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Abstract. In this paper we formulate our results on the essential spectrum of many-particle
pseudorelativistic Hamiltonians without magnetic and external potential fields in the spaces
of functions, having arbitrary type α of the permutational symmetry. We discover location
of the essential spectrum for all α and for some cases we establish new properties of the
lower bound of this spectrum, which are useful for study of the discrete spectrum.
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In this paper we formulate our results on the essential spectrum of many-particle pseudore-
lativistic Hamiltonians without magnetic and external potential fields in spaces of functions,
having arbitrary type α of the permutational symmetry. We discover the location of the essential
spectrum for all α (Theorem 1) and for some cases we establish new properties of the lower bound
of this spectrum, which are useful for study of the discrete spectrum (Lemma 1).

Before this work similar results on the essential spectrum were obtained in [1, 2], but in [2]
not arbitrary α were considered, and the construction of the operator of the relative motion was
not invariant with respect to the permutations of identical particles in contrast to our approach
(in this respect connection of our results with [2] is the same, as connection [5] with [7]); in [1]
more extensive class of pseudorelativistic Hamiltonians was studied as compared to [2] and to
this paper, but in [1] the permutational symmetry was not considered. Moreover, our Lemma 1
is new.

1. Let Z1 = {0, 1, . . . , n} be the quantum system of (n+ 1) particles, mi, ri = (xi, yi, zi) and
pi be the mass, the radius-vector and the momentum of i-th particle. Pseudorelativistic (PR)
energy operator of Z1 can be written in the form

H′ = K ′(r) + V (r),

where r = (r0, r1, . . . , rn),

K ′(r) =
n∑

j=0

√
−∆j +m2

j

1

, V (r) = V0(r) =
1
2

n∑
i,j=0, i 6=j

Vij(|rij |),

∆j = ∂2

∂x2
j
+ ∂2

∂y2
j

+ ∂2

∂z2
j
, Vij(|rij |) = Vji(|rji|) be the real potential of the interaction i-th and j-th

particles, rij = ri − rj , Vij(|r1|) ∈ L2,loc(R3), Vij(|r1|) → 0 at |r1| → ∞, and Vij(|rij |) are such

1We have chosen the unit system so the Plank constant and the light velocity are equal to 1.
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that for some ε0 > 0 operator H′ is semibounded from below for V (r) = (1+ε0)V0(r). If the sys-
tem Z1 is a molecule, the last condition means that we may consider only the molecules consisting
of atoms of such elements whose number in Mendeleev periodic table is smaller than 85 [2, 3].

The operator H′ is not local: in the coordinate space operators
√
−∆j +m2

j are integral
operators, in the momentum representation multiplicators Vij(|rij |) turn into integral operators.

But in the momentum space the operators
√
−∆j +m2

j are multiplication operators. Actually,

let pj = (pj1, pj2, pj3), p = (p0, . . . , pn), ϕ(r) ∈ L2(R3n+3), and ϕ(p) be Fourier-transform
of ϕ(r):

ϕ(p) =
1

(
√

2π )
3n+3

∫
R3n+3

ϕ(r) ei(p,r) dr,

then √
−∆j +m2

j ϕ(r) =
√
p2

j +m2
j ϕ(p).

Let

T ′j(pj) =
√
p2

j +m2
j , T ′(p) =

n∑
j=0

T ′j(pj).

Now we can rewrite operators H′ using mixed form writing:

H′ = T ′(p) + V (r),

where operators T ′(p) and V (r) act in the momentum and in the coordinate spaces respectively.
2. The operator H′ corresponds to the energy of the whole system motion. But for ap-

plications it is interesting to know the spectrum of the operator corresponding to the relative
motion energy. To get such operator for nonrelativistic (NR) case one separate the center-of-
mass motion, but for pseudorelativistic (PR) case it is impossible. To construct the operator of
the relative motion from PR operator H′, we reduce the operator H′ to any fixed eigenspace of
operator of the total momentum [2]. Let ξ0 = (ξ01, ξ02, ξ03) be the center-of-mass radius-vector:

ξ0 =
n∑

j=0

mjrj/M, M =
n∑

j=0

mj ,

qj = rj − ξ0 be the relative coordinates of j-th particle, j = 0, 1, . . . , n, q = (q0, . . . , qn). We
take q, ξ0 as the new coordinates of the particles from Z1. Let us note that vectors q0, . . . , qn
are dependent: they belong to the space

R0 =

q′ | q′ = (q′0, . . . , q
′
n),

n∑
j=0

mjq
′
j = θ = (0, 0, 0)


of relative motion. On the other hand, if q′ = (q′0, . . . , q

′
n) ∈ R0 and ξ′0 is an arbitrary fixed

vector from R3, we may consider q′j and ξ′0 as the relative coordinates of the point r′j = q′j + ξ′0,
j = 0, 1, . . . , n and the center-of-mass position of Z1 respectively. It is easy to see that Fourier-
conjugate coordinates to qj are the same pj as for rj , and Fourier-conjugate coordinate for ξ0 is

P0 = (P01,P02,P03) =
n∑

j=0
pj .

Let us consider the operators

L0s =
1
i

d

dξ0s
, s = 1, 2, 3.
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In the momentum space these operators are multiplication operators

L0s = P0s.

It follows from above that the operators L0s{L0s} commute with H′. So any eigenspaces of the
operators L0s are invariant for H′. Let −Q0s be a real eigenvalue of the operator L0s, W0s be
corresponding eigenspace and

W0 = W01 ∩W02 ∩W03.

The space W0 is invariant for H′. Evidently

W0 =
{

(2π)−3/2 e−i(Q0,ξ0) ϕ(q)
} 2

, W 0 =

{
ϕ(p)

3∏
s=1

δ(P0s −Q0s)

}
,

where Q0 = (Q01, Q02, Q03), ϕ(q) is an arbitrary function, ϕ(q) ∈ L2(R0), and W 0 is Fourier-
image of W0.

Let us rewrite operator H′ using the coordinates q, ξ0 {p,P} and reduce it to the subspace
W0{W 0}. Then we obtain the operator H′ in the form

H ′
0 = T ′(p,Q0) + V (q),

where

T ′(p,Q0) = T ′(p),

but with the condition
n∑

j=0

pj = Q0; (1)

V (q) =
1
2

n∑
i,j=0, i 6=j

Vij(|qi − qj |), qi − qj = ri − rj .

We see that H ′
0 depends on the relative coordinates q, their momenta p and the total momentum

value Q0. So if we fix Q0 we obtain the operator, which can be considered as the operator of
the relative motion. We shall study this operator in the space L2(R0) with condition (1) for
momenta.

For technical reasons it is convenient to take

Tj(pj) = T ′j(pj)−mj

instead of T ′j(pj) and

T (p,Q0) =
n∑

j=0

Tj(pj)

instead of T ′(p; Q0). So the subject of our study is operator

H0 = T (p; Q0) + V (q) (2)

2The coefficient (2π)−3/2 in front of the e−i(Q0,ξ0) plays the role of “normalizing factor”: Fourier-image of

(2π)−3/2 e−i(Q0,ξ0) is
s∏

s=1

δ(P0s −Q0s) without any factor.
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(with condition (1)). The operator H0 is bounded from below on C∞0 (R0). We extend it to a
self-adjoint one using Friedrichs extension, and save the notation H0 for the obtained operator.

Let us note that instead of the dependent coordinates q0, . . . , qn we could introduce inde-
pendent relative coordinates (and their momenta) similar to [2], but such approach generates
difficulties, when one takes into account the permutational symmetry (see § 5), and we do not
use this approach.

3. We shall study spectrum of the operator H0 not in the whole space L2(R0), but in the
subspaces of functions from L2(R0), having the fixed types of permutational symmetry. We do
this

i) to satisfy the Pauli exclusion principle,

ii) to obtain additional information about the structure of the spectrum H0.

We denote by S and α the group of the permutations of all identical particles of Z1 and an
arbitrary type of irreducible representation of S respectively. Let us determine the operators Tg,
g ∈ S by relations

Tg ϕ(q) = ϕ(g−1q), g ∈ S

and put

P (α) =
lα
|S|

∑
g∈S

χ(α)
g Tg, B(α) = P (α) L2(R0),

where χ(α)
g is the character of the element g ∈ S in the irreducible representation of the type α,

lα is the dimension of this representation, |S| is the number of elements of S. The operator P (α)

is the projector in L2(R0) on the subspace B(α) = B(α)(R0) of functions, which are transformed
by the operators Tg, g ∈ S, according to the representation of the type α [6]. Evidently P (α)H0 =
H0P

(α). Let H(α)
0 = H0P

(α). H(α)
0 be the restriction of the operator H0 to the subspace B(α)

of functions, having the permutational symmetry of the type α.
In this paper we discover location of the essential spectrum sess

(
H

(α)
0

)
of the operator H(α)

0 .
4. Let Z2 = (D1, D2) be an arbitrary decomposition of the initial system Z1 into 2 non-empty

clusters D1 and D2 without common elements:

D1 ∪D2 = Z1, D1 ∩D2 = ∅

and

H(Z2) = T (p,Q0) + V (q;Z2), (3)

where

V (q;Z2) =
1
2

2∑
s=1

∑
i,j∈Ds, i 6=j

Vij(|qj − qi|).

H(Z2) is the PR energy operator of compound system Z2, consisting of non interacting (one
with other) clusters D1, D2 with the same condition (1) for the total momentum as for Z1:

n∑
i=0

pi = Q0.
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Let S[Ds] be the group of the permutations of all identical particles from Ds, s = 1, 2, ĝ be the
permutation D1 ↔ D2 if these clusters are identical (D1 ∼ D2). We put

S0(Z2) = S[D1]× S[D2],
S(Z2) = S0(Z2) if D1 6∼ D2,

S(Z2) = Ŝ(Z2) = S0(Z2) ∪ S0(Z2)ĝ if D1 ∼ D2.

S(Z2) is the group of the permutational symmetry of the compound system Z2. It is clear that
S0(Z2) ⊆ S(Z2) ⊆ S.

Let F (α;Z2)={α′}
{
F0(α;Z2)={α̌}

}
be the set of all types α′{α̌} of the group S(Z2){S0(Z2)}

irreducible representations, which are contained in the group S irreducible representation D
(α)
g

of the type α after reducing D
(α)
g from S to S(Z2){S0(Z2)}. For ∀ α′{α̌} we determine the

projector P (α′)(Z2){P (α̌)(Z2)} on the subspace of functions ϕ(q), which are transformed by
operators Tg

Tg ϕ(q) = ϕ(g−1q), g ∈ S(Z2), {g ∈ S0(Z2)}

according to the group S(Z2){S0(Z2)} irreducible representation of the type α′{α̌}.
Let γ = α′ or γ = α̌; obviously if P (γ)(Z2)ϕ(q) = ϕ(q), then P (γ)(Z2)ϕ(p) = ϕ(p). We set

P (α;Z2) =
∑

α′∈F (α;Z2)

P (α′)(Z2), P̌ (α;Z2) =
∑

α̌∈F0(α;Z2)

P (α̌)(Z2),

H(α; Z2) = H(Z2)P (α;Z2), Ȟ(α;Z2) = H(Z2) P̌ (α;Z2).

The operator H(α;Z2){Ȟ(α;Z2)} is the restriction of the operator H(Z2) (see (3)) to the sub-
space B(α;Z2) = P (α;Z2)L2(R0) {B̌(α;Z2) = P̌ (α;Z2)L2(R0)}. Let

µ(α) = min
Z2

infH(α;Z2).

It is possible to prove that

µ(α) = min
Z2

inf Ȟ(α;Z2). (4)

We denote by A(α) the set of all Z2, for which

inf Ȟ(α;Z2) = min
Z′

2

inf Ȟ(α;Z ′2);

then

µ(α) = inf Ȟ(α;Z2), Z2 ∈ A(α). (5)

5. Our main result is the following theorem

Theorem 1. Essential spectrum sess
(
H

(α)
0

)
of the operator H(α)

0 consists of all points half-line
[µ(α),+∞).

Let us compare Theorem 1 with the corresponding results in [2].
First, in [2] a similar result was proved only for one of simplest types α of the permutational

symmetry (for α corresponding to one-column Young scheme), while here we assume arbitrary α.
Second, we use more natural, simple and transparent approach for taking symmetry into

account, compared to [2]. Actually, we apply relative coordinates qi with respect to center-of-
mass position ξ0: qi = ri − ξ0, i = 0, 1, . . . , n and so the transposition gj : rj ↔ r0 of j-th and
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0-th particles results in the transposition of qj and q0 only, but just as all other coordinates qi,
i 6= j, i 6= 0, are without any change. In [2] relative coordinates q̃i are taken with respect
to the position of 0-th particle: q̃i = ri − r0, i = 1, 2, . . . , n and this choice implies changing
of all q̃i under transposition gj . Namely, Tgj ψ(q̃) = ψ(g−1

j q̃) = ψ(q̂), where q̃ = (q̃1, . . . , q̃n),
q̂ = (q̂1, . . . q̂n), q̂i = q̃i − q̃j , i 6= j, q̂j = −q̃j . Such situation is not realized only if the
system Z1 contains a particle, which is not identical to any other particle from Z1 (and if we
index this particle by number 0), but there is no such exceptional particle in the most number
of molecules. Completing the second remark, we can note, roughly speaking, that our approach
for taking permutational symmetry into account follows [5], while authors [2] follow [7].

6. We do not write here the proof of the Theorem 1, since the significant part of this proof
will be needed for the study of the discrete spectrum sd

(
H

(α)
0

)
of the operator H(α)

0 (this study
is not finished), so we shall publish the full proof of the Theorem 1 later (together with the
results on the discrete spectrum). But here we shall do some preparations for our next paper.
Namely, we shall obtain from (4), (5) the other formula for µ(α), which is more convenient for the
investigation of the structure sd

(
H

(α)
0

)
. To do it first of all we transform the expression of the

operator H(Z2) for fixed Z2 = (D1, D2). We introduce clusters Ds center-of-mass coordinates

ξs = (ξs1, ξs2, ξs3) =
∑
j∈Ds

rjmj/Ms, Ms =
∑
j∈Ds

mj ,

the relative coordinates qj(Z2) = rj − ξs, j ∈ Ds, of the particles from Ds with respect to
center-of-mass position and the vector η = ξ2 − ξ1. Evidently, qj(Z2) = qj + ξ0 − ξs, where
ξ0 − ξ1 = M2η/M , ξ0 − ξ2 = −M1η/M .

The coordinates q(Z2) =
(
q0(Z2), . . . , qn(Z2)

)
are not independent, since

∑
j∈Ds

mj qj(Z2) = θ,

s = 1, 2. It is easy to see that Fourier-conjugate coordinates to qj(Z2) are the same pj that were
introduced before. Let Ps =

∑
j∈Ds

pj . Then Fourier-conjugate coordinates to η are

Pη = (Pη1,Pη2,Pη3) = (P2M1 − P1M2)/M (6a)

where by (1)

P1 + P2 = Q0. (6b)

We consider q(Z2) and η as new coordinates of particles from Z1 and denote the operator
H(Z2) in new coordinates by H0(Z2). According to consideration above and since qi − qj =
qi(Z2)− qj(Z2), i, j ∈ Ds, s = 1, 2, we have

H(Z2) = H0(Z2) = T (p,Q0,Pη) + V
(
q(Z2);Z2

)
(7)

where the operator (7) has the same form as the operator (3), but the conditions (6) have to be
satisfied.

Let us introduce spaces

R0(Z2) =

q(Z2) | q(Z2) =
(
q0(Z2), . . . , qn(Z2)

)
,

∑
j∈Ds

mj qj(Z2) = θ, s = 1, 2

 ,

Rη = {η | η = (η1, η2, η3)} , R0,η(Z2) = R0(Z2) ⊕ Rη,

L2

(
R0,η(Z2)

)
=

{
ϕ
(
q(Z2), η

) ∣∣∣ ∫
R0,η

|ϕ|2dq(Z2) dη < +∞

}
.
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In the space L2

(
R0,η(Z2)

)
we determine operators P (α̌)

0 (Z2) similarly to operators P (α̌)(Z2), but
now the operators Tg, g ∈ S0(Z2), are defined on functions ϕ

(
q(Z2), η

)
and ϕ(p,Pη) by relations

Tg ϕ
(
q(Z2), η

)
:= ϕ

(
g−1 q(Z2), η

)
, Tg ϕ(p,Pη) = ϕ(g−1p,Pη).

Here we took into account that g−1η = η and g−1Pη = Pη for ∀ η,Pη, ∀ g ∈ S0(Z2).
Let us

P̌0(α;Z2) =
∑

α̌∈F0(α;Z2)

P
(α̌)
0 (Z2), Ȟ0(α; Z2) = H0(Z2) P̌0(α;Z2).

According to (5),

µ(α) = inf Ȟ0(α;Z2), Z2 ∈ A(α),

where the operator Ȟ0(α;Z2) is considered in the space L2(R0,η). Since the operator T (p,Q0,Pη)
is a multiplication operator and the potential V

(
q(Z2);Z2

)
does not depend on η, we may

consider the operator Ȟ0(α;Z2) ≡ Ȟ0(α;Z2;Pη) in the space L2

(
R0(Z2)

)
at the arbitrary fixed

Pη = Q. Then

µ(α) = inf
Q

inf Ȟ0(α;Z2;Q), Z2 ∈ A(α). (8)

Operator Ȟ(α;Z2;Q) depends on Q continuously and

lim
|Q|→+∞

inf Ȟ0(α;Z2;Q) = +∞,

since if |Q| → +∞, then at least for one j it holds |pj | → ∞ and consequently T (p,Q0, Q) → +∞.
So there exists a compact set Γ(α;Z2) of such vectors Q ∈ R3 that

µ(α) = inf Ȟ0(α;Z2;Q), Q ∈ Γ(α;Z2), Z2 ∈ A(α).

7. Unfortunately, in the general case we know nothing about finiteness or infiniteness of the
number of the set Γ(α;Z2) elements. But we can prove the following assertion

Lemma 1. Let for some open region W ⊂ R3, Γ(α;Z2) ⊂W ,

i) λ(α;Z2;Q) := inf Ȟ0(α;Z2;Q) is the point of the discrete spectrum of the operator
Ȟ0(α;Z2;Q) for Q ∈W ,

ii) there is such α̌0, which does not depend on Q, that the representation g → Tg, g ∈ S0(Z2)
in the eigenspace U(α;Z2;Q) of the operator Ȟ0(α;Z2;Q), corresponding to its eigenvalue
λ(α;Z2;Q), has ONE irreducible component of the type α̌0 for each Q ∈W .

Then the set Γ(α;Z2) is finite.

Proof. Let B̌0(α;Z2) = P̌0(α;Z2)L2

(
R0(Z2)

)
. Since

P̌0(α;Z2) = P
(α̌0)
0 (Z2) +

∑
α̌∈F0(α;Z2),α̌ 6=α̌0

P
(α̌)
0 (Z2),

then

B
(α̌0)
0 (Z2) := P

(α̌0)
0 (Z2) B̌0(α;Z2) = P

(α̌0)
0 (Z2)L2

(
R0(Z2)

)
.
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It follows from the conditions i), ii) that in the space

U (α̌0) = U(α;Z2;Q) ∩B(α̌0)
0 (Z2) ≡ P

(α̌0)
0 U(α;Z2;Q)

the representation g → Tg, g ∈ S0(Z2) is irreducible and has the type α̌0.
Let P (α̌0)

01 be the projector in B(α̌0)
0 (Z2) on the space B(α̌0)

01 (Z2) of functions, which belong to
the first line of the group S0(Z2) irreducible representation of the type α̌0.

Then the space B(α̌0)
01 (Z2) is invariant under the operator H0(Z2) and in this space the min-

imal eigenvalue λ(α;Z2;Q) of the operator H0(Z2) is nondegenerated, since the corresponding
eigenspace P (α̌0)

01 U (α̌0) is one-dimensional. In other words, the minimal eigenvalue of the opera-
tor P (α̌0)

01 H0(α;Z2;Q) is nondegenerated at ∀Q ∈W . But if λ(α;Z2;Q) is nondegenerated, then
λ(α;Z2;Q) is analytical function of Q, since the operator H0(Z2) is analytical function on Q [4].
That is why there is only finite number of such vectors Q, for which

µ(α) = λ(α;Z2;Q). �

8. Discussion. Theorem 1 and Lemma 1 describe the location of essential spectrum
sess

(
H

(α)
0

)
of the operator H(α)

0 and some properties of its lower bound respectively. Now
let us consider a role of these results for the discrete spectrum study. It follows from Theorem 1
that to prove the existence of nonempty discrete spectrum sd

(
H

(α)
0

)
of the operator H(α)

0 it is
sufficient to construct such trial function ψ, P (α)ψ = ψ that(

H
(α)
0 ψ,ψ

)
< µ(α)(ψ,ψ), (9)

where the number µ(α) is determined by the relations (5) and (8). Construction of a function ψ
for (9) is important component of geometrical methods application in the study of the spectrum
sd

(
H

(α)
0

)
of operator H(α)

0 .
But Theorem 1 is not a sufficient base to study the spectral asymptotics of the discrete

spectrum sd

(
H

(α)
0

)
near µ(α), when this spectrum is infinite. To understand the reason for

that, let us consider the case when µ(α) is the point of the spectrum sd

(
H(α;Z2;Q)

)
for Z2 ∈

A(α), Q ∈ Γ(α; Z2) (such situation is expected for PR atoms). Then the infinite series of
the eigenvalues λk(Q), k = 1, 2, . . ., from sd

(
H

(α)
0

)
may exist for ∀ Q ∈ Γ(α;Z2). In this

case it is possible to show that corresponding eigenfunctions ψk describe (when k → ∞) such
decomposition Z2 = {C1, C2} of the initial system Z1, for which

P1 + P2 = Q0, M1P2 −M2P1 = MQ

(see (6)). Consequently, if the set Γ(α;Z2) is infinite, then the spectrum sd

(
H

(α)
0

)
may consist

of infinite number of the infinite series eigenvalues λk(Q), k = 1, 2, . . ., where all series are
determined by the values Q from Γ(α;Z2). For such situation there are no approaches to get
the spectral asymptotics of sd

(
H

(α)
0

)
. Thus, it was very desirable to establish the conditions of

impossibility of this situation that is the conditions of finiteness of the set Γ(α;Z2). Namely,
such conditions are given in Lemma 1 of the paper.
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