing arbitrarily slowly to 0. More generally, we answered in [99]
the question: which weights admit a Jackson type theorem, of the form (3.10), with {a,/n} -
replaced by some sequence {1, },.; with limit 0?7 We proved [99]:

Theorem 5.2 Let W : R — (0,00) be continuous. The following are equivalent:

(a) There exists a sequence {n,} -, of positive numbers with limit 0 and with the following

property. For each 1 < p < oo, and for all absolutely continuous f with ||f'W | ) finite,

we have
degi(gfm I(f = PYWllL,@ <l fWlL,®, n=>1 (5.4)
(b) Both
lim W(a) /x wl=0 (5.5)
and i -
lim_ W(x)l/x W =0, (5.6)

with analogous limits as x — —o0.
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Two fairly direct corollaries of this are:

Corollary 5.3 Let W : R — (0,00) be continuous, with W = e~ where Q(x) is differentiable
for large |z|, and
lim Q'(z) =00 and lim Q'(x)= —oo. (5.7)

T—00 Tr——00

Then there exists a sequence {ny, }-, of positive numbers with limit 0 such that for each 1 < p < o0,
and for all absolutely continuous f with || f'W{|; (g) finite, we have (5.4).

Corollary 5.4 Let W : R — (0,00) be continuous, with W = =, where Q(x) is differentiable for
large |z|, and Q'(x) is bounded for large |z|. Then for both p = 1 and p = oo, there does not exist

a sequence {n,} ", of positive numbers with limit 0 satisfying (5.4) for all absolutely continuous
f with ”f,WHLp(R) finite.

In particular for Wi, there is no Jackson—Favard inequality, since both (5.5) and (5.6) are false.
Thus there is a real difference between density of weighted polynomials, and weighted Jackson—
Favard theorems. It is possible to have the former without the latter.

A key ingredient in the above theorem is an estimate for tails [99]:

Theorem 5.5 Assume that W : R — (0, 00) is continuous.

(a) Assume W satisfies (5.5) and (5.6), with analogous limits at —oo. Then there exists a decreasing
positive function n : [0,00) — (0,00) with limit 0 at co such that for 1 <p < oo and X > 0,

W L@\ =) < 1N 1 WL, ) (5.8)

for all absolutely continuous functions f : R — R for which f(0) = 0 and the right-hand side
is finite.

(b) Conversely assume that (5.8) holds for p = 1 and for p = oo, for large enough \. Then the
limits (5.5) and (5.6) in Theorem 1.1 are valid, with analogous limits at —oo.

The above results deal with L, for all 1 < p < co. What happens if we focus on a single L,
space? We recently proved [100]:

Theorem 5.6 Let W : R — (0,00) be continuous and let 1 < p < oo and %%—% = 1. The following
are equivalent:

(a) There exists a sequence {n,}.., of positive numbers with limit 0 and with the following
property. For all absolutely continuous f with ||f'W /|| ) finite, we have

WM =PIl < mlf Wi, n>1 (5.9)

(b) 1
lim HW_ HLq[o,x] WL, 2,000 = 0, (5.10)

T—00

with analogous limits as x — —o0.
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As a consequence one can construct weights that admit a Jackson theorem in L, but not in L,
for any 1 < p,r < oo with p # r:

Theorem 5.7 Let 1 < p,r < oo with p # r. There exists W : R — (0, 00) such that

1
722 < W(z)/exp(—z?) <1+ 22, z € R,

and W admits an L, Jackson theorem , but not an L, Jackson theorem. That is, there exists
{nn}o2, with limit 0 at oo satisfying (5.9) in the L, norm, but there does not exist such a sequence
satisfying (5.9) in the L, norm.

This is a highly unusual occurrence in weighted approximation — in fact the first occurrence of
this phenomenon known to this author. Density of polynomials, and the degree of approximation
is almost invariably the same for any L, space (suitably weighted of course). Recall Koosis’ remark
quoted after Theorem 1.6 [67, pp. 210-211].

6 Restricted Range Inequalities

We have already seen the role played by restricted range inequalities (often called infinite-finite
range inequalities) in weighted Jackson theorems. Paul Nevai rated Freud’s discovery of these
as one of his most important contributions to weighted approximation theory. One is reminded of
their import when one recalls that Dzrbasjan did not have these, and could only prove estimates
in a fixed finite interval. This should not detract from admiration for the generality of Dzrbasjan’s
results, and the sophistication of his ideas, which are still being used.

Let’s recap a little. Recall that Freud and Nevai proved that there are constants C; and Cs
such that for all polynomials P,, of degree at most n,

HPnWaHLp(R) < CIHPnWozHLP[fcml/a,cml/a]~ (6-1)

The constants C; and C can be taken independent of n, P,, and even the L, parameter p € [1, 00].
Outside the interval [—C’lnl/a,Clnl/o‘], P,W, decays quickly to zero. For more general W =

1/ with Freud’s number g, the positive root of the equation

n = Qan (Qn) .

exp(—Q), one replaces n

If xQ’(x) is positive, continuous, and strictly increasing in (0, 00), with limit 0 at 0, and oo at oo,
then g, exists and is unique.

Theorem 6.1 Assume that xQ'(x) is positive, continuous, and strictly increasing in (0, 00), with
limit 0 at 0, and oo at co. Then for n > 1 and polynomials P of degree < n,

IPWII L @) = IPWII L ~ag,, (6.2)

4gon] *
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Proof. This type of proof was used many times by Freud and Nevai; see also the monograph [136,
p. 66]. Recall that if T), is the classical Chebyshev polynomial, then for |z| > 1 and polynomials P
of degree < n,

1P(@)] < To (l2) 1Pl -1, < @)™ 1Pl L -1,y (6.3)

Scaling this to [—gan, g2n], and using the fact that @ is increasing in (0, c0) gives

20z|\" 20z \" -
P@)] < (CZQ_n> HPHLoo[*qzqun} < <(]2_n W 1(q2") HPWHLOO[*qzqun}'
%0 2" W ()
n | T

Now if x > 4qon,

n x _ / 4q2n
long/ LQ(“)du<_n/ W egd,
anW (QQn) q u q u

2n

since u > qon, = uQ'(u) > 2n. Substituting in above, gives for x > 4qap,
PWI) <27 [PW o s

This certainly implies (6.2). O

The proof clearly shows the exponential decay of PW outside the interval [—qan, g2,], which
depends only on n. In L,, any p > 0, a typical analogue is

[PWIl L, @) < (1+ e ") IPW 11— Baon, Basn]

where C' > 0, and B is large enough.

These inequalities are sufficient for weighted Jackson and Bernstein theorems, but not for some
of the deeper results such as Bernstein inequalities with endpoint effects, or convergence of or-
thogonal expansions, or Lagrange interpolation, let alone asymptotics of orthogonal polynomials.
With such questions in mind, Mhaskar and Saff asked in the early 1980’s: where does the sup or
L, norm of a weighted polynomial really live? Clearly it is inside the intervals [—Bgap, By,, |, with
appropriate B, but what is the best B? In seminal papers [138], [139], [140], they used potential
theory to obtain the answer. In another seminal development, E. A. Rakhmanov a little earlier [166]
developed the same potential theory in order to investigate asymptotics of orthogonal polynomials.

One of the best ways to understand their work is to recall Bernstein’s bound for growth of
polynomials in the complex plane. For n > 1, polynomials P of degree < n, and z ¢ [—1,1],

P < o+ V21 1Pl 1

Thus once we have a bound on P on an interval, we can estimate its growth outside. Of course, it
is related to the inequality involving T}, that we used above, but that works only for real x.

Now let us look for a weighted analogue for even weights W = exp(—@Q), where, say, x — zQ’(x)
is increasing, positive, and continuous in (0,00). Suppose that a > 0, and we have a function
G = G, with the following properties:
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(I) G is analytic and non-vanishing in C\[—a, al;
(II) G(z)z"™ has a finite limit as |z| — oo;
(III) |G(2)] — W(x) as z — z € (—a, a).

Then given a polynomial P of degree < n, the function PG is analytic in C\[—a, a], including
at 0o, where it has a finite limit. Moreover, for x € (—a,a),

lim |PG(2) = [PW|(2) < [PW]1.. o
By the maximum modulus principle, we then obtain
PGI(2) < [PWllpicasy 2 ¢ [asal].
In particular, for real x with |x| > a,
[PW|(@) < | PW L0 W (2)/Cona(2).
For a given n, Mhaskar and Saff found the smallest ¢ = a,, for which
W(x)/Gna(z) <1 forall [z| > a. (6.4)

Clearly, we then have
[PW|(2) <[[PWlLw-anans 2] > an,

and the Mhaskar—Saff identity
[PW L@ = I1IPW Lo [—an,an]-

Recall that a, is called the Mhaskar—Rakhmanov-Saff number, and is the positive root of the

equation
2 (1 antQ' (ant
n:—/ Mdt. (6.5)
TJo V1I—12

For the weight W, (z) = exp(—|z|%*),a > 0,

Ao = 2a—2r (06/2)2 e nl/a
" () '

How does this arise and how does one find the function G,, ,7 We solve the integral equation

Q(ax)

1
/ log | — #] fin.a(t)dt = tona  zE[-11], (6.6)
—1

for the function pi, 4, and some constant ¢, 4, subject to the condition

a
/ Mn,a = L.
—a
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By (formal) differentiation, we see that this is really equivalent to solving a singular integral equation

/1 Pna(t) dt — aQ'(ax)

1 -1 n

, z € (—a,a).

The integral on the left is a Cauchy principal value integral. There is a well developed theory of
such equations [47], [167]. One can show that [111, p. 37], [136, p. 124 ff]

(z) = 2 /1 V1 — 122 asQ(as) — ax@Q’(ax) ds + B 6.7)
Mn7a - 7T2 0 1 — 52 n (82 _ xz) . /—1 — x2a .
where ) )
2 t t
Bna=1- —/ atQ(at) ,, (6.8)
’ nm Jo 1—1¢2

Then the function G, 4 is given by

1 z
Gna(z) = exp (—n/ log (— — t) fon,a(t)dt + ncn,a)
1 a

so that for z € [—a,a],

1
|G ()| = exp <—n/ log E — t‘ fn,a(t)dt + ncn,a> = W(x),
—1

by (6.6). So at least we have verified (III) above. It turns out that whenever B, > 0, then
W/Gy.q > 1 in some right neighborhood of 1. Thus we look for the smallest a for which B,, , = 0.
We see from (6.8) that this requires

2 [latQ'(at
1——/ Mdtzo =  a=a,.
nm Jo 1 — ¢2

This scratches the surface of an extensive theory. The monograph of Saff and Totik [167]
contains a detailed and deep development. A more elementary treatment is provided in [136],
though that will be more than sufficient for those interested only in the topics of this survey. For
general exponential weights, restricted range inequalities in quite precise form are investigated in
[85]. Here is a typical result [85, Theorem 1.8, p. 15|, [136, Thm. 6.2.4, p. 142]:

Theorem 6.2 Let Q : R — [0,00) be even and convex, with limit co at oo and

0=Q(0) < Q). 0.
(a) For not identically zero polynomials P of degree < n,

HPWHLOQ(R) = HPW”LOO[—an,an]
and
IPW L\ —anan]) < IPWlL (—an,

an) "
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(b) Let 0 < p < oo and P be a not identically zero polynomial of degree < n — %. Then

IPW 1,y < 2P IPW Il .

an)

and

IPWII L, @\ —aman)) < IPWL, (—an,

(ln,an] an] .

Quite often, we need a smaller estimate for the tail, and this is possible provided we omit a
little more than the Mhaskar—Saff interval. Here is what can be achieved [85, Thm. 1.9, p. 15] for
the class of weights F*, specified in Definition 4.6:

Theorem 6.3 Let W € F* and 0 < p < co. Forn > 1,k € (0,1] and polynomials P of degree
<n,

IPW |1 8\ [—an (1 m)am (1)) < Crexp(—=nCar® ) [[PW |, (-

Here C'y and Cs are independent of n, P, k.

an] *

More generally, it was proved there

Theorem 6.4 Let W = e 9, where Q : R — [0,00) is even and convex, with ) having limit oo at
o0, and
tQ'(¢)
T(t) =
W=

is quasi-increasing in the sense of (3.27) of Definition 3.11. Assume furthermore that for some
A>1,T > A in (0,00), while

T(y)~T<y [1@}) y € (0,00). (6.9)

a

Then forn > 1,k € (0, ﬁ] and polynomials P of degree < n,
”PWHLP(R\[fan(1+n),an(1+n)]) <G GXP(—CMT(%)HS/Q) HPWHLP[fan,an] : (6.10)
Here C and Cy are independent of n, P, k.

Finally, we can go back a little inside the Mhaskar—Saff interval if we allow a cruder estimate
on the tail [85, Theorem 4.2(a), p. 96]:

Theorem 6.5 Assume in addition to the hypotheses of Theorem 6.4 that Q" exists and is positive
in (0, 00), while for some C' > 0, and large enough =z,

1 /
Q@ _ Q)
Q' (x) Q(x)
Let 0 < p < oo and A > 0. Then there exists nyg and C' such that for n > ng and polynomials P of
degree < n,

IPWII L, @) < CUPWI_a,, (1= xgm)san (1=Am)] (6.11)
where

M = (nT (an))"2/3. (6.12)

See [57], [61], [85], [134], [136], [145], [167] for further discussion of restricted range inequalities.
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7 Markov—Bernstein Inequalities

Markov—Bernstein inequalities have already been mentioned above. They are the main ingredient
of converse theorems of approximation, but also enter in many other contexts. For the unweighted
case on [—1, 1], the classical Markov inequality asserts that
/ 2
HP HLoo[*l,l} <n ”PHL(X,[—I,I} ) (71)
for n > 1 and all polynomials P of degree < n. The Bernstein inequality improves this as long as
we stay away from the endpoints:

|P'(z)| < € (—1,1), (7.2)

— |IP|
Vio ! Ml
for n > 1 and all polynomials P of degree < n.

The weights W, (z) = exp(—|z|¥), a > 0, already provide a lot of insight into the weighted case
on the real line. The analogue of the Markov inequality is

nl—1/e a>1
\\P;WQHLP(R) < CllPaWallp, g § logn+1), a=1 . (7.3)
1, a<l1

This is valid for all n > 1 and polynomials P, of degree < n. The constant C' depends on p € (0, c0]
and «, but not on n or P. It’s no accident that the factors arising are similar to those in the Jackson
rates, and for o < 1, the factor is bounded independent of n. For o > 2, these inequalities were
proved by Freud; for 1 < a < 2, by Eli Levin and the author; and for o < 1, by Paul Nevai and
Vili Totik.

In order to generalize this for arbitrary ), we should try to cast this estimate in a unified form.
For ao > 1, we see that

Ve = 01 = Q) (an),
Qn

where Q(x) = |x|*, and recall, a,, = C1n/®. As we shall see, Q' (a,,) is the correct factor whenever
W = exp(—Q) and Q is even and grows faster than |z|* for some o > 1. For Freud weights, where
Q is of polynomial growth, but still grows faster than |z|%, for some a > 1, we can use aﬂn However,
for all polynomial rates of growth, including |z|%, o < 1, we can use

Cn ds

1 QE(s)”

where if @ is strictly increasing and continuous on [0, c0), Q=Y denotes its inverse. The most
general Lo, result for @ of polynomial growth, with this factor, is due to Kroé and Szabados [69,
p. 48]:

Theorem 7.1 Let W = exp(—Q), where @ is even, continuous, increasing in (0,00), and twice
differentiable for large enough x, with

> 0, (7.4)
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and

. zQ" ()
lim sup < 0. 7.5
Then for n > 1 and all polynomials P of degree < n,
Cn
ds
/
1PWls < | gt 1PV e

Here C # C (n, P).

The author and Eli Levin used the slightly more restrictive condition that W € F*, so (4.18)
holds. This implies, like (7.4) and (7.5), that @) grows faster than some positive power of z, but
slower than some other positive power of x. Strangely enough, there does not seem to be a published
form of this result in L,. Indeed, extra difficulties arise in L, — we shall discuss techniques for
proving Markov—Bernstein inequalities in the next section. However, there are results that apply

to L, separately for the case where @) grows faster, or slower, than |z|. First, we record the former
case [84, p. 231]:

Theorem 7.2 Let W € F*. Let 1 < p < co. Then for n > 1 and all polynomials P of degree < n,
n
HP,WHLP(JR) = Ca ”PW”LP(R)'
Here C # C (n, P).

This was later extended to the case 0 < p < 1 [85, Corollary 1.16, p. 21]. For weights growing
slower than |z|, Nevai and Totik [151, Thm. 2, p. 122] used a beautiful method to prove:

Theorem 7.3 Let W = exp(—Q), where @ is even, increasing, and concave in (0,00), with

> Q(x)
0 1 +l‘2

dr < 0o.

Then for n > 1 and all polynomials P of degree < n,
HPIWHLOO(R) <C ||PWHLOO(R)'
Here C # C (n, P). If in addition,
2Q(z) — Q(2x)

T—00 log = ’

then, given p > 0, we have for n > 1 and all polynomials P of degree < n,
/
HP WHLP(R) = CHPWHLp(R)'

Here C # C (n, P).
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The above are all Markov inequalities, analogues of (7.3). There are also Bernstein inequalities,
which reflect the opposite feature of the finite interval case. The growth in n decreases towards the
end of the Mhaskar—Rakhmanov—Saff interval. To state these, we need the function

On(z) == max{l—[j—|,n_2/3}, z € R.

Eli Levin and the author proved [84, Thm. 1.1, p. 231]:

Theorem 7.4 Let W € F* and let 1 < p < co. Then for n > 1 and all polynomials P of degree
<n,

_ n
I(PWY 62|, ) < Ca 1PW L, ) -
Here C # C (n, P).

For p = oo, this was proved in [82], and for 1 < p < oo, in [84]. If p = oo, we see that this has

the consequence
/ n2/3
‘(PW) (an)} < Ca— ”PWHLOC(R) ,

when P has degree < n. There is in [84, Thm. 1.2, p. 233] an analogue of this for weights satisfying
(4.18) in Definition 4.6 with A > 0 only (such as exp(—|z|*),a < 1). One fixes n € (0,1), and
proves that

_ n
I(PWY 6 2|1, (22 nan) < Ca 1PW[ L, ) -

Note that in the Bernstein inequalities, it is essential that we estimate (PW)’, and not P'W. There
is no improvement for the latter, at least in general, near +a,,.

Analogues of Markov and Bernstein inequalities have also been obtained for Erd6s weights,
where @ is of faster than polynomial growth, as well as for exponential weights on (—1,1). They
are also available for non-even exponential weights on a possibly asymmetric finite or infinite interval
[85]. For simplicity, we quote only the even case. First, we define a suitable class of weights, which
includes both the Freud and Erdés weights in the real line, and exponential weights on (—1,1):

Definition 7.5 Let [ = (—d,d) where 0 < d < co. Let Q : I — [0,00) be an even function with
the following properties:

(a) Q' is continuous and positive in I and Q(0) = 0;
(b) Q" exists and is positive in (0,d) ;

(c)

Jim Q) = oo
(d) The function
_ Q1)
=4

is quasi-increasing in (0,d), in the sense that

0<z<y<d = T(x)<CT(y).
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Moreover, for some A > 1,
T(t)>A>1, te(0,d).

(e) There exists C; > 0 such that

Q"@)| o Q@)

@ ~“aw T
Then we write W € Fepen (02). If also, there exists ¢ € (0,d) such that
Q" ()| Q’(SU)
Q@ = Pow T

then we write W € Fepen (02+).
Examples of weights satisfying this are W, a > 1, as well as W = exp(—Q), where
Q(z) = expy (|2|*) — expy(0), z € (—00,00), (7.6)

with £ > 1, > 1, and
expy := exp((-- - exp()))

denoting the fth iterated exponential. We set expy(z) := z. Others include

Q(z) = expy ((1 — xz)—a) —expy(1), x e (—1,1), (7.7)
where now £ > 0 and o > 0.

Theorem 7.6 Let 0 <p < oo and W = e 9 e Fopen (02). Forn > 1, let

1 — l=L
an ’ azn
on(z) = . 2 . (7.8)
1= ]+ o7 Gy
Then for n > 1 and polynomials P, of degree < n,
[(PW) enll gy < CIPWIIL,w)

Moreover,
n
1P, gy < O Tan)* IPW Iy, o

This result is a special case of Theorem 1.15 and Corollary 1.16 in [85, p. 21]. There the
restrictions on () are weaker, but the definition of the classes is more implicit, so we restrict
ourselves to the smallest even case considered there. The main feature is the extra factor T'(a,)"/?,
which really is there — weighted extremal polynomials attain it, see [85].

As examples, @ of (7.6) has Markov factor [85, p. 30]

1/2

n
—T(an)"/? ~ l/a H log; n

an (10g n)
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Here
log; := log (log (- - -log ()))
denotes the jth iterated logarithm. For @ of (7.7) and ¢ = 0, the Markov factor is [85, p. 32]

n 2042
_T(an)1/2 ~ n2att
G,

while if £ > 1, it is [85, p. 34]

1/2

Gn

-1
ET(an)I/2 ~ n (log, n)%(Hé) H log; n
j=1

8 Methods to Prove Markov—Bernstein Inequalities

In this section, we outline some of the methods that have been used to prove Markov—Bernstein
inequalities for exponential weights. An extensive treatment of Markov—Bernstein inequalities for
both weighted and unweighted cases is given in [9], [143]. We begin with

8.1 Freud’s Method via de la Vallée Poussin Means

Recall that in Lemma 4.5 we proved
Ve AW oy < CHIW L ) »

where C # C (n, f). Thereafter, at (4.17), we showed how duality can be used to prove
Ve lfIW L, @) < ClIWIlL, @) -

where C' # C'(n, f). In much the same way, one can prove that when W € F*,
n
Vil IW L@ < €~ IfWllp ) - (8.1)

The main new technical ingredient required is the estimate

n

1/ gpz@)? >o (2w, cer (8:2)

This is a cousin of the Christoffel function estimate (4.13) and can be proved using much the same
ideas. Freud did this in [42]. A proof is also given in [136, p. 64]. Now if P is a polynomial of
degree < n, then

V. [P]=P.

So (8.1) immediately gives the Lo, Markov—Bernstein inequality

n
1P WL @) < CIPWlip ) -
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To extend this to Ly, we use duality on V.

VAW |y =suw [ Vi) gW (8.3)

where the sup is taken over all measurable functions g with [[gW]|_ ) < 1. Next, we use the fact
that if P is a polynomial of degree < 2n, then

| o=Vl Pw ~o.

Indeed, we can prove this by considering the special case P = p;, 0 < j < 2n, and recalling that
the first 2n Fourier series coefficients (with respect to {p;}) of Vi, [g] are the same as those of g.
The above considerations and an integration by parts give

[ vinawr = [ viin vl w?

= - [ Vi Wtz [ vivedewt s
Here
[ vinviaw| < Viawl, e [ Wi
< O oWl Wl < O I Wliw - (85)

In the second last line, we used our Ly bound (4.17) for V;,, and the Ly, bound (8.1) for V!, and in
the last line we used our bound on the sup norm of giW. To bound the second term in (8.4), one
needs

Lemma 8.1 Let h be absolutely continuous with h(0) = 0. Then

[QBW |,y < CIFWI,, _wy- (8.6)
Proof. Observe that if z > 0,
Q' (@) ()W (z)| = |Q'(x)W(x) /jh’(t)dt‘
< W, o [ QW) [ o] 7

We now assume that @’ is increasing, and
"
t
lim Q()
t=o0 Q'(1)?

This latter condition is true for regularly behaved Freud and Erdés weights such as F*, €. Choose
A > 0 such that
Q") _

1
Q)2 ~ 2’

=0.

t> A.
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If x > A, an integration by parts gives

[wiwa = [CQwr@owo
A A

T Q//(t)

N (t)zw_l(t)dt

+

‘t:x

- QW[

< Q’(w)lwl(x)—i-%/jwl

Then
/ Wit) dt < 2Q'(z)" W (x)

and

2>A = Q /W ) dt < 2.

As Q'W is bounded in (0, 00), we obtain
x>0 = Q(x / W~ dt < C.

A similar bound holds for < 0, and then we obtain (8.6) from (8.7). O

Next, we apply (8.6) to the second term in the right-hand side of (8.4), with h = Vi, [g] —
Van [9] (0). We obtain

Vi [9] QW (z) < [Vin [g] () — Van [9] (0)] | Q' (z)| W (z) + Vin [g] (0) |Q' ()| W ()

IN

n n
CllVin [9)W Lo @) + C Van [g] (0)] < C—=llgW |1 m) < C

SO

<C

an

‘/ Vi [f] Van lg] QW2

v < e 1wl 5)
Combining (8.4), (8.5), and (8.8) gives
Vi A Wllzae) < C o 1 Wl
Thus, recalling (8.1), we have that for both p = 1 and p = oo,
IV AW Iz, ey < C_”fWHLp(]R)
By interpolation, we obtain

n
Ve AW, m) < ¢ W L, @)
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for all 1 < p < oo, where C # C'(n, P). Applying this with f = P, a polynomial of degree < n,
gives

n
I P'W |, m) < Ca_HPWHLp(]R)-

This method is elegant, and yields more than just Markov—Bernstein inequalities. As we have
seen, we also obtain a proof of a Jackson—Favard type inequality, bounds on Cesaro means of
orthogonal expansions, and other useful information. Our main technical ingredients were bounds
on Christoffel functions and their derivative analogue (8.2), and some technical estimates involving

Q'
8.2 Replacing the Weight by a Polynomial

This method is very simple, but applies only to a limited class of weights. Suppose that for some
fixed K > 0, we have polynomials S,, of degree < Kn, with

C1 < Sp/W < Cy in [—2ay,2a,), (8.9)

and "
‘S’;L‘ /W < CSCL_ in [_aman]- (8.10)

These polynomials enable us to reduce weighted Bernstein inequalities to classical unweighted
Bernstein inequalities. If P is a polynomial of degree < n, then our restricted range inequalities
give

1PW,w < CIPWI, oo SCCTHIPSAL oo
< COT PSP Sl ]
<

. [2n n
CCl ! |:a— ||PSnHLp[—2an72an} + (I— ||PWHLP[_G‘”’G‘”}:| ’
n n

by our hypotheses on S/, and the classical Bernstein inequality, scaled from [—1,1] to [—2ay, 2ay,].
Using (8.9) again, we obtain
IPWlL,® < ClIPW|L, g -

This works in any L,, 0 < p < oco. If p = 0o, we can weaken the requirements on S,,, which can be
made different for each 2. We only need the upper bound on S/, at a given x, and the lower bound
on S, at that x (but we still need the upper bound on S,, throughout [—2ay,, 2ay]).

Freud and Nevai used this for weights like Way,(2) = exp(—z*™), where m > 1 is a positive
integer. The partial sums of these entire weights can be used for {S,}. For W,,« > 1, Eli Levin
and the author used canonical products of Weierstrass primary factors, such as

0o e
TEE( x/n ,E) ,

to generate these polynomials [80], [81]. This method can provide quick easy proofs in special cases,
which would be useful for teaching a course on weighted approximation.
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8.3 Nevai—Totik’s Method

This involves fast decreasing polynomials, a topic initiated by Kamen Ivanov, Paul Nevai and Vili
Totik, and works well for slowly decreasing weights such as W,,a < 1. Let us suppose that for
n > 1, and some K > 0, we have polynomials S that satisfy

S#0)=1,  S#(0)=0, (8.11)

and
‘S#(a:)’ < Ke Q@) T € [—an,an)]. (8.12)

Typically, S# has a unique maximum in [—1,1] at 0, and decreases rapidly in (0,1). Nevai and
Totik [151] used a construction of Marchenko to generate such polynomials. One starts with an

entire function of the form
/ 2
sin? (g 1+ (i) )

B (Z) = 2
z
k>1 14 (E)
The product may be finite or infinite, and the {tx} are positive numbers with
T = ! < 00
= Ek o .

Assuming that @ is even, increasing on (0, c0), and

> Q)
d 8.13
/0 T2 < 00, (8.13)
one can choose {t;} such that 7' < 1/7 and
B@) < Kexp(—Q(z)),  zeR.

In this case B is an entire function of exponential type < 1. Assuming (8.13), Nevai and Totik used
the partial sums of B to construct polynomials P, of degree < n, with a local maximum at 0, and

P,(0) =1 and |P,(2)| < K exp(—Q(nx)), x € [-1,1]. (8.14)

ST (@) = Pa, ([;—n]>

satisfies (8.11) and (8.12), and is of degree < [ay]. It is easy to derive the Markov inequality at O:

Then

n+ lan]

n

((PW)O)] = [P = |(PsE)0)] < 1PSH e

by the usual unweighted Bernstein inequality. We continue this as

[(P'W)(0)| < CIIPWIIL (q,, (8.15)

an]?
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using the property (8.12), and the fact that the convergence (8.13) implies n = O(ay,), which we
shall not prove. To extend this to general x > 0, we use the evenness and concavity of ), which
implies that for z,y € R,

W(2)W(y) < W(z +y).

Now apply (8.15) to the polynomial R(y) = P(x + y)W (z), for fixed z:

(PW)(x)] = |[ROW()]<CIRW|_ g :ngﬂglP(ery)W(x)W(y)!
Yy
< ngﬂg |P(z+y)W(z+y)|=CIPW|,_ &
Yy

This method can be modified to give the correct Markov inequality for Wi. Nevai and Totik were
the first to do so.

8.4 Dzrbasjan/Kro6—Szabados’ Method

Dzrbasjan was apparently the first researcher to investigate the degree of approximation for general
exponential weights, in his 1955 paper [37]. Although his approximation estimates worked only on
a finite interval, he nevertheless came up with a great many ideas. Kroé and Szabados subsequently
used Dzrbasjan’s method, and restricted range inequalities to establish Theorem 7.1.

We start with Cauchy’s integral formula for derivatives (or, if you prefer, Cauchy’s estimates):

P(t)
2—7” /t x|=¢ (t - x>2dt

The number 1/¢ is invariably chosen as the size of the Markov-Bernstein factor. To estimate P(t)
in terms of the values of PW on the real line, we write t = u + v, and use an inequality that often
arises in the theory of functions analytic in the upper half-plane. We already used one form of this
in the proof of Lemma 2.2.

P/(z)] = < Zsup {IP(0)] : |t — x| =<}

log |P(u+ )| < M/ log]P M /oo 10gM+Q( )ds

(s —u) —i—vQ (s —u)?+ 02

= logM ———ds, 8.16
og M+ / (s —u) +v2 (8.16)

where

M = |PW|_ (&) -

Of course, we need to assume the integral converges, which is very restrictive. We shall assume

more precisely that
/ > Q)
o 1412

Q(s) ~ sQ'(s) ~ s*Q"(s).

Then the above considerations show that

and that for s > 1,

— Q) .

log‘P/W’ < log +10gM+Sup‘ | / m

(8.17)
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The technical challenge is to estimate the integral in the last right-hand side. We break it into
several pieces. If we assume z > 1,0 < u < 2z and Q(x) > 0, we see that

[ Q-0 g [~ A,

G 3u/2 (5 — u)? +v? 3u/2 S

and
Q

|U|/
(s —u) +v2

(Recall that |v| < [t — 2| <e.) In [0, %], we see that the integrand is non-positive, as s < u/2 < z,

| /“/2 Qs) = Q)

(s —u)? +v?

SO

Finally, we handle the difficult central integral

3u/2
W Mg,

(s —u)?+02

v 3u/2
"/ 2 ”ds+\@>cz<x>\

IN

=: Iy + Iyo.

Here

(s —u) —1—1)2 (r—u)?+v?

|v|/3“/262 —Qu) |v|/ Q) —2Q(w) +QCu—r) ,

For some ¢ between r and wu,
Q(r) = 2Q(u) + Q(2u — 1) = Q"(§)(r — u)”

and one can show that [69, p. 53]

@6 <o)
” Q)
Iy <C p 12
Also,

! ’ 2 Q(s)
Iz = 1Q(u) — Q(z)| = Q'(§) [u — 2| < CQ'(2)e < Ce ~5-ds

x
Combining the above estimates, we have shown that for = > 1,

> QW) ,
2—1—1

1
log |P'W| (z) < log - +log M + Ce
1
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We simply choose € = 1. Similar estimates hold over (—oo, —1], and the range [—1,1] is easy to
handle. This leads to the Markov inequality

IPWLom < CIPWI L ()

valid for all n > 1 and polynomials of degree < n.
When dealing with weights W = exp(—Q), where @) grows faster than |z|%, some « > 1, one
typically chooses
Gnp
€= —,
n

uses restricted range inequalities, and needs more work to estimate the various integrals.

8.5 Levin—Lubinsky’s Method

Like the previous method, we use Cauchy’s integral formula for derivatives, and then go back to
the real line. However, instead of using (8.16), we use the potential theoretic functions associated
with exponential weights. These give analogues of the Bernstein—Walsh inequality for growth of
polynomials in the complex plane. For p < oo, going back from the plane to the real line is quite
complicated, and requires Carleson measures. We shall outline the method for 1 < p < oc.

Fix £ > 0, € > 0, and define an entire function F, by

Fo(2) :=exp(—Q(z) — Q' (z)(z — 2)).

Observe that ' '
FO)(z) = WU)(z) for j =0, 1.

We have

(PW)(2)] = |(PE)(x)| = |- /t_ ) (PE)() .,

2mi (t — )2

1 1/p 1 1/q
— PFE,|(t)?|dt —/ t — x| |dt
@w4ﬂ|ﬁ ru|> <%|ﬁﬂﬁ ||r>

1/1 (7 o\ 7
_ _<%/ \PE,P(2 + ce )d9> . (8.18)

3

In the second last line, we used Holder’s inequality, and ¢ = p%l there. We shall choose
e =¢(n,x) = pn(z),
where ¢, (x) is given by (7.8). This guarantees [85, Lemma 10.6, p. 301] that
B SCW () for |2 — 2] < pu(a). (8.19)

The proof of this involves a Taylor series expansion of Q(Re z) about Q(z). Now comes the potential
theory bit. There is [85, Lemma 10.7, p. 303] a function G,, analytic in C\ [—ay,, a,], with boundary
values Gy, (z) on [—ay, ay] from the upper half-plane satisfying

‘Gn(l’)’ = W(IL’), WS [_anaan] .
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Moreover, z"G,(z) has a finite limit at oo, and uniformly for x € [—aay, az,],
W(lz]) < C|Gn(2)], |z — x| < pn(z). (8.20)

One representation for G,, is

Gal(2) = exp <— / " Jog(z — t)dpn (1) — cn> :

—an

where i, is the equilibrium measure of mass n for the weight W, and ¢, is an equilibrium constant.
Recall that we used something similar in deriving restricted range inequalities, in Section 6. Then
we obtain from (8.18) to (8.20),

Ph(@) [(PW) (@)[" < C | [PGal’(2 + pn(a)e”)do.
Integrating gives

agn a2n 7r .
/ ZIPWYP < C [/ PG P(x + pnl(2)e®)db| du

—a2n —a2n -
— C/]PGn|Pd[u;+un], (8.21)

where v;7 is a measure on the upper half-plane, and v, is a measure on the lower half-plane. For
Borel measurable sets S, with characteristic function xg, we have

i) = [ [ xstot eatoreyan] a

—a2n

vo(S) = / UO Xs(x+<pn(m)ei9)d9] dz.

—Aan —Tr

Next, we use a famous inequality of Carleson. We say a measure v on the upper half-plane is a
Carleson measure if there exists A > 0 such that for all squares K in the upper half-plane, with

base on the real axis, and side h > 0,
v(K) < Ah.

The smallest such number A is called N (v), the Carleson norm of v. Let HP denote the Hardy
space in the upper half-plane, consisting of all functions analytic there, whose boundary values on
the real axis lie in L,(R). For f € H?,

Jipar<one [~

(For p < 1, there is an analogous statement.)
Applying this to (8.21) gives

/agn o |(PWY [P < C (N [vf] + N [v7]) /°° |PGLP.

—agn —00
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Here although v, is a measure on the lower half-plane, it is obvious what is meant by its Carleson
norm. Next, one shows that
sup (N [v,f] + N [v,]) < oc.

n

Qn Qn
/ PGP = / PP,
—an —an

and one can show using Hilbert transform estimates that

Finally,

Qn
/ pap<c | pwp,
|z|>an

—an

giving

/azn o ‘(PW),V; < C/an ’PW’p'
—an —Qn

The integral over R\ [—ag,, az,| may be handled using restricted-range inequalities.

This method is the deepest of those we presented — and it is the only one that gives the
Bernstein inequalities in Theorem 7.4 and 7.6. For p = oo, the proof is easier, as one can avoid
Carleson measures [82], [133].

8.6 Sieved Markov—Bernstein Inequalities

The methods of this section have been extensively developed by Paul Nevai and others [105], [108],
and illustrate the power of Jensen’s inequality. On finite intervals, they go back at least to Zygmund
[193]. The idea is to start with the Christoffel type estimates

Ewee < o [T ewy (8.22)

an J_oo
and
2 n\* [ 2
(PWRE) < C (—) | e (8.23)
valid for Freud weights W, n > 1, polynomials P of degree < n, and £ € R. We used these already
in Section 8.1.

We now extend these to L, type Christoffel function estimates. Let 0 < p < 2. From (8.22), we
derive

IPWIE s < O |PWI / PWP,

and hence .
n
HPWHL ®) <C’a—/ |PW|P. (8.24)

Next, (8.23) followed by (8.24) give

3
1P < () 1PWIE, [ 1w

—P

3 fe'e) 2-p 00
C<3> (ﬁ/ yPW|P> ' / \PWP.
(07%% (07 — 00 — 00

IN
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Rearranging gives

p+l poo
1PWIE <c< ) /OO'PW‘p' (.25)

Thus far we have (8.24) and (8.25) for 0 < p < 2. Our weight is W = exp(—Q). We apply these
inequalities instead to the weight exp(—rQ) for fixed r > 0. Its Mhaskar—-Rakhmanov—Saff number
is a multiple of that for W = exp(—Q). Since for any fixed s > 0,

Qsn ~ Gn uniformly in n,
we obtain -
T n T
IPWIE e < oa—/ WP, (8.26)
and
/ r||P n i o TP
[PW_ e <C <Q_> /OO WP, (8.27)

forall0 <p<2,r>0,n>1,and P of degree < n.
Now comes the sieving idea. Let L, M be positive integers and fix £&. We apply these inequalities
to the polynomial in ¢,
P(t) = S(t) (K (€, 1), (8.28)

where S has degree < n, and
n—1
)= pi(©p;(t)
j=0
is the nth reproducing kernel for the weight W2. As

(LM +1)n n

A(LM+1)n Qn
uniformly in n, we obtain from (8.26),
{ISOKTmE QW ©) <= [ [(SW)OKara(&, )" dt.
Here, for Freud weights W € F* [83],
n___ 1
Kn(6,6) = 1/ A (W?,6) ~ il 29, ¢l < 5an; (8.29)
while n
Ka(6,6) =1/M(W2,6) S CW2(),  €eR, (8:30)
so if M is so large that
1
§aMn > 2ap,

we obtain for all polynomials S of degree < n, and all [¢| < 2a,,

n

S Wr=2Lr(¢) < C (‘

an

1-Lp  roo
> / |(SWT) () K pn (€, 0)"|” dt.



Weighted Approzimation 59

Now assume that L is chosen so large that Lp > 2. By Cauchy—Schwarz, for all n and ¢,¢ € R,

Karn(@ 072 < (Kanal€. 0 Kaa(t.)2) "

Lp—2
< o2 wew e (831)
So -
S WI=HP=2(e) < C%n |S(6) P K an (€, 6)* W RPE2 (1)dt. (8.32)
We now choose r = L + 1, giving
(SWOP <2 [ (SWIOP W OW DK (€ 0 (33

valid for all 0 < p <2, n > 1, S of degree < n, and [{| < 2a,,. Since (by orthonormality)

| Kle. oW 0P = Kunle.&) ~ 2w (), (8.34)

n

we can also write this as:

Lemma 8.2 Let 0 < p <2,n > 1, S of degree < n, and |{| < 2a,,. Then

T NSWY () PE pn (€, £)*W2 () dt
L5 K (&, 0)2W2(t)dt

(SW)(EIF <C (8.35)

From this follows:

Lemma 8.3 (Fundamental lemma of sieving) Let ¢ : [0,00) — [0,00) be a convex increasing
function of x, with 1¥(0) = 0. Let p > 0, n > 1, S of degree < n, and |{| < 2a,,. Then

_ ffooo¢(C’SW|p)(t)KMn(f,t)2W2(t)dt'

WSO < = (3.36)
If in addition, for some A > 0,
vE) <UD, tefo),
then
ISP E) < Ao PV IIO Karal&, W2 1y 57

I K (&, 6)2W2(t)dt

Proof. For p < 2, this follows from (8.35) by a single application of Jensen’s inequality. For
general p, one instead applies Jensen’s inequality with the convex function ¢ +— 1 (t%), with large
enough a. O
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Next, we extend this to derivatives. We again use the polynomial P of (8.28). We let
0
K/ (z,t) = %Kn(:c,t).
By (8.25),

SV K ka6 €) + L (Kain(€,0)" ™ Kipa(6,05(©)] W (€)

< C <ﬂ)p+1 /OO |(SWTY () K prn (€, 0) P

Gn oo

Here we recall (8.29) and (8.30), while Cauchy—Schwarz and (8.2) give for all z,t € R,

Mn—1 /2 /-1 1/2 9
Khn6,1)] < (Z mﬁ) <Z pk<t>2) §C<%> W EW ().

k=0 k=0
Then

n

[SOF w©Hr < C( )pls@an“”“(s)

n

n p—1 roo
+C<_> / SO Knra (&, 8)* W BPH2 (1) at

an oo
-1 00
= ¢ <3>1’ / SO Knra (&, 8)*WBPH2 (1)t
an oo
by (8.32). We now choose = L + 1, giving
p—1 0
swp© <c(2) [T Iswro wOwoRme ok (3.39)

which we can reformulate as
Lemma 8.4 Let 0 <p <2, n>1, S of degree <n, and |{| < 2a,,. Then
P SWIP(E) K (€, 1)*W2(t)dt
ffooo KMn(§7 t>2W2(t)dt

|S'WPE) <C (aﬁ (8.39)

n

From this follows:

Lemma 8.5 Let ¢ : [0,00) — [0,00) be a convex increasing function of x, with ¢¥(0) = 0. Let
p>0,n>1,5 of degree < n, and [£| < 2a,. Then

, S22 0(C |2 SW] ) (O Kara(€, 02W2(1)
Y(|SWIP)(E) < = Ko € P20 : (8.40)
If in addition, for some A > 0,
»(2t) < A(t), t €[0,00), (8.41)
then
, S22 v| 25w ) &) a6 02 W20yt
P(ISWIP)E) <C (8.42)

J 70 Barn (&, )2 W2(t)dt
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Proof. The proof uses Jensen’s inequality as in Lemma 8.3. O

The inequalities (8.40) and (8.42) are useful for more than Markov—Bernstein inequalities. But
for the moment, we deduce by integration and restricted range inequalities [108]:

Theorem 8.6 Let W € F*. Let ¢ : [0,00) — [0,00) be a convex increasing function of x, with
¥(0) =0. Let p> 0, n > 1, S of degree < n. Then

(o) o n
| wisweneds < [ v swra. (5.43)
If in addition, for some A > 0, (8.41) holds, then

/_ T (SWP)(©)dE < C / h U SWI) @)t (8.44)

9 Nikolskii Inequalities

We already proved an inequality of this type in the last section:

n \ /P
1PW ey <€ () 1PW 0.

for n > 1, and polynomials P of degree < n — recall (8.24) and (8.35). Thus we compared the
weighted sup norm and weighted L, norm of a polynomial. More generally, inequalities that com-
pare the norms of polynomials of degree < n in different spaces are called Nikolskii inequalities.
They are not difficult to prove, here is a sample:

Theorem 9.1 Let W € F*. Let 0 < p,r < 0o. Then for n > 1 and polynomials P of degree < n,
HPWHLP(R) < CNy(p;r) HPWHLT(R)v

where

Proof. If first co > r > p, we can use restricted-range inequalities, and then Hoélder’s inequality:

p

a a e a 1-=
n n r\ T n T 1—-k
HPWHIZP(R) < C/ |PW|P < C (/ \PW,%) (/ 1) <C HPWWET(M an ",

—an —Qan —an

that is .
I1PWlL,® < Can " [[PWlL () -

If p = oo, the proof is easier. Next, if r < p < co, we use

IPWI = [ 1PWP < W [

— 00
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Letting

N <|1PWHL )
deg(P)<n \ IPW]L =)
we obtain
I1PW L, @) < Ar,p” IPWITL, &) - (9.1)
In the case of Freud weights W € F* that grow at least as fast as |z|%, some o > 1, we know from
(8.24) that
App < o O

an

For the canonical weights W, we have

pi-t/e, a>1
App~4q logn+1), a=1
1, a<l

The sharpness of these was proved by Nevai and Totik [143], [152]. Observe that A, , grows
independently of p. In general, it seems that

Ay ~ sup A, L (W2 2) W2 ().
Tz€R

For general convex exponential weights, it is known [85, p. 295] that:

Theorem 9.2 Let W € Fepen (6’2) be as in Definition 7.5. Let 0 < p,r < co. Then for n > 1 and
polynomials P of degree < n,

HPWHLP(]R) < CNn(p,7) ||PWHL7-(]R)3

where

10 Orthogonal Expansions

There is an old mathematical saying that L1, Ly and Lo, were invented by the Almighty, and man
invented all else. The author heard this many years ago, but was interested to see it used as the
opening quote in a chapter of Simon’s treatise [172]. That orthogonal expansions naturally live in
Lo is obvious. Among the many manifestations of this, is the best approximation property

1(f = Su D) Wllp,m) = Enlfi W]y = degi(gﬁgn“(f = PYWL,m) -

This ensures that when the polynomials are dense (in an obvious sense)

i ([(f = S0 [f) Wl ) = 0



Weighted Approzimation 63

for all functions f for which fW € Lo(R).

But it is part of the mathematician’s spirit to take important tools out of their natural domain,
so it is not surprising that much effort has been devoted to convergence of {S, [f]} in Ly, or in a
uniform sense, or at a specific point, and so on. A lot of fundamental advances have ensued: for
example, the boundedness of the Hilbert transform in L,, 1 < p < oo, was established in order
to prove that classic Fourier series converge in such L,. The theory of A, weights started with
Muckenhoupt’s efforts to prove convergence in L, of Hermite expansions.

In this section, we shall discuss pointwise and mean convergence. We begin with the latter.

10.1 Mean Convergence

Recall the reproducing kernel and the Christoffel-Darboux formula:

n—1
— . . _ In-1 pn(x)pn—l(t) — pn—l(l')pn(t)
Ky (z,t) = jgopj (z)p;(t) = - — _

Define the Hilbert transform

Hlg| (z) = / 90 gt~ Jim 9 4.
—o0 T — t e—0+ (—00,00)\(z—¢,2+¢) x—1

whenever the limit exists. If g € Li(R), the transform exists for a.e. z. For a function f with
fW € Ly(R), we see that

Sulf](2) = /_°° Ko (o, ) £ (W2 ()t

= 2 () [paa W) ()~ s (D V7] ()}

Thus if u is a given function, and 1 < p < oo,

Hsn [/] Wu2HLp(R) = 7:_1 {”an“”Lw(R) HH [pnflfWQ] uHLp(R)

n

P Wl [H Wl ) (100)

Next, we use the aforementioned theorem of Riesz that the Hilbert transform is a bounded operator
on L,, provided 1 < p < oo: For some C # C(g),

I (91|, @y < Cllgllz, ) -

In his investigations of Hermite expansions, Muckenhoupt [144] considered weighted versions: for
suitable functions u,

1 [g] UHLP(R) <C HQUHLP(R)'
Such wu are severely restricted, in particular satisfying Muckenhoupt’s condition; examples are

1 1
u(t) = 1+ [¢)*, —]—9<a<1—5. (10.2)
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The theorem fails if p =1 or p = oo, though in L1, other inequalities are available. So we continue
(10.1) as

[Sn AW, gy < CV,T;:

-1 Wl gy o W20l gy - (10.3)

{7l ey o1 7920,

For exponential weights in the real line, recall from (4.14) that

Tn—1
Tn

< Ca,,.

If we have the bounds
Wl g < Cay /2, (10.4)

then for some C' # C (n, f),
[8n AW ||, gy < CUFW L, ) -

Once we have such a bound, the reproducing property of S,, (that S, [P] = P when P has degree
< n) and density of polynomials gives
. 2
nlglolo H(f - Sn(f)) Wu HLP(R) =0.
All that is required of f is that fW € L,(R).

The problem with this procedure is that the bound (10.4) is hardly ever true. For Freud weights
like W, or the weights in the class F*, we typically have

el

—1/4
lpn(2)| W () < Ca;/? <'1 + n_2/3> , reR (10.5)

an
and the upper bound reflects the real growth of p,, near +a,:

1P Wl L) ~ a,'*n!/S.

However, at least in [—pay,, pa,], with p € (0,1) fixed, we do have
paW| < Ca, /2. (10.6)

This problematic growth of the orthogonal polynomials near the (effective) endpoints of the interval
of orthogonality, already occurs for the Legendre weight on [—1,1], and more generally, Jacobi
weights. The same Pollard that solved Bernstein’s approximation problem, came up with a fix for
this. In the context of Freud weights (a similar feature occurs for Jacobi weights), the fix is based
on the observation that p, — p,_o has a much better bound than p,,:

1/4
pn(2) — pu_o(z)| W (x) < Ca;'/? (‘1 - ‘am—| + n_2/3> , x €R. (10.7)

In particular,
‘pn(x) - pn—2(£)| W(x) < Ca;l/Q, reR.
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(Think of p,, (cos @) = cosnb to see from whence this comes.)
Pollard [158], [159], [160] found a clever way to rewrite the Christoffel-Darboux formula to

exploit this: let us set
oy, = Tn—1 ‘
Tn

Then (see [90] or [141] for an accessible proof)
Kn(m’ y) = Kn,l(xa y) + Kn,?(x’ y) + Kn,?)(xa y)7

where
Qp

K, ——Pn_ - ;

n,l(l',y) o+ an_lpn 1(2)pn-1(y);

QapQip—1 Pn(ﬂT) - pn—?(x)

K = _ _ N

n,Q(Z',y) an + Oén—lpn 1(y) [ Ty )
Kn,3(x7 y) = an(y, .7})

Note that there is no z — y in the denominator in K, 1, while in K, » and K, 3, we have the term
Pn. — Pn—2 to help. This clever decomposition is not enough on its own; we emphasize that in
investigating mean convergence, one still has to break up integrals into several different pieces, and
work over several different ranges.

For the Hermite weight, the simplest bound is due to Askey and Wainger [2]:

Theorem 10.1 Let W (z) = exp(—2?). Let % < p < 4. There exists C # C (n, f) such that
150 AW @) < CHW ) -
This inequality is not true for p < % orp>4.

Muckenhoupt found the correct extension to 1 < p < oco. In what follows we let u,(x) =
(14 [a]).

Theorem 10.2 Let W (z) = exp(—z?) and 1 < p < co. Let

1 1
b<l—-; B>-——; b<B. (10.8)
p p
Assume in addition that
1 4 4
—B+max{b,—];}—|—3—p—1§0 ifp<§; (10.9)
and
. 1 1 4 .
b—min< B, 1——-+-——<0 ifp>4. (10.10)
p) 3 3p
Then
[1Sn [f] WUb”Lp(R) <C HfWUBHLp(R) (10.11)

for some C # C(n, f). If b = B and p = 3 or 4, then we insert a factor of log (|z| + 2) in the
right-hand side of (10.11). In the case of equality in (10.9) or (10.10), we need strict inequality and
replace the max or min by their second terms. All these inequalities are also necessary.
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For general Freud weights, Shing Wu Jha and the author [52] extended Muckenhoupt’s result,
also closing up slight gaps between the latter’s necessary and sufficient conditions in “boundary”
cases: we let

log(n+ 1), ifo=r
Ly - - ( ’
w(n) { 1, otherwise.

Theorem 10.3 Let W = exp(—Q) € F*. Let 1 < p < oo, and b, B € R.

(a) Then for
1S [F1Wusll,my < C Il Wusllp, )

to hold with some C # C'(n, f), it is necessary that:

(I) (10.8) holds.
(IT) Ifp < %, then

bvfi(n)

(II1) Ifp = % or p = 4, then strict inequality holds in the third inequality in (10.8).

(IV) Ifp >4, then
e o),

B,lf%(n)

(b) Assume in addition that the orthonormal polynomials for W? also satisfy (10.7). Then the
conditions above are also sufficient.

When W = W, and a,, = Cn'/®, the conditions above reduce to essentially Muckenhoupt’s:

1 a (4 <0, b# -1
-\ bl I = p
max{b, p} B+6(p 3>{<0, b:—%'

1
b—min{B,l—l}—B+g<l—é>{ S0 Bl

P 6 p))| <0, B=1-1
The bound (10.7) was established for exp(—asz), m = 1,2,3,..