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Abstract. We try to convince geometers that it is worth using Control Theory in the
framework of sub-Riemannian structures, not only to get necessary conditions for length-
minimizing curves, but also, from the very beginning, to give a description of sub-Riemannian
structures by means of a global control vector bundle. This method is particularly efficient
in characterizing admissible metrics with rank singularities. Some examples are developed.

Résumé. Notre but est d’essayer de convaincre les géometres que cela vaut la peine
d’appliquer les méthodes de la Théorie du Controle dans le contexte de structures sous-
riemanniennes, non seulement pour obtenir des conditions nécessaires concernant les courbes
minimisant la longueur, mais aussi, dés l'origine de la théorie, afin de définir globalement
les structures sous-riemanniennes par des fibrés vectoriels dits de controle. Cette méthode
est particulierement efficace dans la caractérisation des métriques admissibles présentant des
singularités de rang ; nous donnons des exemples.
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INTRODUCTION

1. Description of main results.

The main motivation for my talking here is to convince geometers that the Con-
trol Theory framework is providing a better understanding and an adapted tool in
sub-Riemannian geometry. Our original presentation permits to associate to a sin-
gular plane distribution a family of natural sub-Riemannian metrics, with respect to

which the regular case results are extendible to the singular one (section 4).

Another motivation is to give a really intrinsic definition in this context of a

sub-Riemannian derivation (generalization of [S], section 8).

And the last motivation is to give an alternate proof that the abnormal horizontal
helix in the Montgomery-Kupka example is length minimizing (section 9, [V], [V-P]).
This method allows, as we know now, a generalization to any sub-Riemannian metric

on a “generic” two distribution in IR>.

Though looking far from the main concerns of Marcel Berger, the subject of this
lecture has something to do with what has been a good deal of his own work ; namely,
one of his successes has been the interpretation, in terms of Riemannian geometric
invariants, of the asymptotic development of the heat kernel of the Laplace operator.
In a parallel direction, G. Ben Arous [B-A], R. Léandre [L]|, G. Besson, (see also [A],
[Bi], [G]) working on the asymptotic expansion of the Green kernel in the theory of
hypo-elliptic operators, have pointed out the essential link between this expansion
and the distance and geodesic notions in an associated regular or non regular plane
distribution endowed with a Carnot-Carathéodory metric. The alternate name for

such a framework is “sub-Riemannian geometry”.

Anyway, geometers should be interested in sub-Riemannian structures for them-
selves, as did R.W. Brockett, R.S. Strichartz, C. Bar, U. Hamenstadt and also

M. Gromov, P. Pansu, J. Mitchell, because they are nice particular examples of non
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490 . LB IR L. vALERE BbOUCHRK

integrable distributions on manifolds, besides the expansion of the Green kernel of
hypo-elliptic operators.

One way of describing a regular or singular sub-Riemannian manifold M is pro-
viding M with a locally free, finite, constant rank p, bracket generating submodule £
of the module of vector fields x(M). An absolutely continuous (a.c.) curve is called

horizontal if its velocity vector lies a.e. in £.

Chow’s theorem [C], using the bracket generating condition, says that the space

of horizontal piecewise C!-curves joining two fixed points x¢ and z; is not empty.

The two main problems are then,

(i) among the a.c. horizontal curves joining zy and x1, does there exist some length

minimizing curve ?
(ii) if yes, how to characterize these curves ?

Now, provided the Riemannian manifold (M, g) is complete, it is well-known, in
the regular case, that the minimum exists and that standard variational methods of
Riemannian Geometry do not solve the sub-Riemannian minimization problem. In
contrast to the Riemannian case, where the energy minimizing curves are character-
ized as solution of a differential system (G), here, both notions can be generalized but
they are no longer equivalent [S]. The Maximum Principle of Control Theory was al-
ready known as a very good tool giving account of “abnormal” geodesics, i.e., curves
minimizing the energy between two given points but not verifying the differential
“geodesic” equation (G), generalizing the Riemannian geodesic equation obtained by
a classical variational principle (this was already realized in the regular case, see [Br],
[S], see also [Gr], [Mi]).

Here, we are using Control Theory from the very beginning of the definition of
singular, i.e., not constant rank, plane-distribution. This last setting out is original
and allows plenty of sub-Riemannian metrics on a given plane distribution. The main
result is showing the link between metric and distribution in the neighbourhood of
singularities through the Control space ; in the regular case, any sub-Riemannian met-
ric can be seen as the restriction to the plane distribution of some (actually infinetely
many) Riemannian metrics on M, whereas in the singular case, given any sub-
Riemannian metric, there exists no Riemannian metric on M, such that

its restriction to the plane distribution could be the given one.
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In section 2, we give an account of what is known about regular sub-Riemannian
manifolds M (the plane distribution is then of constant rank).

In section 3, we do our best to give a quick survey of the main ideas explaining
how the maximum principle works, following the inventors of the theory, see [P].

In section 4, we use, from the beginning, ideas of Optimal Control Theory and
describe the framework of a singular sub-Riemannian geometry, where the “horizon-
tal” singular distribution is generated by a module of vector fields, locally free of finite
rank p (definition (4-6)) ; possible metrics on such a plane distribution have to be
chosen carefully, otherwise the distance between two given distinct points of
the singular set in M could be zero or never be achieved by any horizontal
curve, as illustrated by means of the very simple Example (4-1).

In section 5, we merely prove that, even in this context, looking for a horizontal
length minimizing curve among horizontal a.c. curves v : I — M joining two fixed
points xy and x1, is equivalent to looking for a horizontal energy minimizing curve
between xy and z;. The first one is defined up to a.c. reparametrizations. One of
these provides the curve with a velocity vector of constant norm and is then energy
minimizing.

In section 6, we prove, applying Bellaiche’s method to this context [Bel], that
between two distinct points, within a compact cell K, the minimum of energy is finite
and is actually achieved on some curve.

In section 7, we use the Maximum Principle, knowing that the minimum of energy
is achieved on some curve to display necessary conditions in the form of differential
equations or conditions involving derivatives which are to be defined carefully in this
case. The result is that there exist three kinds of minimizing curves, either normal ()
or strictly abnormal (SAN), or both (NAN), exactly as in regular sub-Riemannian
geometry. Conversely, a curve satisfying the (N) or (NAN) condition are locally
energy minimizing curves, but as far as we know, there does not exist criteria to
tell when a (SAN)-curve is locally length minimizing or not. Actually, we have
now (1993) examples of a non length-minimizing (SAN)-curve for some codimension
one distributions in IR* (see [P-V-2]). Since the end of 1993 we know also that,
in dimension 3, the Montgomery example is a generic local model : the abnormal
horizontal curves drawn on the singular surface are (NAN) or (SAN), always C!-

rigid, and locally minimizing, whatever the sub-Riemannian metric [V-P]. Finally,
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we illustrate the method, in the singular case, by resuming the Example (4-1) and
constructing some special normal geodesics.

In section 8, we produce an intrinsic derivation D¢n defined on the cotangent fiber
bundle with values in the tangent bundle. It is an extension to the whole (T*M)? of
the projected (Vsym)e€ initiated by C. Bér [B], (its “derivation” was defined only on
the diagonal of (T*M)?, ours verifies D¢ = g o (Viym)e€). Our intrinsic derivation
allows a new way of writing the equations of normal geodesics (V) in the regular or
singular context as well.

In section 9, we go back to the regular case and give a new proof of the fact
that the example exhibited by R. Montgomery and simplified by I. Kupka (see also
[Mo], [K], [L-S]) of an abnormal (S AN )-extremal of the maximum principle is actually
a globally minimizing curve between two of its not too far away points, and is C*-
rigid, i.e., isolated with respect to the C!-topology, though evidently not isolated with
respect to the H!-topology.

2. REGULAR SUB-RIEMANNIAN STRUCTURES

In this section we merely sum up what is already known about geodesics in
sub-Riemannian geometry. Let us call sub-Riemannian manifold (M, E,G) an n-
dimensional manifold M, with T'M its tangent bundle, T* M its cotangent bundle,
provided with a C* p-plane distribution (p < n) of vectors termed as “horizontal”
vectors (B, C T, M), verifying the so-called Hérmander condition, that all the iterated
Lie derivatives of local horizontal vector fields by local horizontal vector fields above
a point x of M generate T, M. Let X, be an element of the fiber F,, and X any local
horizontal vector field extending X, ; then, let us denote by F1(X), = E, , Fa(X), =
E,+[X, By, Ep(X): = By +[X, Ep—1(X)]s, and py(X), the dimension of Ej(X)..

The non-decreasing sequence
(P (X)are e (X )
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is such that for £ > 2, px(X) : M — IN is lower semi-continuous. The vector
space Fo(X), does not depend on the choice of the locally extending fields X in E,
but only on the distribution E and the value of X, above x. Let us denote now by

(E1)e = Ex, (B)e =Ex+ Y [X,Ex_1ls, and pi(x) the dimension of (Ej),. The
XcE,
Hormander condition merely means that

Ve e M, Jro(x) / pro—1(x) <n, and Yr >ro(z),p(x) =n.

The map rg : M — IN is upper semi-continuous.
Further, every FE, is provided with a positive definite quadratic form, G, de-
pending smoothly on x. To the quadratic form G is canonically associated a linear

fiber bundle morphism g : T*M — T M, above the identity, and related to G by
G(X)Y), =< &Y >o=<n, X >;=<&, g1 >,=<1,9§ >s ,

where X, and Y, are two horizontal vectors above x, £, € ¢g7}(X,) and 0, € g~ (Yy),
are one of their respective inverse image by ¢,, and < , >, is the duality product
above .

Let 7 : [a,b] — M, [a,b] C IR be any continuous piecewise C! curve ; the curve
~v is called “horizontal” if its tangent vector +(t) at almost every point ¢, t € [a, b], is
in £,(+). As a matter of fact, a well known theorem due to W. L. Chow [Ch] says that
any two points of M can be joined by a continuous piecewise C' horizontal curve,
provided that the Hérmander condition is fulfilled. Then, it has been proved that the
definition of G permits to define a distance on M, called the Carnot-Carathéodory
distance.

Let z¢ and z; be any two points in M, let C,, », be the set of continuous piecewise
C! horizontal curves vy such that y(a) = zo , v(b) = x1, we get the definition of the

G-length for such a curve v as

b
le) = [ VGG dt

Then, it is known that

da (o, x1) = inf{lc(v) /€ Cxo,xl}
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exists and is achieved on some horizontal curve v ([S-1], [H]).

R. Strichartz showed also that, for some of these locally length minimizing curves,
one of the lifts £ in g71(%) of their tangent vector verifies a differential equation (G)
which is a generalization of the classical one in the Riemannian case (p = n), namely,
in a coordinate chart

1 OgM*

(G) (et 300

), =

In the case of the two steps strong generating Hérmander condition (i.e., VX, pa(X) =
n), it is easy to prove that p is even and all local length minimizing curves verify (G),
and reciprocally. In other cases there exist examples of curves which are length mini-
mizing, but do not verify (G), see [Mo], and section 10 below. R.S. Strichartz pointed
out this difficulty and showed, as already did R.W. Brockett, that the constraint for
curves being horizontal could be translated in terms of commands in the framework
of Control Theory, and that this kind of curves is known and called “abnormal” ex-
tremals in Control Theory. These abnormal locally minimizing curves which are not
solution of the classical Euler-Lagrange equations had been already detected by C.

Carathéodory [C], Mayer [Ma], and R. Hermann [He-1|, [He-2].

3. OPTIMAL CONTROL FRAMEWORK

In order to formulate the basic problem of Optimal Control, which we shall have
to solve in the sections following this one, we recall the definitions and results of the
theory which will be of some use for us. One first needs the definition of a system .5,

which will be given by the following data :

- a differential equation

SEMINAIRES & CONGRES 1
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- x belongs to a phase space M, which is an open subset of a Euclidean space IR"

or the closure of an open subset of IR" ;

- u belongs to a control space domain U, bounded closure of an open subset of a

Euclidean space IR? ;

- the map f: M x U — IR" is a smooth field over M, C* (k> 1,) C> or C* .

Let I = [a,b] be any closed interval in IR ; we shall denote by M(I;U) the
set of measurable curves : { @ : [a,b] — U } So, as soon as an initial point
x(a) = xg is chosen, to any such control curve @ are associated a uniquely determined
maximum real value ¢; € [a,b], depending smoothly on zo and 4, t;(zo, %), and a

unique absolutely continuous curve, integral of (C),

T:a,t)] — M,
called a C-path. We then give the following

3.1. Definition. — Let @ € M(I;U) ; let xy be any point in M and t;, a <t; < b,

be the maximum real values such that

Vt € [a,t1], z(t) = o +/ f(z(t),a(t)) dt exists,

the pair of functions

(%,4) : [a,t1] — M x U
is called “trajectory of the controlled system S” e

Let us denote by 7, the set of trajectories such that z(a) = xg.

From now on we shall often use the terms “almost everywhere”, or “for almost
every t”, this will be equivalent to saying “for every regular value of ¢”, with respect
to the control maps, thanks to the hypothesis of measurability. Let us then define

what it is.

3.2. Definition. — A real value 0, 0 € [a,b] is called regular with respect to the
admissible control 4, if for any neighbourhood U C U of a(6),

~—1
TG COIRED R
pu(1)—0 w(I)
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where i is the Borel measure e

In the following, the first problem will be to study the effects of variations of
controls onto the paths in M, and to manage to get any possible path 2* close to
an original one Z, through a class of variations in M([;U), with nice properties.
The class used by L. Pontryagin and coll. is the class of Mac Shane variations, i.e.,
the admissible controls different from the original one u, only on a finite number
of small intervals, but such that u* — u is an arbitrary constant on each of these
intervals. So, let (Z, @) be a trajectory in 7,,,, and let us consider Mac Shane variations,
u* : [0,t+ 0t] — U of @ : [0,t] — U, where 6t is any real number (see [P] for more

precisions) ; then, it can be proved that, in T;) = IR", the set of vectors

K(t) = { & (t+8t) —3(t) / (& (8), 3" (1) € Ty }

describes a cone. Reciprocally, for any X in K(t), there exists a real number € > 0

and a conic e-neighbourhood of X,
K.(X) = { eX+eY /Y eXt |V =1 }

such that any point inside the e-cone K. (X) is the end point z*(t+&dt) of a “pushed”
path through a Mac Shane variation @*.

The previous tools and notions take place in IR™ but can easily be interpreted
in an n-dimensional Riemannian manifold (M, g), by means of the exponential map
and the theory of differential equations, or simpler, by means of the Nash isometric
imbedding theorem.

Now, in IR", let ¢t and t/, t < t' be two regular values ; then, the differential
equation

dXe  9f* g
T R

(3-3)

permits to define a translation of Ty M to TzyM, called Ay, which translates
K(t) to K(t'). Then, we call “limit cone K(¢1)” the limit of the following set

K(t)= > AuK(t).

regular t’s
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Now, if g and x; are two given distincts points of M, we denote by
Towny = { (#,0) €T,y | Fi(zo,d) € [a,b], Fa:[a,b— U; i) = }

and by Uy, 5, the projection of 7, on IRP.

0,71
Besides this, we define a positive density cost function along a trajectory (z, @),

f2(z(t),a(t)), and a positive functional, called the “cost” of the system ()

t
(0. a0) = [ £@0.a0) i
The last definition implies that 3° is the solution of the differential equation
(Co) 9" =fz,u) .

Now, let y denote the points of IR x M,

{y = (yo,w)} :

where 3 is the cost functional, the value of which being considered as a new inde-

pendent coordinate. Now we can transform the definition (3-1) into (3-4).

3.4. Definition. — Let [a,b] be any closed interval in R, @ : [a,b] — U, a
measurable map, let zo be any point in M. Let t;, a < t; < b, be the maximum real

value such that

Vt € [a,t1], g(t) = (0, z0) +/ f(z(t),u(t)) dt exists ;

the pair of functions

(9,7) : [a,t1] — (IR x M) x U

is called “Trajectory” (with a capital T) of the controlled system S, with cost density

function fO e

Of course, as soon as an initial point Z(a) = z¢o € M is chosen, to any control

u(t) : [a,b] — U is associated a uniquely determined Trajectory

(G(1), a(t)) : [a, ] — (R x M) x U

SOCIETE MATHEMATIQUE DE FRANCE 1996
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because of the differential equation (C, Cy).

Let us call accessible set from z( the set of all §(¢) that we just defined, for
any t and through any measurable map @ : [a,b] — U. The problem of Optimal

Control is then :

3.5. Problem. — Let xg,x, be two given distincts points of M, find at least one

control curve 4 : [a,b] — U, such that
('fﬂ ﬂ’) 6 7;0,:51 b

and

@) =inf { ")/ @0 € T } @

3.6. Notation and Definition. — A Trajectory as just defined (y,u) is called an
“optimal Trajectory”, z, u, y° are respectively called “optimal path” from xg to x1,

“Optimal Control”, and “optimal cost” e

In many technical problems of Optimal Control, U is a polyhedron, and the
Optimal Control because of the Maximum Principle (see Theorem (3-11) below) jumps
from a vertex to another one ; this is why the class of functions u must contain at least
piecewise C° ones ; it is even possible to deal with measurable functions. The various
controls in action are not necessarily in the neighbourhood of one of them ; this is
the reason why the proof of the Maximum Principle is not simple, but at the same
time, more powerful than the classical Lagrange calculus of variations (which becomes
a particular case of Optimal Control theory), as was pointed out by L. Pontryagin
himself ([P] chap. 5).

The idea is the following. When the controlled system is not linear, the set of
accessible points ¢(t) obtained as points of the integral curves of (C) through all
controls in U, is non-convex and infinite. The Trajectory (y(¢), u(t)) is optimal if and
only if the zero component 7°(t1) = f;l fO(z(t),u(t)) dt is minimum compared to the
other §°(¢1)’s, and then the end point of the optimal Trajectory lies on the boundary

of the accessible set in IR""'. Moreover, if one of the Trajectories which goes from
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(0,20) to (y°, 1) is optimal, the only controls @ € U, which will be chosen in order

to be compared with the Optimal Control u are Mac Shane variations.

For almost every ¢, t € [a, 1], the set of accessible points from {y(a)} by trajec-
tories generated by means of Mac Shane perturbations on controls is the cone K(t),
and it can be proved ([P] Lemma 4, p. 90) that the half-line with g(t) as origin and
oriented towards negative y°’s has an empty intersection with the interior of the cone
K (t). Then, there exists at least a supporting hyperplane Py passing through (%),
and a perpendicular vector A(t) to Py 4y, which can be seen better as a non-zero ele-
ment of T ) (M xIR) = IR™*! with Pyt as its kernel. Thus, the half line [§°(t), —oc],
oriented towards negative y°’s, is either outside the cone, or at most lies on its bound-
ary. The 1-form S\(t) is determined up to a multiplicative factor, usually it is chosen
in order to make the function < A(t), X > negative for any X inside the cone K(t),
and such that

then, intuitively,
H(y(t), v, A1) =< A@), f(y(t),v) >< 0,

for any control v in U. Furthermore, when u = (t), the 1-form A(¢) is also proved to

satisfy the following adjoint equation of the translation (3-3)

OH

(3-7) )\a — —% .

These properties are proved to be realized for almost every ¢ and also necessarily for
t1, thanks to the limit cone K(t1). This, intuitively, leads to the contention of the

Maximum Principle.

Let Ao, A1, ..., \n be introduced as auxiliary functions, namely the (n+1) components
of a 1-form over R x M, X : [a,b] — IR x M, supposed to be solutions of the
differential equation (3-7) for almost all ¢, t € [a,b]. Again, as soon as x(a) and
an admissible 4 are chosen, the Trajectory (7, u) is completely determined and then

A [a,b] — IR™! up to a positive multiplicative factor, as well. The solution X of
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the linear equation (3-7) is also absolutely continuous with measurable derivatives.

Let us denote by 7.* and call lifted Trajectories the corresponding triplets

To,T1?
Tow ={ 303 / 5.9) € Toy, | -
Now it is possible to give the following

3.8. Definition. — Let us call Hamiltonian of Control Theory, the C°°-function
H: (IR x M) x UxR"™ — IR such that

H(y,u,A) =< X, f(y,u) > e

Then, the differential equations (C) and (3-7) can be reformulated as

OH
B-H-1) 9 = —
0o
(3-H) OH
3—-H—-2) Ay = ——
(3-H-2) -
with  =0,1,...,n.
3.9. Notation. — Let us denote by 7, the set of lifted Trajectories satisfying

(3-H) o

3.10. Remark. — The map H does not depend on y°, so that the zero coordinate
equation implies immediately the following result : along any lifted Trajectory,

OH

= 21
0 20

0;
then, \o remains constant all along a lifted Trajectory, and furthermore constant and

non-positive all along a lifted optimal Trajectory, because of the chosen sign of \ e

3.11. Maximum Principle. — Let @ : [a,b] — U be a measurable control, such

that the associated lifted Trajectory (4, @, \) lies in T.* Then, if (7,4, \) is optimal

xo,T1"

on [a,t1] C [a,b],
1°) (g, 1, \) lies in T;5, A#0;
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2°) there exists a real non-negative constant B, such that, for almost every t, t €

[a, tl]

3.12. Remark. — In case it would be specified that t, is fixed and equal to b, the
maximum principle is unchanged except the very last conclusion : there exists a real

non negative constant B, such that, for almost every t,t € [a, b],

(3-M-b) { (i) Ao(t)=-B<0 , M(g(t),A)) is constant e

4. THE SINGULAR CASE : AN EXAMPLE

In this section, we show how the formalism of Control Theory has to be used
from the very beginning of the theory of singular sub-Riemannian structures in order
to give a meaning to the quadratic form G. The new formalism leads us to claim that,

in the neighbourhood of singular points,
(i) the singular sub-Riemannian metric has to be chosen carefully ;

(ii) it is impossible to extend the metric G, defined on &,, to any Riemannian metric

G, defined on T, M (Theorem (4-8)).

4.1. Example. — To point out the difficulties which could occur in the singular

case with respect to the sub-Riemannian metric, if not chosen carefully, we will have
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a look at the very simple following example. On M = IR?, let us consider the module

& generated by

. 0
1 = =
ox
(4-1) o ch
9 = oy

Let us suppose that each fiber £, ) of £ is provided with a scalar product G, )
such that, for any C'*°-vector fields X and Y in &, the map G(. \(X,Y): R? — R
is C°°. Then, whatever the curve v : [a,b] — IR?, horizontal, i.e., ¥(t) € Eyw) ae.,

and of class H' (see section 6), we can define its energy

b
Ba(ylait) = | Gon (3(0).4(0) d

and its length

l60) = [ /G0 GOAB)de

The generating Hormander condition is verified ; then, any two points in IR? can
be joined by a horizontal H'-curve, and it is then possible to define a map with

non-negative values

o ((@o.yo)s (@) = it {1(3) / y:[0,0) — R’ yeH!
10) = (@o,50), ¥(1) = (a1,91) | -

The question is “what are the sufficient conditions on G in order to make ¢ a dis-

tance 7" Let us develop two distinct simple examples.

(4-1-i) - If G is the induced metric on &, ,) by the canonical metric of M = IR”.

Let us consider the broken lines v, : [0, nt | — IR?, such that A =, (0) = (0,0),

() = (,0), (") = (1), B = ("

n n’
2
horizontal and their length is nt , thus 04(A, B) < 1. But if 4 is any horizontal

) = (0,1). These curves, v,, are

path joining A to B, there exists n such that

la(vn) <la(¥) -
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Thus dg (A, B) = 1, and there does not exist any horizontal length minimizing

path joining A to B.

(4-1-ii) - If G is the metric induced by the quadratic form
ds® = da® + 2°dy”
let us consider the same sequence of paths joining A to B. Then, here

la(vn) = ? and inflg(y,) =0,

implies that
dc(A,B)=0.

These examples show that G cannot be chosen without caution, in some sense it
has to be bounded from below. This result is justifying the way we shall define G in

this section.

We shall give now a particular notion of a singular sub-Riemannian man-
ifold. Let (M,g,&,¢g) be an n-dimensional, paracompact C°-manifold M, g its
Riemannian metric, T'M its tangent bundle, T*M its cotangent bundle, £ a rank
p, locally free C°°-module of vector fields, (p < n). Similarly to the regular case,
let us call “horizontal” the vector fields in £ (£, C T,M x € M), the dimension
of &;, p(x) is a lower semi-continuous function of maximum value p. Furthermore,
gz To M — T, M, is a C"°°-field of linear maps, positive and symmetric in the sense

that for all X,Y € T, M and for all ¢, € g;*(X,), for all n, € g7 1(Y,),
< G2éa, Yo >=< gaNg, Xz >, and < g.&, Xy > >0,
and such that
Img, =¢&, .

The module £ is verifying the so-called Hormander condition, i.e., all the iterated Lie
derivatives of local horizontal vector fields by local horizontal vector fields, above a

point x of M, generate T, M.
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Now, let X, be the value of a horizontal vector field above x, and X any local
horizontal vector field extending X, ; let us use the same notations as in the regular
case £1(X )z =&, E2(X)w = E+[X, €2, E(X)z = Ex+[X, Ek—1(X)]a, and p(X) .
the dimension of & (X),. The vector space £2(X), does not depend on the choice of
the locally extending fields X in &£, but only on the module £ and on the value of X,
at  ; more generally, the vector space (X ), depends only on the (k — 2)-jet of the

field X in £. The non-decreasing sequence

(P (X0 26X )

is such that, for any k > 1, pi(X): M — IN is lower semi-continuous. Let us denote

now by

Xe&,
and, as before, in the regular case, by pi(z) the dimension of (£x)., and the lower

semi-continuous non-decreasing sequence, by

<p1(:1:), ooy pr(T), . ) ,

called growth vector at z of the module £. The Hormander condition merely means

that
Ve e M, Iro(z) €EIN /[ pry—i(z) <n, Vr=ro(z), pr(z)=n.

The map 79 : M — IN is upper semi-continuous. If p(z) were a constant p, the

structure would be regular as the one described in section 2.

The following two propositions will help us to use Control formalism in our own

definition of singular sub-Riemannian geometry (see [Os| pp. 122-123).

4.2. Proposition. — For any smooth manifold M and any integer p > 0 there is a
one-to-one correspondence between smooth real vector bundles U of rank p over M

and isomorphism classes of locally free C*°(M)-modules £ of rank p e

4.3. Proposition. — For any smooth manifold M, let £ be a locally free C*° (M )-
module of fixed rank p > 0, and let £* be the dual. Then £ and £* are modules of
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smooth sections of smooth coordinate bundles representing the same smooth p-plane

bundle over M, say U e

In order to translate the constraint of being horizontal for vector fields, we shall
consider the real vector space IR? in which lie the controls, as the model Euclidean

space for the fiber space of rank p, U, the one described in proposition (4-3).

Let us denote h any Riemannian metric on the vector bundle U, and Af : U* — U,

the canonical isomorphism associated to h. One gets the following diagram

Ur L ey
R¥ | g
(4-4) | LA o
T P
LY M

where H is a singular vector fiber bundle homomorphism above the identity, and £ is
the pushforward by H of the space of sections of U. Let P be the natural projection
P:TM — M.

4.5. Notation. — Let us denote by H(x) - s(x), or H, - s(x), the image through H

of a local section s of U, above the point x € M e

The existence of H is guaranteed thanks to proposition (4-3), evidently the rank
of the linear operator H(x) is p(z).

Then it is natural to choose as quadratic form G, on &, the one corresponding to the
vector bundle morphism g = H o h* o H*, making the diagram (4-4) commutative.

So, G, is completely determined above each point x, and we get the following

4.6. Definition and notation. — Let us denote by (M,&,g), and call “sub-

Riemannian manifold”, an n-manifold M, provided with

(i) a locally free rank p, p < n, submodule of the module of vector fields on M,
denoted by &, which can be seen as the pushforward by some C°° fiber bundle
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homomorphism H : U — TM of the space of sections of some rank p fiber

space on M : U,

(ii) a linear fiber bundle homomorphism g : T*M — TM, such that g = Hoh*o H*,
where h is any fiber metric on U, hf : U* — U is the associated canonical fiber

isomorphism between the dual fiber space of U* and U.

A manifold provided with such a structure (M,E,g) will be called “regular” if
Im g is a subbundle of TM, of (constant) rank p, singular, if Im g is not of con-

stant rank e

Actually, the definition of (M, &, g) is stable with respect to the fiber bundle

isometries ¢ : U’ — U for
g,:Hloh/ﬁOH,*:HOSOOh,ﬁOSO*OH*:HohuoH*:g.

Now, because of the regularity of hf, we get the following

4.7. Proposition. — For any x € M, there is a one-to-one correspondence between

horizontal vectors X, in Im H, and “control vectors” s, such that
sz € (Ker Hx)Lh cUu,.

Furthermore, for any &, € g;'(X,), hf o H:(¢,) = s,, and it is possible to define a

unique quadratic form G, on Im H, by setting
Go(Xg, Xo) = by (s(x), s(x)) = inf{ hy(o(x),0(z)) / Hy - o(z) = X, } .

Then, G, is a positive non-degenerate quadratic form on Im H,, and, for any two
horizontal vectors X, and Y, of &, & € g7 (X,) and n, € g7 (Ya), si(x) =
hf o HY - &, and so(x) = hf o H} - 1.

Go( Xy, Yy) =< &, Yy >=< 1y, Xy >=< &4, 9allz >

=< nx,gajgx >= h:z: (81(33), 82($)> b
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Let N be the annihilator of £ in T*M ; then, at each point z,
Kerg, D KerH: D N, ,

they are equal if and only if p(z) = p = const.

Proof. Let &, 1z, be any two 1-forms of T M, h; ! be the quadratic form induced by
hy on U} ; then,

<&z GaMe >=< &z, (onhgjOH;)-ﬂx >:<H;'£w7 (hgsoH;)'%>

Ih;l(Hi'fo, H;'nx) .

Then, < &, , gz, > is symmetric, and < &, , g,€, > is zero if and only if {, € Ker H ;
we also get

Kerg, = Ker H .

Furthermore, it is a well known result of linear algebra and the theory of quadratic

forms that

Im (h* o H*) = (Ker H,)™ |

and, for all o, in U,, there exists s, € (Ker H,)'", such that
Oy = Sy + 71, with 7, € Ker H,, ,

and then,
hx<0x70x) = hx<5337 53:) + hx(TxaTx) Z hx(sxa 53:) . L

Our next remark will make obvious the essential difference between the singular case
and the regular one. Let z be a point such that Ker H(x) # {0}. Let V, be a
coordinate open cell of M, g-neighbourhood for x, trivializing both the vector bundle
TM and U. As € is locally free, there exists a sequence (x;) € V, converging to z with
respect to the topology induced by the metric g, such that H(x;) is of maximal rank
p. Thus, there exists a control v in Ker (H(x)), such that h, (u,u) = 1, and a sequence
of controls (u;), u; € <Ker ij)Lh C Uy, = (IR, hy,), such that hy, (uj,u;) = 1,

converging in the sense of the product (g x h)-topology to u. Then, to the sequence
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(xj,u;) € U is associated through H, a sequence of horizontal vectors (xj, H(z;) -uj)
converging necessarily to (x,0) in 7'M, with respect to the regular metric g, because

of the smoothness of H, but such that
v, G(ij “uj, Hy, ~uj) = h(uj,u;) =1,
because of the definition of G, (4-7), though of course
lim g(Hy, -u; , Hy, -uj)=0.
Thus, we get the following

4.8. Theorem. — In singular sub-Riemannian geometry, if Ker H(z) # {0},
for some x, in any g-neighbourhood of x, there exists a sequence of points (z;),

g-converging to x, and a sequence of non-zero controls (uj € ﬂ_l(xj)) such that

8a; (ij “uUj ij 'uj)

lim
G, (ij “uj, Hy, 'uj)

=0.

So, it is impossible to extend the metric G, defined on &,, to any Riemannian metric

C:’x, defined on T, M e

Actually, let g, G be given, let K be a compact cell of M, and denote by X the

set of singular points of H inside K and
UgM:{XeTM/g(X,X):l }

Then, there exists § > 0 and a horizontal thickening J-strip of ¥ with respect to g,

namely
HStrip5Z:{ (expg)e tX /0<t<3, 2€X, X €Ug® N 5}

such that, for any horizontal vector field such that g(X, X) = 1, inside HStrips%,
G(X,X) > 1, and, outside HStripsX, there exist positive constants A and B such
that A < G(X, X) < B. Thus we get the following theorem
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4.9. Theorem. — Let K be a compact cell in M and UgK be the unitary fiber
bundle with respect to the metric g. Then, there exist two strictly positive constants,
a and A, such that

VX € UgK, a<GX,X)< A,

if and only if all points in K are regular e
We get also the following

4.10. Corollary. — For any positive numbers § and ¢, it is possible to choose a

Riemannian metric g on M such that, for any horizontal vector field Y # 0,
GY,Y)>g(Y,Y) inside HStrips> ,

and

G(Y,Y)=g(Y,Y) outside HStrip; e

4.11. Definition. — From now on, we suppose that g is chosen in order to have
everywhere in K

VY €&, Y #£0, GY,Y)>g(Y,Y)e

4.12. Example (4-1) revisited. — We go back to Example (4-1), and now, we shall
use one of these metrics described in this section, with necessarily U = TM = R?,

choosing as h, the canonical metric on each U, .y = IR?. Then, the matrices of g and

H, in the frames {82, g}’ and { dz,dy } are such that
T oy

(4-1-iii) g:HohﬁoH*:(é 3?2) :
Let us choose g as the canonical metric, then

il_% g(€27€2)/G(527€2) =0.
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The horizontal curve 7 : [0,1] — IR?, given by {v(t) =(1—-t,1—-t)/te]o, 1[}, has
g-length /2, whereas its G-length is infinite. A horizontal curve going to the y-axis
has finite G-length if and only if the vertical component of the velocity goes to zero
faster than = on the curve.

As a matter of fact, the horizontal curves {’y(t) = (1—t,(1-t)*)/ t € [0, 1[} have
finite G-length as soon as o > 1, as soon as they arrive to the origin perpendicularly
to the y-axis, in the horizontal direction, otherwise naturally the vertical part of the
tangent vector tends to a non-horizontal vector of infinite G-norm.

We shall resume Example (4-1) in section 7, illustrating the construction of

geodesics by the application of the Maximum Principle.

5. HORIZONTAL CURVES, LENGTH AND ENERGY

In this section we will show that, to any horizontal path v : I — M, where I is
an interval [a,b] € IR, can be associated a unique control s : I — 4*C and a unique
1-form £ : I — ~v*(T*M) with nice properties. Then, among the horizontal curves
joining two given points of M, as in Riemannian geometry, seeking the minimum
of G-length is equivalent to seeking the minimum of the G-energy. Let us consider
o : I — C, a measurable map, such that 7o o(t) = v(t) is an absolutely continuous
curve in M, i.e., necessarily 7 oo is an injective map. Then, (H omoo)- o is a section

of T'M above the curve, using the following notations
Hoo(t) = H(w ° a(t)) o(t)
where - is the matrix multiplication.

5.1. Definition. — A curve, 7 : [a,b] — M, is called “horizontal”, if there exists

above 7(t) a measurable section of C, o(t), such that

Vt € [a,b], ’)/(t):WOO'(t):WOO'<CL)+/(HO?TOO’)-O'(t) dt ,
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or equivalently

’}/ = moao [ ]

(5-2) {7 = (How)-o ae.

Thus, the curve v is absolutely continuous, its tangent vector exists a.e., and when it

exists, it belongs to Im (H).

Now, we want to prove the following theorem
5.3. Theorem. — Let v be a horizontal curve defined as above. Then, above 7,

there exists a unique control s : I — ~*C, and a unique 1-form & : I — ~v*(T*M),

modulo g, and modulo a set of t's of measure zero such that

L

s(t) € <Ker Hv(t)) a.e.
J_g

E(t) € <Ker (H:;(t)> a.e. o

Proof. In order to do this, let us consider a covering of I by means of sets Ay , 0 <
k < p, where
Ay ={ter/dimIm Hy =k }.

Let us call p(t) the rank of H,; . The function p : I — IN is well defined for any ¢

and is lower semi-continuous ; then,

U A = p_l ]kv +OO[
1>k

is open in I, and is, then, a union of open intervals, then it is measurable. For any

k € IN, the set Ay is given by
A = p_l]k_ 17+OO[ \ p_l]ka +OO[ .

The set A is then measurable as difference of two measurable sets. Further it is the
disjoint union of semi-open intervals and single points. Let us call them Iy, ,, / pi €

M. Then,
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I = U U Iy where M = U M, .

0<k<p ureM 0<k<p

The set M could be any huge index set, and the union is a disjoint union. The
measure of the subset of I, union of I ,, which are single points, is not necessarily

Z€ero.

The curve ~ is supposed to be absolutely continuous. Then, the set of points
where its tangent vector is not well defined is of measure zero. The set of points which
are boundaries of I, ,, on the whole of I could be of measure not zero, then necessarily
in this case, the curve v goes through the “main part” of the set of boundary points
with a well defined velocity vector. We have just seen that the total measure of the
set of those points, with no velocity vector, either because of the curve itself at a
regular point of H or because of the singularities of H is necessarily zero. There is
an illustration of some of these situations associated to the singularities of H in the

example of the section 8.

Above each Ij ,, the fiber spaces v*(C) and v*(T*M) are trivial fiber spaces.

Then there exists a trivialization such that

V(C) /Ty = Inpy x (Ker H)'" xKer H = I, x RF x RPF*
V(T*M) /Ty, = ITppy, % (Ker H)™® x Ker H* = I, x R¥ x R""

The trivialization fiber frames above each I, ,, can be made orthonormal with respect
to h in (C), and with respect to g=1 in v*(T* M), where g~ is the non-degenerate
positive quadratic form induced by g on T*M. This makes the matrix of the restric-

tion of hf o H* to Iy, ., from IR* to IR" diagonal and non-degenerate.

Then, if we come back to o, the control given in the definition of the horizontal
curve v, on each Iy ,,, the restriction of o, in the previous trivialization, can be

written

Ok, pu (t) = ( VE, ke (t)7 Sk, (t)v Uk, pr (t) ) .

Then, on each Iy ,, ,
mos (t) = moo ()
Hos(t) = Hoo (t) .
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And
() = (@) + Y /

and, as a consequence, the section s of v*C, defined by these restrictions on each

((H07) sk (t) dt
0.

k,#km

. . . . leg .
Iy ., is @ measurable section. The associated 1-form, &, in (Ker H *) €. is defined

modulo g. O

Furthermore, for every t in I, we get

hoey (5(2), 5(2)) = inf{ how (0(t),0(t) | y=moo }

because of the definition of G, through the proposition (4-7). It is possible to define
formally the following positive functionals on horizontal curves, but in the singular
case they are not necessarily finite, even if the g-distance of the two points is finite

(Example (4-1-iii)).

5.4. Definition. — Let us denote by

b b
) = [ VGG, dt = [ oo (s(e).5(0) e

and call it, when it exists, the G-length of the curve 7.

Let us denote by
I I

and call it the G-energy of the t-parametrized curve vy e

But, we know that

b b b
) = [ VEGA dt = [ i (s0.50) de = [ VAT > dr

Similarly,

b b b
Batit) =5 [ GGA)dt= [ o (s.5) dt =5 [ <e050) >

where s, ¢ are the ones just defined in Theorem (5-3). In both cases, the last integral
does not depend on the chosen metric g, and, as soon as one of these three integrals

exist, necessarily, the other two do too.
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Moreover, it is well known that, because of the Schwarz inequality,

</ab bl dt) < (b0 /ab AR dt

a horizontal parametrized, absolutely continuous curve which realizes the minimum
for the energy, if it ever exists, has necessarily its parameter proportional to the G-arc

length such that
17(t)|a = la()/(b — a) = constant

(see [L-S] for the existence of such reparametrizing of horizontal curves). It is then
also a minimum for the length. Conversely, if a horizontal parametrized a.c. curve
realizes the minimum of the length, among the reparametrized curves defined on
the same interval [a, b], the one with its parameter proportional to the G-arc length
realizes the minimum for the energy. Then, when looking for the minimum of length,
among curves which are defined on a given interval [a, b], we are led to look for energy
minimizing curves among those horizontal a.c. curves which are defined on the same

interval [a, b].

6. DISTANCE AND ENERGY

In this section, we suppose the Riemannian manifold (M, g) (definition (4-11))
connected and complete as before. Let g and x1 be any two points in M, and we want
to prove that the sub-Riemannian distance is achieved on some horizontal absolutely
continuous curve, even in the singular case. The proof will be adaptated from the

proof used by A. Bellaiche [Bel].

Thanks to the Hormander condition and the theorem of Chow [Ch] the two
distinct points o and 1 can be joined, at least, by one horizontal piecewise C'!-curve

4 I = [a,b] — M, with G-energy Eg(7) = A > 0. Let us consider the set of
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parametrized absolutely continuous curves
Covor(GA)={~v:IT—M /| ~(a)=mzo,v(b) =21, Eg(y)<A}
provided with the topology of uniform convergence associated to g such that
VX el gX,X)<GX,X)=Vy€Cya([;A), Eg(v)<Eqg().

Thanks (4-7), it is still possible to define the energy of these horizontal curves.

Let us denote by
Moo (LA)={v: I —M | ~(a)=z0,7(b)=21,7€E, Ea(y) <A} .

Clearly, Hyy 2, (I3 A) C Cyy 2, (I3 A), because of (4-11).

Theset K = B (v)<A Im~ isacompact subset of M with respect to the metric

g. Moreover, z, z1, and the images of the curves in Hy, o, (I; A) lie in K.

The set Hy, ., (I;A) can be provided with the H' topology, i.e., the topology
induced by the H!-distance, defined as follows

b
A3 (71,72) = dé (11(a),2(a)) +/ h(s1(t) — s2(t), s1(t) — s2(t)) dt

a

where v, and 2 are two curves of Hy, o, (I;A), s; and sy are the associated unique
sections of Theorem (5-3), and the integral is computed on the union of disjoint
intervals Ir, 1, M Ij, gy, - It is worth paying attention to the fact that C! horizontal
curves are dense in H,, ., (I; K; A) with respect to the H'-topology, (Siissman, private

communication).

We shall prove the following

6.1. Theorem. — Let (M,E,g) be a singular sub-Riemannian manifold of class
at least C', complete with respect to some Riemannian metric. Let xq,x1,1,A be
defined as above, then, among the curves of Hy, », (I; A), there exists at least one

horizontal curve -y, such that the infimum of the energy is achieved on -y e

As we have seen in section 5, the infimum of length is also achieved on 7.
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6.2. Definition. — Let (M, E, g) be a singular sub-Riemannian manifold of class at
least C'. Let xg,x1,1, K, A be defined as above, we shall call “horizontal distance”

between xq and x1, and denote dg(xg, 1),

de(zo, 1) = inf{ V2 (0—a) Ba(vit) | ¥ € Hagor (I; K;A)} @

It is well known that the infimum of a lower semi-continuous function on a com-

pact set is achieved. So Theorem (6-1) will follow from the following lemma

6.3. Lemma. — Inside the functional space C(I; M) provided with the topology of
uniform convergence
(1) Mgz (I3 A) is compact in Cyy 2, (I3 A) ;

(1) Egq is lower semi — continuous on Hyy 4, (I3 A) e

Proof (of Lemma 6-3). We have to first prove that for all ¢, ¢t € [a,b], Hauy a2,
(I;A)(t) is compact in K, and second that H,, ., ([;A) is equicontinuous. Then,

Ascoli’s theorem implies (7). On the way, it will be necessary to prove (ii).

Consider a sequence (v; = m05s;) in Hy, o, (I; A) converging uniformly to a continuous
curve 7 in Cy, 5, ({; A), with respect to the metric g. For every j, for every t € [a, b],

we have .
10 =@+ [ He(r) - ui(rr
We already know that Im () lies in K which is g-compact by definition.

The sequence E¢(7;) of strictly positive real numbers is bounded by A, and it
is possible to extract from (vy;) a subsequence (indexed by the same letter) such that

E¢(v;) converges to liminf Eg(v;) = Ey < A.

Let us create a finite subdivision
a=th<th <..<tp<...<tjm=0b Ik:[tk—latk]

such that, for any j, v;([tk—1,tx]) C Vi C Uy, where Uy’s are TM and C trivializing

coordinate open sets, and V}, is a compact cell. Now, because of the trivialization of
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C above Uy, to every ~;/I} is bijectively associated a control vector s;/1Ij : I, — IR

such that s;(t) € (Ker H, ())*", and

%‘(t) = ’Yj(tk—l) +/ (Hovj) - 8; dT .

te—1
Then,

m 1 te
Eaty) =Y 5 [ aesm(ss(rhis(r)dr < 4.
k=1

te—1
The spaces
Wk:{uzlk—>]Rp }, VE, 0<k<m

provided with the L? norm

/ " h(u(®), ut))dt

tr—1

are Hilbert spaces.

In the Hilbert space W, the closed ball
B(0,2A)

is a weakly compact subset of Wy. Thus, there exists a control function vy, : I, — IR?

and a subsequence (u;, ) of (u;x) = (s;/1)) such that v is the weak limit of (u;, ).

As
Vtely, ()= lim (),

j—+oo

v(t) = lim ( vi(te—1) + /t (How;) - uj dt ) ,

J—too te—1

t
or, v(t) =v(tp—1) + lim ( / (H ovj) - uj dt ) .
te—1

jortoo

But, whatever w : I, — IR?, and t € I}, there exist strictly positive numbers B, C

such that

2 2

t t
‘/ (HO’yj—HO’)/)'wdT) SB)/ (Hoy;—Hox) wdr
te—1 te—1

g (eucl)
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t
< B<tk—tk_1>/ [(Homy— Hom) w iy dr

te—1
t
SBC(tk—tk_l)/ \(Ho'yj—Ho'y)-w@dT,
te—1
thanks to Schwarz inequality and the equivalence above V;, between g and the Eu-

clidean metric on fibers of TM /U = IR".

Further, we can consider H as a section of the local trivial fiber bundle U x IR @ IR"
provided with the fiber metric h~! ® g, smooth on V;,, and lim 7vj = v uniformly with
respect to the g topology. Then,

t
lim \(Ho'yj—Hoy)~w|édT:0.

Jk—00 tr_1

Moreover,
tk
2O =t + B ([ Lo ((Hom)ws) (1) dr )
J—=+oo te—1
tk
= (tk-1) +/ Lty (H o) - vp) dr .
tk—1
So we get
t
O Vel W =yto)+ [ ((Hea)w) (dr.
tr—1

Now, we begin with the sub-sequence (u;, ), such that the restriction to I; converges

weakly to the measurable function vy : I — IRP. Then on I,

vtel . ) =~a) + / (H o)1) (r) dr =lim(v;, (1)) ,

because of the weak convergence. Now, starting from the previous global sequence
(74, (£)), we extract from the associated (u;,/I2) a new sub-sequence (uj,), weakly

converging on Is to vs, such that

Vte D, A(t) = () + /t((Hoy)-vg) () dr .
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Finally, collecting the results step by step, from 1 to m, the last extracted subse-
quences (5, (t)) and the associated (u;,, ) are well defined on the whole interval I, and
(uj,,) admits as weak limit the measurable map v, such that v/l = vy, 1 <k < m.

One gets, globally,

(6-5) () =1(0) + / (Hon)-v) (r) dr .

This relation means that the limit curve v is absolutely continuous and horizontal
for, since H, though singular, is a fiber bundle homomorphism, v (t) belongs to
77 (y(t)) /1) a.e. and there exists a measurable section of C locally described by vy

such that
dy

(1) = (H o) u(t)

d
and ~v(t) = Po d—Z(t) = mow(t), where P is the canonical projection TM — M.

Furthermore, to prove the relative compactness of Hy, », (I; A) with regard to Cy, 4,

(I;A), it remains to prove Eg(y) < A, but the lower semi-continuity will imply
Eqc(y) <liminf Eg(y;) < A,

and the proof is over.

To prove that Fg is lower semi-continuous, let us remark that for any wy, and
any w; € IR?, and (y;) being the extracted sub-sequence of the last step
]EI—FOO (h"}’j(t) ('LUk, ’LUZ) - h’y(t) ('LUk, wl:)) =0,
but
lim (h, (£)(s; —v,s; —v)) >0

j—+oo

implies, in restriction to Iy,

jiiinoo< Ea(v;) - /

a

b b
1
ey oy (s00) dE + 5/ oy ()(0,0) dt ) 2 0.

Then, for the restrictions to I s,

b
liminf Eq(vy;) + Eg(y) > lim ( / by (85,0) dt ) )

j—+oo
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but v is the weak limit of s; along I}, and

b
lim </ Pyt (85, 0) dt) =2 Eg(v);

oo

SO

liminf Eg(vy;) > Ec(y) .
Then, Eq(y) < A and Hy, o, (I;A) is closed. Now
t/ 2
d§<7j(t)77j(t,)) < ( /t g’Yj(T)(;YjvgyJ') dT)
t/
<t=t] [ gyl indr
¢

and, because of (4-10) and (4-11), the relations

t/
d2 (v;(t),7;(t)) < \t—t’l/ G, ) (Y5, 79;) dr
t
<2[t—t'| Ea(vy;t) <2t —t'|A

imply the equicontinuity of Hy, o, (I3 A) in Cyy o, (15 A). O

6.6. Remark. — The G-length minimizing curve between xy and x; does not need

to be even piecewise C', it could a priori be only absolutely continuous.

7. MAXIMUM PRINCIPLE AND HORIZONTAL GEODESICS

From now on, we will term geodesic a G-energy minimizing curve called either
normal or abnormal, or both, according to the different cases pointed out by the
Maximum Principle. In this section, we show how the Maximum Principle is providing

necessary conditions involving a lift of the velocity vector in g=*(¥) of a G-energy
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minimizing curve 7, even in the singular case, the abnormal geodesics appear as a
limit case, when A goes to zero (7-G-1), (7-G-2).

Let, as above, (M, &, g) = (M, U, H, h) (see (4-6)) be a singular sub-Riemannian
manifold,with H of class C*, (1 < k), K
two points in K, I = [0, 1].

a compact subset of M, xo and x; be any

We know that the length of a curve does not depend on the bijective absolutely
continuous changes of parameter, and that the minimum of length is particularly
achieved on a parametrized curve which realizes as well the minimum with respect to
the energy with a velocity vector of constant G-norm, ¢ almost everywhere. As, in
this section, the interval of definition of the curves is chosen to be [0, 1], the velocity

vector constant G-norm is

A(t)|e =la(¥) =c, ae. .

Under these conditions, any curve in H,,., (I; K; A), whatever its parametrization,

has its energy larger than

1

1
Pa() =5 [ 16()*dt = 31()*

Let & be any curve in Hy, ., (I; K; A) such that its image lies in K and its energy
E(z;1;t) > % lo(%)? is finite. Then, if we choose any positive constant A larger than
E(z;1;t), we know that there exists at least one horizontal curve ¥ € Hy, s, (I; K; A)
with %lg(ﬁ)Q < A, such that the minimum of G-energy is achieved on this curve
between xy and z; (see section 6). We will look via the Maximum Principle for the
necessary conditions verified by such a curve 7. In order to do so, we want first to

specify the domain of controls in IR”.

Evidently, if a trajectory is optimal between xy and x1, it will be optimal between
xo and (t), for any t, 0 < t < 1. For if it were not, there would exist a new a.c.
horizontal minimizing curve 1 € Hyo5(1)([0,1]; K; A) between xo and ¥(t), strictly
shorter than the previous one 74/[0,t], with |1(7)|¢ < lg(¥) and the curve

QS Hwowl([07 1]§K3 A),
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such that v/[0,t] = v1/[0,t] , v/[t,1] = 4/[t,1] would be strictly G-shorter than 7,

with velocity norm

tnle + (1=1)le(¥) <lc(¥) -

So the problem of seeking necessary conditions for a curve being an energy mini-
mizer has become a local problem around a regular value ¢ (definition (3-2)). In order
to do so, we will choose a domain of controls W € U (see (4-6)), the bounded and

close tubular neighbourhood of the null section in C, so that
W, = { s(z) € Uy /1) < h(s,s), <24 } :

The cost density function that we consider is then the energy density. A minimum
with respect to the energy is exactly a minimum with respect to the length, among

the curves v parametrized a.e. by t = lg() o, where o is the G-arc length.

Let us create a finite subdivision as in section 6.

(7-1) O=to<ti<...<tiy<...<tym=1 , IL=[t_1,t]

such that, for any I, Z([t;_1,t]) € W, C Vj, where V; is a TM and U (see (4-6))
trivializing coordinate open set, and W; is a compact cell. Let {e; / 1 < i < p} be
an h-orthonormal frame on IR? ~ U / V. Further, let (z®) be local coordinates on
V. The greek indices will be running from now on, between 1 and n, the latin ones
will be running between 1 and p. We will use the Einstein sommation convention on
the greek indices only. Above this trivialized open set V;, H becomes identified with
the (n x p)-matrix H = (H{), and, if 7 is a horizontal path, in H,,., (I; K; A), there
exists a unique control s(¢) (Theorem (5-3)) such that

(How)-s) () =4(t),  s(t)C (KerHy)™" nU.

And then we get

Batilit) =5 [ 3 (h) s 05 1) dr.

f1g5=1
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Now, we are in a position to write for any ¢ the “Hamiltonian function” of the

Maximum Principle (see definition (3-8))
H:(RxV)xWxR"™ 1R,

such that, with an opposite \g with respect to the paragraph 3,

Hy,u, \) =< X, f(y,u) >= Y Xaf“(@,u) = Aof'(z,u)
a=1

with
p 1 p
o o 1 0 __ 1,.9
(7-2) f —E(ku, and f —§i]§_jl<hx>ijw-

Let, as above, the curve 4 be G-length minimizing. Then, it satisfies the Maximum
Principle on V;. Thus, there exists one 1-form A : I; — T*M such that, 2(t) = 7(t)

and A(t) are solutions a.e. of the Hamiltonian system (see section 3) :

(H-1) ¢ = aaTH
(H) _ iy
(H - 2) >‘a = _a? y
and verify
H( (1), 5(8), A1) = 228H< (), u, A1)
with
H(A), u, A1) = > Aa(t)(Hs); v’ — =X Z (hs)) ;; w'e?
Then, here

Thus, because of (7-2),

(7-M-P) Aa (H:Y(t)>i = o (h’_Y(t))ijgj :
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We have then to distinguish two cases :
5\07&0, andj\O:O.

I - Case \g # 0.
We get, if A\g # 0 on V},

1T o 1 o
H=— RIHYHP A D5 = — g™ Ao )5 -
Mo . i 1 Rars = o3 9 f

i,j=1
Hamilton equations (H—1, 2) in section 3 become almost everywhere (denoting ¥(t) =

z(t), and A(t) = A(t))

(7T-H-1) i* = o 9PNz /o
(7-H) 0o
(T—H—-2) Ay = _on —agl)\)\/)\o.
“ ox® oxe P
For Ay = 1, the previous system of differential equations is well known as the

Hamiltonian system associated to the function § : T"M /V; — IR such that
§(&) =< &, g¢ >= G(&,2). Then, above Vi, there exists a solution of class C* of
the system (7-H) with the same initial conditions as (¥, ), and as the derivatives
of this smooth solution are a.e. equal to the derivatives of (7, 5\), they are the same
everywhere ; thus, (7, \) is of class C*¥, on V;. The same argument works on V5 with
initial conditions (J(t1), A(t1)). Furthermore, as V3 NVa # 0, by a connexity argument,
(7, A) is also an integral curve of the Hamiltonian system associated to §, of class C*,
on V4 and so on, step by step, until ¢,,, = 1 in Vj,,. Then, (7, \) / V; satisfies also the
Maximum Principle with the same Ao # 0 on any V;. Thus, A being determined up to

a multiplicative constant, we could suppose A\g = 1 all along 7, and X is of class C*.

Now, if £ € g71(#¥) is any lift in T* M of the velocity vector field along 7, (such a
lift exists after the results of section 5), there exists a field of 1-forms v along 7, such

that v(t) belongs to Ker g5, = Ker H 2 (1) and satisfies the following relation
j\a = S\Oga + Vg -
Furthermore, the condition that H is a constant along & implies that

gaﬁfafﬁ = 25‘00 = G(W?’V) .
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Anyhow, whatever the field n of absolutely continuous 1-forms along any abso-
lutely continuous curve -, it is possible to give a definition of the “Lie” derivative of

n along the curve ~.

7.3. Definition. — Let n be a field of absolutely continuous 1-forms along a hori-

zontal absolutely continuous curve -y, such that

(t) = (Hon(t) - s(t), s(t) € (Ker Hygp) " .

Then, let us call “Lie derivative” of n along the curve v, the 1-form above 7(t) given

by

d : .
< L)yt » Loty > = 7 <2 > — Z <n, [¥®) s Z] >y
=1

for any absolutely continuous vector field Z along -y e

It is easy to verify that this definition does not depend on the choice of fields 7,
extending 7, and Z extending Z.

The previous necessary conditions can now be written in the following way.

7.4. Proposition. — Let a G-energy minimizing curve 7 : I — M and a subdi-
vision of I as the one defined by (7-1). If there exists an integer Iy € {1,2,...,m},
such that in the chart Vi, (7,5, \) is an extremal lifted Trajectory of the Maximum
Principle, with a constant non-zero Ao, then, it is again true in the chart V; for any
integer I, | € {1,2,...,m}, with the same X\o. This situation occurs if and only if

there exists a lift £ € g~1(¥) and a 1-form v in Ker HZ ), such that

G(,7) = 2XMC = <&7>
( 7-G-1)
L; (&+ —1) = 0 ,

Ao
with

¥ o= g
(7-G-2) ) )

N o= Af+v
And 7 is C* e
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This last equation shows then how it can happen that A lies in Ker H* when Ao

goes to zero. By the way we get also the following

7.5. Proposition. — The path 7 is the projection of the Hamiltonian integral (3, \)
of the Hamiltonian system of g similarly as the solution of the classical Riemannian

variational problem e

IT - Case \g = 0.

The first remark to do is that, as 7 is absolutely continuous, if A\g was not zero on
some measurable set of positive measure, it would be not zero on the whole interval I,
as we have seen in (7-I), so it must be zero, all along 4. We recall that the restriction
above Vj of the control “Hamiltonian” of a lifted optimal Trajectory (definition (3-8))

can be written

||
M@
M@

Hyw); Hyw); a'(t)

)_§>\OZNi('7(t))( = Ao

2:1 z:l

if A\g = 0, and 4*(t) can be any possible Trajectory control such that u(t) — 5%(t) €
Ker Hs4), as the energy is no more involved in the equation, @'(t) satisfies the Max-

imum Principle as well.

With \g = 0, the control Hamiltonian function
H:(R xV)xWxR"™ 1R,

becomes linear with respect to v ; it can be constant and maximum with respect to
the controls v along the lifted minimizing Trajectory (7, @, A) if and only if it is equal

to zero for almost every t, thus for any ¢. This is the same as saying that, above Vj,

Aa(t) € Ker g5y = Ker HZ .

Then,
p a
= 2 Ralt) v(t)) v =10 Vel CRY,
=1

in other words

< A(t), &) >= Constant = 0
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all along the minimizing curve, and its derivatives of any order with respect to ¢ are

zero everywhere, whatever the control v.

So let us set from now on in this section (7-1I), A := p.

Hamilton’s equations are still valid a.e.

(IT-H—-1) 7" = I Ha'!
) O\a
. OH _oH
(II—H—Z) Vq = —8? = —Vﬁ axau s
and
(II-M-P) Vi, 1<i< Vk, ke N kﬁa(t) (o) -
TAVAT 2, ST D, ) € d _ [e%
@(Va(t) (Hyw)i) = 0.

As v is solution of the differential equation (/I-H-2), it is a.c., and we can use the
definition (7-3) to write the “Lie derivative” of 75 with respect to 7(t) for almost
every t, locally, as

. P oH? .
Lip(t) =Va(t) + 05 ) oLu' =0 ae..
i=1

Now, we are able to prove the following

7.6. Lemma. — Let &(t) be the a.c. lift \(t) in T*M of an optimal lifted Trajectory
(7,5, A) of the Maximum Principle with Ay = 0. Let tq be a regular value of t. Then,
for any vector field Z, along 7, such that < v, Z >~4)= 0,

<v, 3(t), Z] >3
is tensorial in Z, above %(t), and is zero everywhere e

Proof. The lemma is obtained by a straightforward calculation, assuming that along

the curve, for almost every ¢, L3 = 0 and 7 < v,Z >= 0. Furthermore, if we define

<v,[¥(t),Z] > as
s _ d  _
<v,[3{), Z] >=< Lsv,Z > T <v,Z>,
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the result is tensorial in 4(¢) and in Z, because of the hypothesis that Z; belongs to

Ker 7, for any ¢t. Under these conditions < v, [Y(t), Z] > is well defined, even if Z; and

4(t) are not continuous.

If we recall that & (%) = &, and &€j41(y) = € + [7,€;(7)], as in section 4. This
leads to the following

7.7. Theorem. — If a singular or regular sub-Riemannian manifold admits an
optimal lifted Trajectory (7,5, \) satisfying the Maximum Principle with Ao = 0, on
some set of positive measure, then, g is zero all along 7, the 1-form \ := v (v # 0) is

absolutely continuous and such that, for all regular t,
VielN <v, 5]'(’7) >50=0.

Then, necessarily, along this curve, 7 : [0,1] — M,
U Ei(Maw) < T5M
j=1

and

VjeIN, < L:7,E(%)>=0, ae o

That is the reason why it never happens that A\g = 0 when the strong Hérmander

generating condition is verified, i.e., for every horizontal vector X, (82 (X ))x =T,M.

R. Hermann found already this condition in a different context (see [He]).

Proof. Because of the Maximum Principle, < 7, £ >54)=< 7, &1(7) >54= 0 all
along the curve. Then, we have to apply lemma (7-6) to any Z € 4*£ and recall that
E(R) = E+[7,E] in ¥*(T'M), is tensorial in 4(¢), and depends only on its value at
the point 7(t). Thus, < 7, () >5)= 0, for every ¢. Then, we have to apply again
lemma (7-6) to any vector Z in 7*E3(7), at t. Thus, < 7, E3(7) >5¢4)= 0, for every
t, and so on, step by step.
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III - Statement of the results.

Let us give a more precise definition.

7.8. Definition. — Let & be a curve in Hy,,, (I; K; A). Let € : [ — T*M be any
“lift” 1-form such that £(t) € g~ ! (2(t)), & is called a
1°) normal extremal satisfying the Maximum Principle if there exists a 1-form

v:t— Ker Hgig(t) such that

) {£§(~+D) = 0

d<&i> = 0;
2°) strictly abnormal extremal satisfying the Maximum Principle if

Vi: I — Ker H*  L:(E4+7) # 0
(SAN) {VkEIN () < n;

3°) non-strictly abnormal extremal satisfying the Maximum Principle if

(NAN)

(V) is verified
VkeIN pr(Z)<n e

Finally, we get the following

7.9. Theorem. — Let (M, €&, g) be a regular or singular sub-Riemannian manifold,
let Hyya, (I; K; A) be defined as above, with H of class C*. Then, a G-length minimiz-
ing curve T € Hy,z, (I; K; A) is an extremal satisfying the Maximum Principle of one
of the three kinds. Moreover, if it is an (N)- or (NAN)-extremal, then it is of class
C* and G-length minimizing. In this case, the extremal is the projection of the sub-
Riemannian Hamiltonian trajectory of g. Furthermore, if it is an (SAN)-extremal,

then there exists an a.c. curve v : t — Ker g;( £ such that

VieIN, <L:0,&(x)>=0, ae o

To our knowledge there does not exist, up to now, a simple criteria telling in

which cases a strictly abnormal (SAN)-extremal is locally G-length minimizing.
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R. Montgomery [Mo] has exhibited a regular three-dimensional sub-Riemannian
manifold (p = 2)M verifying the strong two steps Héormander generating condition
p2(z) = 3 everywhere but on a cylinder C, where po/C' = 2 = p < 3, and p3/C =
3 = n. The manifold M is provided with a helicoidal vector field, along C verifying
(SAN). It has not been so easy to prove that the integral curves of this vector field
are even locally length minimizing. I. Kupka ([K]) has shown that, up to a certain
distance of the initial point, there exists no cut-point. We chose another method and

we develop this last proof in section 10. See also [L-S] for a local proof.

7.10. Example (4-1-iii) continued. — Now, we shall take up again Example
(4-1) to illustrate the previous method in the singular case. We shall use the metric
described in section 4, with U = TM = IR*, and h the canonical metric on each

Ui,y = IR2. Then the matrices of g and H, in the frames {%, %} and {dz,dy },

g=HohﬁoH*:(1 0) .

are such that
0 x2

The control fiber bundle is the trivial bundle M x IR?. Let its canonical basis

0
{e1,e2} be an h-orthonormal moving frame, such that H(e;) = — and H(ez) =

ox

0
x 90 so that, applying Control Theory, we get
Y

1
H=MX\ 51+)\2x52—§ (52 4 53) .

Here, we take Ao = 1, because the strong two steps generating Hormander condition

is satisfied, and no abnormal geodesic can appear. The maximum principle implies

OH
—881 = )\1 — 81 = 0
OH
8—52 = )\2 r — S = 0.

Then, H = £ (A} + A3 z?), and both Hamilton’s equations (X — 1,2) imply
T = )\1 5 y = )\2 33'2,
>\1 = —)\% r ).\2 = 0.
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Writing the first integral H = B = constant, we get
P> +ay=28B.

A very easy computation gives the “horizontal” geodesics joining A = (0,0) to

B = (0,1). Namely, with k € 7Z,

[ 2
r = Msinkﬂt

_ sin 2kmw t
vy = 2km

Their G-length is equal to

1 92
lg(’y):/ Jiz+Loa = 2k |
0 xXr

the shortest are both obtained for k = 4+1. The result is that the G-distance between
(0,0) and (0,1) is 2. Furthermore, it is obvious that any point on the y-axis can be
joined to A by two minimizing curves. Then, all points (0,y) are cut points for the

origin, whatever y.

8. NORMAL GEODESICS AND G-DERIVATION

In the framework of regular or singular sub-Riemannian geometry it is possi-
ble to define an intrinsic derivative generalizing the Levi-Civita connection of the
Riemannian geometry. It will take the shape of an intrinsic bilinear form on 7™M,
with values in T'M, the restriction of which to the diagonal of T*M x T™* M is merely
the projection of the Vg, of C. Bér [B]. This connection will allow us to introduce
the idea of G-parallel translation along a horizontal curve, without enlarging G to the
whole of T'M, for this extension is impossible in the singular case, as we have seen

(4-8).
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Namely, if x(M) (resp. AM) are spaces of local sections of TM (of T*M resp.),
and g = H o hf o H*, as above.

8.1. Definition. — Let us call G-derivative and denote by
D: (AM)? — x(M) ,

the map such that, for all o, 3,y € AM,

<7, Duf>= F{ga<B,gv> + gB<y,9a> — gy<a,gb>
—<a, g8, 97)> + <Blgv.gel> + <7,[g, g8 > }e

The following proposition (8-2) (i) to (iv) implies that D is actually an actual
global derivation, (v) implies that the D-connection is a generalization of a symmetric
Levi-Civita connection. The remaining results and definitions of (8-2), (8-3), and (8-4)

constitute a practical formulary about D.

8.2. Proposition. — Let f be any function of class C* on M, then, for all o, 3, v €
AM and for all u, v € Ker H*

) D, B is R—linear with respect to o and 3

) Dijay 8 = f(Da )
(i49) Do (fB) = f(Da B) + ((9a)f).98

) (ga) < B,97v>=<B,Davy> + <7v,Dq >

) DaB — Dga = [ga,gB]
particularly Dov = D,a = %(Day + D,a)
(vi) <v,Dy B + Dga>= 0

particularly D, a € € and Dov = Dy,a € &€

(vii) D, v =0
(viii) <v,Do, f>=<a,D, 3>= —<p,D, a>
= 3 <vlga,gf] > e

This G-derivation allows a very nice intrinsic formalism to translate the R.S. Strichartz

map I' ([S] p. 227), namely, let us define the map

F:Ker H* x& — & and <n,Fy,X)>=2T(&v)n.
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8.3. Definition. — For any ¢ and n in AM, and any v in Ker H*, let us consider
X =g&, Y =gnin x(M). Then,

<, F(r,X)>=<v[X,)Y]>e

These scalar quantities give an idea of how the first order brackets leave &.

8.4. Proposition. — Using the preceding notations
<nFlv,X)> = <v,Dn—Dy§)> = 2<v,Den>
= 2<¢, Dy > = 2<¢&Dyn>
—2 <n,Dev > = —-2<n,D >
= <y [X,Y]> = —dv(X,)Y).
Furthermore, Dev = D,§ = —iF(v, X) o

Then, we get the following characterization for the normal geodesic flow.

8.5. Theorem. — A vector field X of x(M) is the vector field of a “normal
geodesic” flow if and only if there exists at least one 1-form ¢ € g~'(X), and one

1-form v € Ker H* such that

(8-G-1) { De§ = F(r,X) = —2Dy¢

Lx(§) = —Lx(v) .
As &+ v isstill a “lift” of X, the Theorem (8-5) is equivalent to the following

8.6. Theorem. — A vector field X of x(M) is the vector field of a “normal geodesic”
flow if and only if there exists at least one 1-form £ € g~ (X)), such that

D¢ = 0
8-G-2 ¢
(8-G-2) { Lx(E) = 0
The first equation D¢ = 0, here, is stronger than the previous first integral in

(7-G-1), < &, X >= Constant.
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9. THE ABNORMAL GEODESIC OF MONTGOMERY-KUPKA

The purpose in this section is to set a new proof of the length minimizing prop-
erty of the Montgomery-Kupka abnormal extremal, using the measurable proper-
ties of a.c. curves, contrary to the nice simple simultaneous proof due to Liu and
Siissmann [L-S]. Actually, we now know that our method leads to a generalization to
any “generic” 2-distribution in IR® with a growth vector (2,2,3) on some hypersurface,
whatever the metric [P-V-2]. Let M be the manifold M = IR® \ (0,0,IR) provided
with the following regular sub-Riemannian structure. Using systematically cylinder

coordinates, let us consider in £ the convenient moving frame denoted by (e)

0
€1 = 1 6 a 6 01 = dr
- (= il 2
(e) ea = r<69 +8A(7°)6Z> .0 rdf
es = — o 03 = dz— A(r)dd
0z

where e; = g6, i =1,2,3, and the A(r) simplified by I. Kupka is given by
Ary=1-1-7)*, A(r)=201-7), A'(r)=—-2.

The horizontal planes generated by e; and ey, above the points x of M, are denoted

by E, and generate the fiber space E.

The Montgomery positive non-degenerate quadratic form on the horizontal planes

G is then well defined by the following matrix

g:H:

O O =
o = O
o O O

where IR0 = R (dz — A(r)df) is Ker H* = Ker g.
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All over M except on the cylinder C' (C' = { r = 1}), the plane distribution satisfies

the strong generating Hormander condition, i.e.,
VX eE, VereM\C, (E+I[X,E)|),=T.M

for we have

1 Al(r
ler,eo] = ——e2 + ( )63 .
r
Nevertheless, everywhere
2 2 A’
ewleveall = pes = Zes =25 e

which becomes 2(es —e3) on the cylinder C. Thus, the Hérmander condition is satisfied

everywhere.

But, on the cylinder C, [ea, [e2, [e2,€1]]] = 0 = [e, [e2,€1]] = 0 = [e2, €1], and so
on. Thus, es / C satisfies condition (8-SAN) and C' is an abnormal extremal of the
Maximum Principle. We do not yet know if it satisfies (8-NAN), i.e., the condition

for a normal automatically length minimizing geodesic.

We shall prove the following

9.1. Theorem. — Let H,, ,, = { (1,t,) € R® / 20 = (1,0,0) ,21 = (1,0,,6) ,
0<6; <2 } be the Montgomery-Kupka helix. Then, the length of any horizontal

a.c. curve joining xo to x; is bigger than the length of Hy, ,,, i.e., 01 o

Let us write F': Ker ¢ x E — FE, such that

F(03,¢e;) = Z <03 [ei,e5] > e ;
J#i

here F(03,e1) =< 63, ]e1,ea] > ey = Aly)eg, and F(63,e5) =< 03, [ea,e1] > €1 =
—#el. Now, using the G-derivative just defined in section 8, we see that the
flow es is a geodesic flow on M\C, because the characterizing conditions (8-G-1),

equations of normal geodesics, are verified. These conditions are equivalent to

9§ = X
(8-G-1) 3¢ € AM  such that D& = 0
Lx() = 0.
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The integral flow of the vector field e; is a normal geodesic flow on M\C, because the
Hamilton-Jacobi equations for the energy minimizing geodesics are satisfied ([S-1])

and the intrinsic characterizing conditions (8-G-1) are verified.
A - H does not verify the normal geodesic equation.

As a matter of fact, between any two points on an integral curve of the field es

outside C, we have

D92_—16_ ! F(03 e3) =—2D i
02 - r 1 — A/(T') y €2) — 02 AI(T) )
then,
2 - 0°
D(92+V) (9 + I/) =0, with v= A’(T’)
and ) ) )
0 N6 0
‘662(92) = ley 4 = T
r
63 do? o1

The helix H = {(1, t,t)/te IR} is the integral curve of the vector field eg, restricted
to the cylinder C, and

3

0
9.2. Remark. — OnC, v = A’—()’ is not defined. This is the reason why the helix
r

H, integral curve of es on C, cannot verify (8-G-1), and then cannot be considered

as a normal geodesic

3

A'(r)
be extended to infinity.

But v =

gives an idea of how the geodesic conditions (G) could perhaps

Now, let zg be the point such that » = 1,60 =0,z = 0, and x; be the point such
that r =1,0 =61 > 0,z = 6. These two points lie in the helix H.

I. Kupka [K]| proved that in a tubular neighbourhood of the helix, and for #; <
v/2, there could not exist any normal geodesic joining z to x1, for the normal geodesic

local equation is not integrable taking account of the end points condition.

So, knowing that the distance is achieved on some curve among the extremal

curves deduced from the Maximum Principle, we can conclude that, necessarily, the
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abnormal arc of helix H,, ,, is G-length minimizing and has no intersection with the

“cut-locus” of xg.

Here, what we are showing is that this abnormal helix is globally minimizing

among a.c. curves joining xg and x1, as soon as
dg(.ro,l‘l) =0 <2 ,

the proof is constructive and very simple.
B - The set of horizontal curves joining any two points of H, x(y and x;.

Let xy be the point such that

r = 1
0 0
z = 0.
Let x1 be the point such that
r = 1
0 = 60, 0<60;<2m
z = 01 .

These two points are joined by the helix H

r = 1
<H) {Z = 6, 0<0<6;.
9.3. Remark. — If r(t) > 2, for some t in ]0,t,[, any horizontal curve joining xg

and x1 through (r(t),0(t), z(t)) has length larger than 2 whatever z(t).

Define
vVt € [0,t4] , p(t) =1—r(t) 0<r(t)<2.

The set of all such horizontal absolutely continuous curves joining xo to x; can be

described by the following conditions, with |p| < 1

z:[0,t] — <p(t),9(t),z(t)>

and
2(t) = /0 A(r(t))fl—fdt ,
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and the end point conditions give

(9-1) 0(0) =0 0O(t1) =0, +2kr (keZz),
(9—11) Z(O) =0 Z(tl) = 91 y
(9-1IT) p(0)=0 p(t1) =0.

9.4. Remark. — If a curve v : [0,t;] — <p(t), 0(1), z(t)) is absolutely continuous

de d
e (or —p) is either zero or negative, or

o d dt
positive, are measurable. Furthermore, |0|dt is a measure density on [0,t1] e

on [0,1], then, the subsets of [0,t1] where

df
Let Xy be the subset of [0,¢;] where i 0. Let X_ be the subset of [0,t;] where

db : do
o < 0, and, o_ = [, |f|dt. Let ¥, be the subset of [0,%;] where prie 0 and

oy = f2+ Odt. The first endpoint condition becomes
(9-1) oy = o_ + 0y + 2km.

Let us denote again by (9-1I) the second end point condition

(9-1) (t) = 61 = /0 1A(r(t))%dt,

which becomes

(9-11) z(t1) = 61 :91+2k7r—/ p —dt—/ p-—dt .

Thus, the horizontal absolutely continuous curves have the same endpoints as H, only

if

(9-11) D2=/ p2|9'|dt:/ p2|6|dt — 2km .
P

Let us denote by

) 1 . ) 1 .
= [ bl = [P
U_ — a+ Z+

So, the second end point condition becomes

(9-11) pro_ =pioy —2km.
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The third endpoint condition is

(9-TTT) / Y =0
0

9.5. Proposition. — Any horizontal curve joining xg to x; with 0 < 6; < 27w and

k not zero in condition (9-1) has length larger than 2 e

Proof. The a.c. function (t) goes from 0 to 61 +2k7, and then goes through the value

0
El—klmr.

If k>0, 0 < 61247 < 01/24+kr < 01+ 2kn;
if k?<0, 01 +2kr < 0 —-2m < 91/2—77' < 0

In both cases there exists a value of ¢, t, such that

O(ty) = %1 + 7 with 0 < p(t;) <1;
the point y(tr) = (p(tr),0(tx)) is equidistant from (1,0) and (1,6;) over the origin,
then, necessarily, a curve with k # 0 has length larger than twice the radius of the
cylinder, i.e, 2.
Because of (9-3) and (9-4) from now on we will be interested only in curves 7
such that
0<0; <2, Vtel0,ti], —-1<plt)<l, k=0.

So, the second endpoint condition becomes

(9-11) plo_=pios .

9.6. Proposition. — Let z¢ = (1,0,0), z1 = (1,61,61) with 6, < 2. If there is no
return in the xOy plane, i.e., if > 0, a.e., then, the only ways to go from x( to x1 are
either H or H with radial horizontal “there and back” segments starting from points
of a subset of H of measure zero. The lengths of these last curves, say of “T-type”

are larger than the length of H, namely 6, e
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Proof. The condition o_ = 0 implies

D2 = / P2() 10(8)] dt =0 .

Then, the condition
(9-11) D= [ 0ol a= [ oo

implies

then p,>y =0 a.e., and

(9—111) - p(t) dt = 0.
Yo

The result follows.

So, if the curve is not of the previous type, there must exist some set of positive

measure on which 6 < 0, and then, either p/¥2 =0 a.e., and (9-II) implies p% = 0

a.e., or p2 is necessarily > 0 along a curve candidate to be shorter than H, and then

there is some positive measure subset of 3¥_ where p is necessarily > 0. In the first

case, the curves said of “T,-type” coincide geometrically with H, but they cover some

positive measure subset of it more than once and have then, length larger than H ;

in the second case, the necessary loops in the 20y plane of these curves imply that

H is C'-rigid, for H(t) = 1 on 'H, and is necessarily < 0 on some positive measure

measurable subset of T7-type and Ts-type curves.

C - Horizontal curves joining zy to =1, such that 6; < 2 and 0 < r, if they

ever exist, have length greater than H.

From now on, let us examine only the cases where

(9-7) D? = / p2(t) B(t) dt >0 .

Condition (9-7) implies that p* must be positive on some set of positive measure.
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9.8. Lemma. — For the comparison of lengths between H and the curves vz, 4,

with r < 2, it is sufficient to study curves 7, », which lie inside the cylinder C e

Proof. Let 7 : [0,t1] — IR? be a horizontal curve v(t) = (p1(t),0(t), 2(t)) joining
xg = (0,0,0) to 1 = (0,61, 61) with 6; < 2. For any absolutely continuous function
p1(t), if there exists a subset A of [0,¢;] where

—1<pi(t) <0<= 1<m({t)=1—-pi(t) <2,
the subset A is necessarily measurable, and we can change p; to ps on A such that
0<—p1(t):p2(t)c> 0<’/‘2(t):1—,02<t)<1, teA,
and the vertical defect integral is unchanged
2(0\AIp — 2(\4
[ wiar = | ey
A A

the endpoint condition (9-1I) is yet fulfilled and

umm=é¢wwww+ﬁﬁ>uwm=é%vwm%u@ﬁ,

the new curve, inside the cylinder C' is shorter than the one outside.

From now on, without lack of generality, we can suppose that the curve

~ is parametrized by arc length, and 0 < p(s) < 1. We also assume o_ > 0.

9.9. Lemma. — Let R, (resp. R_) be the subset of [0,l(y)] where p > 0 (resp.
p < 0). Then, the end point condition (9-III) implies

(9-1V) / pds = / |p| ds > sup|p| o
R, R

Proof. We have

1)
(9-111) p(0) =0, / pds =0.
0
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The function p(s) is absolutely continuous. Thus, there exists a value sy, sy €
10, 1(~y)[ such that
SM
sup ol = lp(sar) = | [ pds .
0

Then, (9-111) becomes

(9-111) / p ds :/ 1p| ds .
Ry R

If sup |p| = supp > 0,

supp = [ pas = | pas - [ 19l ds |
[O,SM]H(R+UR,) [O,SM]HR+ [O,SM]HR,

sm
/ pds 2/ pds:/ ,éds+/ Ip| ds
Ry R N[0,sn] 0 [0,sm]NR—

:supp—l-/ |p| ds > supp >0.
[O,SM]ﬁR_

If sup|p| = sup(—p) = —infp > 0. This case, of no use here, will be useful in the

generalization [V-P],

infp:/ ,o'ds:/ ,éds—/ Ip| ds <0,
[0,531)N (R UR_) 0,5 0]N R 0,5 ] R

SM
/ |p| ds 2/ |p'|ds:—/ pds+/ pds >0
R_ R,H[O,SM] 0 [O,SM]HR+

:sup|p|+/ pds > suplp| >0. O
[O,SM]HR+

Let us now write the length of 7,4,
1) iy o
1) =2B() = [ (1= pPd* + %) ds

= / (1—p)26% ds + / o ds |
E+UE, R+UR,

using Schwarz inequality

> (o wlas) v s (L =)
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using the end point conditions (9-I) and lemma (9-9) (end point conditions (9-1V)),

, 2
[(7)? > 4supp® + <91 +20_ —/ p|0| ds ) :

SLUS_

We recall that
0<|pl<1.

Now, using Schwarz inequality again with respect to the measure density |0] ds,
2
I(7)? > 4supp® + <91+20_ —\/01+0_ D — Jo_ D) ,
for, because of the first and second end point conditions, with & = 0,

91) op=6,4+0_ and (9II) p*o_ =po, =D*.
+ +0+

Thus,
2
10)? > aswpp + (O+20 — hiroo Vi (pr+p))
but
01 +20_ — \Jbh+o_ Jo— (pyr+p-) >0
for

01+20_ — \JOL+o0_ Jo— (p++p-) > 61+20_ —2+/01+0_ \/o_ sup|p|

= \/91—1—0_2—1—«/0_2 —2y/01 +0_ \Jo_ sup|p|
= (Vb1 +o_ — a_)2—|—2\/91 +o_ y/o— (1—sup|p|) >0.
Then,
2
I(v)? > 4supp® + <91+20_ — 230, +0_ Jo_ sup|p|) )

and

1(7)? > 624 40_ (6, +0_)

+4supp® (L4 (01 +0-) 0_) — 4y/01+0_ \Jo_ (61 +20_) sup|p| .
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Finally, the horizontal curve 7, », is longer than H as soon as

(14 (01 +0_)o_)supp® — /01 +0_ \Jo_ (01 +20_) supp + o_(01 +0_)>0.

It is easy to see that the polynomial in sup p has a strictly positive minimum as soon

as

07 < 4.

Then, for 6; < 2, if there exist horizontal a.c. curves other than those of T7-type and
Ts-type, joining xy to x1, and for any p their lengths are greater than the length of
H as well as the length of those of T1-type and Ts-type. Furthermore, o_ # 0 implies

that H is Cl-rigid, as we have already seen. So we have proved Theorem (9-1).

Furthermore, on the way of the proof of this global result we showed that, as any
curve is either of Tj-type or o_ # 0, the only C'-curves in a C''-neighbourhood of H
are reparametrizations of H. This is the actual definition of C'-rigidity. We saw also
the way of constructing horizontal C'-curves 7,, », close to H with respect to the
topology of the uniform convergence, even in the sense of the H'-topology. Thus, H
is not H!'-rigid. We now know that in dimensions greater than 3 there are examples
of codimension 1 distributions with horizontal non-minimizing abnormal, non C-
rigid Cl-curves [P-V-2], and, in dimension 3, the Montgomery example is a generic
local model for the 2-plane distributions with growth vector (2,3) on a dense subset of

M, and (2,2,3) on a local hypersurface, whatever the sub-Riemannian metric [P-V-2].
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