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Abstract. The transition from integrable to non-integrable highly-dispersive nonlinear
models is investigated. The sine-Gordon and ¢*-equations with the additional fourth-order
spatial and spatio-temporal derivatives, describing the higher dispersion, and with the terms
originated from nonlinear interactions are studied. The exact static and moving topolo-
gical kinks and soliton-complex solutions are obtained for a special choice of the equation
parameters in the dispersive systems. The problem of spectra of linear excitations of the
static kinks is solved completely for the case of the regularized equations with the spatio-
temporal derivatives. The frequencies of the internal modes of the kink oscillations are
found explicitly for the regularized sine-Gordon and ¢*-equations. The appearance of the
first internal soliton mode is believed to be a criterion of the transition between integrable
and non-integrable equations and it is considered as the sufficient condition for the non-
trivial (inelastic) interactions of solitons in the systems.
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1 Introduction

The soliton theory of completely integrable systems proposed a new basis of nonlinear funda-
mental excitations [1]. These elementary waves are solitons (antisolitons), breathers (soliton-
antisoliton bound states) and linear waves of the continuous spectrum. Any localized initial
condition evolves as a superposition of such basic excitations. In the case of trivial (elastic)
interaction between solitons the nonlinear excitations undergo only the phase and mass center
shifts as a result of pair collisions. Then the initial profile is transformed asymptotically in the
long time limit, in general, into a sequence of solitons and breathers existing upon linear wave
background.

Soliton interactions can be described explicitly by the use of a multisoliton formula. To study
interaction between a soliton and linear waves one needs to solve the equation linearized near
the given soliton solution. It is remarkable that an exact solution of the problem can be also
obtained from the multisoliton formula. For this purpose it is enough to make a special choice of
parameters in the formula, which provides specification of the soliton and a near-zero amplitude
limit for breather excitations [2].

In this paper we give a short survey of stability properties and linear excitation spectra of
solitons in the sine-Gordon and p*-equations and their Boussinesq-like generalizations. Then we
present a statement about spectrum of linear excitations of a soliton in a completely integrable
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system with trivial interaction between solitons. We justify the hypothesis which contends that
presence of the internal oscillation mode in a soliton spectrum serves as a sufficient condition
of non-integrability of a nonlinear system [3]. We use this criterion to state a crossover from the
integrable sine-Gordon equation to its non-integrable generalizations with higher-order deriva-
tives and dispersive nonlinear terms as well to conclude about non-integrability of corresponding
@i-systems. These new equations possess exact moving kink or soliton complex solutions but
they appear to be non-integrable.

2 Kink excitation spectra in the sine-Gordon and ¢*-systems

One of most important problems concerning the soliton dynamics in integrable and non-integrab-
le systems is stability investigation. To solve the problem analytically one has to find a spectrum
of linear excitations of the soliton. Usually this approach is demonstrated by consideration of
the sine-Gordon equation (SGE) as an example:

Ut — Ugg +sinu = 0.

The well-known moving kink solution of the SGE has the following form:

= 4 arcta ( p 71' t >
Ug = rctan | ex .
S /71 5

Due to the Lorentz invariance of the SGE it is enough to determine a spectrum of kink excitations
of a static solution us with V' = 0. For the amplitude of small deviations from a kink profile

u— us = Y(x) exp iwt
it is easy to obtain the linear Schrédinger-type equation with the simplest reflectionless poten-
tial [4]:
2
<_CZ:2 +1-— cosi%:) Y(z) = wP(x).
FEigenfunctions of the equation correspond to the translational mode with the zero eigenfrequency
Yo(x) =1/ coshz, wo =20

and to waves of the continuous spectrum:

Y(x) = (tanh x + ik) exp ikz, wp =V 1+ k2.

No instability mode with w? < 0 exists in the spectrum hence the kink in the integrable SG-
system is stable. We note also that there is no additional localized mode with a discrete eigen-
value lying in the frequency gap 0 < w < 1.

The another situation takes place in the non-integrable p*-equation:

Ptt — P — 2(@ - 903) = 0.
In this case there is also an exact kink solution:
z—Vt
V1I-VZ

Then for the amplitude f(x) of small deviations from a static kink

ps = tanh

Y —Ps = f(x) exp iwt
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one finds the linear equation with one more reflectionless potential:

<_dd; . 6) f(@) = w2f ().

cosh? z

However, besides the translational mode with the zero frequency:
fo(z) = 1/ cosh? z, wo =10

and continuum waves fi(z) with wy, = V4 + k2, the eigenfrequency spectrum of the equation
contains the additional discrete eigenvalue corresponding to the internal mode of kink oscilla-
tions:

fulz) = sinh x oy = \/§

)
cosh? z

Since all w? > 0 then the kink of the ¢*-equation is also stable. But in contrast to the SG kink it
possesses an intrinsic structure giving rise to an internal degree of freedom. The internal mode
corresponds to a localized oscillation of an effective width of the kink.

Analogous situation takes place in the double sine-Gordon equation [5]

Ut — Ugy + SiNucosu + hsinu = 0,

where the internal mode of the wobbler solution describes antiphase oscillations of two composite
kinks. In this case the frequency of the internal mode becomes a function of the parameter h.
Numerical simulations of the double sine-Gordon and ¢*-equations demonstrate effects of inelas-
tic interactions between solitons, including resonant phenomena [5, 6]. It is natural to suggest
that the appearance of the internal mode in these models is connected with a non-integrability
of the systems. This question is analyzed in the next section.

3 Existence of internal mode as a non-integrability criterion

The above consideration of soliton excitations allows to formulate the following statement: in
a completely integrable system with only trivial (elastic) interactions between solitons a spectrum
of linear excitations for a soliton can consist only of a translational (Goldstone) mode and
continuum waves. Here and further we use the terminology of completely integrable systems,
trivial and non-trivial interactions following those of V.E. Zakharov’s papers (see, e.g., [7]).
Well-known examples of the completely integrable systems with trivial soliton interactions are
the sine-Gordon, nonlinear Schrodinger and Landau-Lifshitz equations. In such systems a basis
of fundamental excitations consists of solitons, breathers and linear waves. To solve a spectral
problem for the equations linearized near a soliton solution one can use a multisoliton formula.
Then a soliton solution with arbitrary small perturbations can be presented by a combination
of a soliton and breathers with near-zero amplitudes. In a small amplitude limit a breather
is delocalized and transformed into a linear wave with a frequency belonging to a continuous
spectrum. No linear localized mode corresponding to a discrete eigenvalue in the frequency
gap can be obtained from this basis of fundamental excitations. Exception is the existence
of a translational mode which follows from the translational invariance of the systems. Hence
the spectrum of linear excitations of the soliton in the case of the trivial soliton interaction
consists of the translational (Goldstone) mode and continuum waves. Thus it appears that
solitons in a completely integrable system with only trivial interactions between solitons have
no internal modes in their spectra of linear excitations. And vice versa, presence of the internal
mode in a soliton spectrum should be considered as a sufficient condition at least for existence
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of non-trivial interaction between solitons in a nonlinear system. The last statement can be
strengthened and formulated as the following conjecture.

Hypothesis. Presence of the internal mode in a spectrum of linear excitations of a soliton is
a sufficient condition of the non-integrability of corresponding soliton-bearing nonlinear equa-
tions.

It should be noted that the absence of the internal mode in a linear excitation spectrum of
a soliton is not a sufficient condition of the integrability of the soliton-bearing system. The
main argument in favour of the hypothesis is that in the completely integrable system only
the breather has its frequency in the gap between the zero and the continuous spectrum due
to the finite value of its amplitude. Hence the existence of another type of nonlinear localized
excitation with frequency in the gap would be assumed to obtain the internal mode oscillation as
its linear limit. Such kind of soliton excitations is not known yet, at least for integrable systems.

The hypothesis first was formulated in the paper [3] and used for investigation of the transition
from the integrable Landau—Lifshitz equation to a non-integrable one describing the biaxial
ferromagnet placed in a magnetic field. Later this idea was used in the calculation of detachment
of the internal mode from the continuous spectrum in the double sine-Gordon and near-discrete
nonlinear Schrédinger equations [8].

4 Soliton motion and instabilities in highly dispersive systems

A soliton motion in the above examples of integrable equations does not influence the soliton
stability. It is not a common case for integrable systems. There are known integrable systems
with nontrivial interactions between solitons which exhibit instabilities in soliton dynamics [9,
10, 11]. The most famous example is the Boussinesq equation [7, 12, 13, 14]:

Uttt — Ugz — G(UQ)MC — Ugzzz = 0.
It is easy to see that in this equation even the trivial solution v = 0 is unstable with respect
to short waves u = aexp(vt)coskx of a continuous spectrum with wave numbers k& > 1. An
exact analysis [9] of linear stability of a soliton of the Boussinesq equation also indicates the
existence of an instability of the solution. Nevertheless it was shown that a nonlinear stage of
the instability can be described by almost independent evolution of the growing mode [12] which
destroys really neither solitons nor breathers [14].

However, there is another channel of the soliton instability directly connected with the non-
trivial interaction between solitons in the Boussinesq equation with the opposite sign of the
fourth-order derivative term [13]. Recently the Boussinesq equation was revisited and investi-
gated in detail by the dressing method [7]. As a result of the consideration, a soliton decay
into a pair of composite solitons (or its collapse) had been described explicitly. Linear stability
analysis of the decaying soliton at the initial stage of this inelastic process has to lead to an
existence of the instability mode [10] which corresponds to a localized eigenfunction. Here we
should emphasize that we distinguish this instability mode corresponding to a growing solution
from the internal mode which oscillates in time. To our knowledge, the internal mode has not
been found yet in integrable equations with the non-trivial soliton interaction.

Taking into account higher-order derivatives to describe strong dispersion in the sine-Gordon
and double sine-Gordon equations one comes to the highly dispersive non-integrable models [15].
These equations possess the soliton-complex solutions which can propagate with the fixed ve-
locity. For example the dispersive sine-Gordon equation

Ut — Ugg — PUgzer +sinu =0
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has the 4m-soliton complex solution in the form
u. = 8arctan[exp eo(z — Vot)], (1)

where ¢p and Vj are definite functions of the dispersive parameter 3. The soliton complex is
a specific bound state of identical solitons, which is formed due to strong dispersion (see [15]
for a survey). Note that a highly dispersive system is not integrable if this kind of the solution
is revealed in the corresponding dispersive equations.

To avoid an instability with respect to short waves the regularized dispersive sine-Gordon
equation with a mixed fourth-order derivative was introduced [15]:

Ut — Ugz — PUttze +sinu = 0. (2)

It also has the exact soliton-complex solution of the same form (1) but with different velocity
dependence on the dispersive parameter 3, namely:

_ g g
W—v1+3—Vg

Dynamical properties of the 27-kink and the 4m-soliton complex in the regularized equa-
tion (2) have been studied in detail. In particular a spectrum of linear excitations of the static
kink in the regularized sine-Gordon equation has been found exactly [16]. It was shown that,
depending on the 3 value, one or more internal modes are present in the spectrum. Additionally
for the regularized dispersive p*-equation a complete spectrum of internal modes of kink oscil-
lations was found exactly. Thus one of the advantages of the regularized dispersive equations is
the fact that a process of the appearance of the internal modes of static kinks can be described
explicitly.

It should be noted that there are several mechanisms of formation of multikinks and soliton
bound states. At first it was found that interactions of oscillating soliton tails in dispersive
media lead to the formation of bunches of solitons, consisting of two or more well-distinguishable
humps [17, 18]. Later it has been shown that solitons coexisting with resonant radiation can form
bound states with purely solitonic asymptotics due to some kind of the radiation interference
effect [19, 20]. These multisoliton bound states have been called embedded solitons, implying
their existence in the continuous spectrum.

In the paper [15] the concept of the soliton-complex in a nonlinear dispersive medium was pro-
posed. It was shown that solitons in a strongly dispersive medium possess an internal structure
and their interaction depends on intrinsic properties such as flexibility. Due to this dependence,
the potential energy turns out to be a non-monotonic function of the distance between solitons.
As a result, even identical topological solitons can attract each other and form a bound soliton
complex which can move without any radiation in strongly dispersive media. These bound soli-
ton states with zero and small distances between composite solitons have been called the soliton
complexes. Their formation cannot be described by the soliton perturbation theory. Such soliton
complexes appear even in systems with the effective strong dispersion, for example in nonlinear
Schrodinger equation with the parametric pumping and dissipation [21]. The soliton complex
in this case is formed due to neither oscillatory soliton tails interaction nor embedded soliton
interaction but as a result of a strong multi-soliton interaction.

The regularized equations give a possibility to study soliton complexes in conditions when
the influence of radiation is minimized. Indeed, in the equation (2) the continuous spectrum
of linear waves degenerates into a single frequency wy = 1 for the parameter 6 = 1. At the
same time the number of kink internal modes become infinite and they play a principal role in
soliton-complex dynamics.
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More than thirty years ago A. Kosevich and A. Kovalev combined the sine-Gordon and the
modified Boussinesq equations to describe the crowdion (dislocation) motion in crystal with
nonlinear interaction between nearest atoms [22]. They showed that the equation (KKE)

Uyt — Ugg +SiDU — Vuiuaﬁx - ﬁuxmcac =0
has a moving crowdion solution with an arbitrary value of the velocity parameter V'

uer = 4arctanfexpe(x — V)],

if the relation v = 33/2 takes place. Here the dependence of the parameter € on the velocity is
the following:

12 48
g = 2B < 1+(1_‘/2)2—1>

Besides, for the equation, combining the Boussinesq and ¢*-equations,

Ptt — Prx — 2(90 - (/73) - ﬁ@zmmm + 0z Pz =0 (3)

authors showed the existence of a moving kink solution with a definite velocity which is a function
of a special combination of parameters 5 and «.

A year later after the paper [22] K. Konno et al derived and solved by the inverse scattering
method the equation [23]:

. 3
Upe — Sinu + G (umm + 2u§um> =0. (4)

This equation was reduced by the use of the Hirota transformation

*

u=2¢ln— 5
7 ()
to the following bilinear equations (see, e.g., [24])
1 *
(DaDi+ BDL)f - f = 5(F* = ), (6)

where Hirota operators are defined as follows [25]

DPD}a-b=(9y — 0u)™ (0 — ) alw, )b’ )],y
The bilinear equations (6) and (7) are solved exactly, resulting in the multisoliton solution.

In conclusion of the section we would like to note that only additional integrals of motion
cannot guarantee, obviously, complete integrability of nonlinear equations. Here we mention,
for example, the near-integrable dispersive equation by Leo et al [26]:

Up — Uy SINU + BUgee = 0,

which has three independent integrals of motion but the quasi-elastic soliton interaction in this
equation is confirmed only numerically yet.
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5 Kinks and soliton complexes in highly dispersive models
with anharmonic interatomic interactions

Instead of the use of a variational approach [27] for studying systems with anharmonic inter-
atomic interactions, in this section we seek for exact solutions of the regularized versions of the
dispersive Boussinesq-like sine-Gordon and ¢*-equations. However first of all we would like to
conclude about the integrability of the Kosevich-Kovalev equation. For the case v = 33/2 it
has remained an open problem. There was a premature conclusion about its integrability [28§],
apparently based on similarity of this special case of the KKE and equation (4). We use the
Hirota transformation (5) to reduce the KKE to a set of bilinear equations

(fQ_f*Z))

N

2 2 4
Dif-f*=0.
It is easy to verify that these equations do not have a multisoliton solution in contrast to

equations (6) and (7). Nevertheless in the case v # 33/2 we find the exact soliton-complex
solution of the KKE:

4 _ ;7 V=,/1- QM‘
30— 8y V36 — 8y
Evidently the solution exists when 3 > 8vy/3 and the velocity V < 1 if 5 > 4.

Now we consider the regularized dispersive sine-Gordon equation with a nonlinear dispersive
term:

uc = 8arctan[expe(z — V)], €

. 2
Ut — Ugy + SINU — YU Ugy — PUptzg = 0. (8)

At first we show that this equation has a static kink solution for arbitrary values of parameters
and (. In fact after one integration of the equation (8) we obtain for u(x)

du/dx = K\/l + 8y sin?(u/2) — 1) /'y] v :

The 27-kink solution exists for any positive v and at small values of the parameter we find out
the expansion

sinh(z)

ug(z) = 4arctan(exp(z)) — Vm.

(9)
With increasing ~ the effective kink width also increases. We have analyzed a spectral problem
of the equation linearized near the kink solution (9). By the use of the perturbation theory
with a small parameter v we have revealed detachment of the internal mode from the contin-
uous spectrum. We have found that a difference of the internal mode frequency from unity is
proportional to the first power of the parameter 7. Thus we conclude that the equation (8) is
not integrable.
Besides the static kink the equation (8) possesses the soliton-complex solution

u. = 8arctanfexp k(z — V)],
where parameters k and V obey the following equations

4 1 9 K2 —1

T 30V2 — 8y’ - k2(1 - BR2)’
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The latter equations determine fixed velocity and effective width of the soliton complex. Al-
though there is the lower boundary for admissible values of the velocity (V' > 1/8v/33) never-
theless at small enough = there is a definite range of S-values which provides valid quantities of
parameters x and V. For example, for 3 = 0.03 and v = 0.025 values of the velocity Vj and the
parameter kg are equal to 0.913 and 1.47 respectively.

We propose one more regularized version of the dispersive Boussinesg-like sine-Gordon equa-
tion

Upt — Ugy + SIDU — 'yuiutt — Bugze = 0. (10)

The equation possesses the moving kink and soliton complex solutions which are very similar
in their forms to corresponding solutions of the KKE. In the case v = 3(3/2 there exists the
2m-kink propagating with an arbitrary velocity less than unity:

1—V2 46V2
=4 — ; =l 9av2 I a—yee 1)
u arctan[exp e(z — V)] € 23V2 ( + (1—V2)2 )

Such moving solution does not exist in the case of v # 3/3/2. However a static 27-kink exists
for arbitrary values of 8 and ~:
uy, = 4arctan(exp(x)). (11)

The kink exhibits an intrinsic structure which manifests itself in its internal dynamics and
complex soliton interactions as it is shown below.
For values 7y # 33/2 the 4m-soliton complex solution appears:

u. = 8arctan[expe(z — V)], (12)
v o Vi4+o2+1
= ———— E = —_—,
Vi+o2+1 o306 — 8y
where
V306 —38
o= VI sy,

B—dy '
It should be noted that this solution exists also for 3 = 1 when the continuous spectrum dege-
nerates and it is interesting to investigate numerically the soliton-complex stability properties
in this case.

Here we present results of numerical simulations of the equation (10) for the soliton-complex
dynamics when the parameter 5 = 1 and v is very small. If one starts at {5 = 0 with the
soliton-complex profile which has the initial velocity Vi, = 0.4 less than V,. then the result of
simulation will be as shown in Fig. 1. The profile evolves with throwing down the superfluous
energy by exciting the internal mode, and it dissociates finally into two moving kinks.

The soliton complex given by the exact solution (12) appears to be stable and moves radia-
tionlessly in the dispersive media.

In conclusion of this section we present the regularized version of the generalized dispersive
@*-equation (3) of the following form:

Ptt — Pxx — 2(@ - 803) — Bzt + apzpr = 0.

Besides the moving kink which is analogous to the solution of the equation (3) there exists an
exact static kink solution for arbitrary parameters 8 and «:

s(z) = tanh(z).

In the next section explicit expressions for frequencies of internal modes of static kinks are
obtained for the regularized dispersive sine-Gordon and ¢*-equations.
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Figure 1. Dissociation of the soliton complex profile with the initial velocity Vi, = 0.4 in the dispersive
sine-Gordon equation (10) with 8 = 1 and v = 0.025. The numerical solution profile is shown at the
moment t; = 60.

6 Internal modes of kinks in the dispersive sine-Gordon
and ¢* equations

A remarkable property of the regularized equation (10) is that the problem of the spectrum of
internal modes of a static kink can be solved exactly.
Let us seek for a solution of equation (10) in the form:

u = ug, + (x) expiwt,

where wuy is given by equation (11) and ¢(z) < ug. Then the linearized equation for func-
tion ¢ (x) is obtained as follows:
d2

2
- (1 =27 = W, 13
gz Tl (-2 Y =w?y (13)

R

Discrete set of eigenvalues is given by the equation (see, e.g., [4]):

1 2(1—2yw?) 1—w? 1
- — = - 14
\/4+ 1— Bu? g2 "2 (14)
where n is an integer. The zero eigenvalue corresponds to the translational mode and n = 0.
The number of further levels, i.e. the number of internal modes, is determined by values of the
parameters § and 7.

Let us consider some special cases of the equation (14):
1. v = 0. For this case the dispersive SGE was studied in the paper [16]:

1 + 2 1—w? n

- _ —n

41— puw? 1 — Bw?
Depending on the dispersive parameter 3, internal modes detach from the continuous spectrum
at the following values of the dispersive parameter (:

2

o=l sy
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The first mode frequency is presented explicitly as follows:

_j1A2-9 68+ 4/1782 - 108 +9
w1 = Bma A(ﬁ)— 1+ 3 :

Analysis of the expansion of w; () at small § indicates clearly the appearance of the first internal
mode as soon as 3 # 0 and hence loss of the integrability of this variant of the sine-Gordon
equation.

It should be noted that in the case of the continuous spectrum degeneration (5 = 1) all the
infinite set of the frequencies of internal modes is expressed very simply:

A T e D+ 2)

In this limit the dynamics of soliton complexes depends strongly on possibility of excitation of
the internal modes of composite kinks. This circumstance leads to a large variety of resonant
phenomena in soliton interactions in the dispersive equation (10).

2. v = (/2. It is easy to be convinced that this is the case of a reflectionless potential in the
equation (13)

1 — w? 1
52 n.

It is evident that there are only two discrete eigenvalues: (i) values n = 0 and w = 0 correspond
to the translational mode; (ii) values n = 1 and w = 1 correspond to the edge of the continuous
spectrum. Such kind of the spectrum is typical for integrable systems. Unfortunately the absence
of internal mode cannot serve as the sufficient condition of the integrability. Therefore we doubt
complete integrability of the equation in this case but could expect the near-integrable behavior
of soliton dynamics.

3. v =3(3/2. This is the case when moving kink exists. For the static kink limit the discrete
eigenvalue equation is the following

1 2(1-36w?) 1— w? 1
~ - —n+=.
4 1 — Bw? 1 — Bw? 2

Here also no internal mode exists between the zero frequency and a continuous spectrum. Howe-
ver the potential well in the equation (13) appears to be not reflectionless as usually in integrable
systems. The last argument works rather against the suggestion about the equation integrability
in this case.

Spectrum of internal modes of a static ¢*-kink is given by the equation:

1+6+aw2 4—w? +1
- - =n+—-.
41— puw? 1 — Bw? 2

This equation has discrete set of solutions for eigenfrequencies of internal modes for any posi-
tive o and 0 < 8 < 1. A structure of the discrete spectrum of internal modes is similar to that
of a kink of the dispersive p*-equation [16]. In the latter paper the detailed study of the kink
excitations spectrum for the case of & = 0 was performed.

Thus the analysis of presence of internal modes in the kink excitation spectrum justifies
the fact of the non-integrability of the corresponding dispersive sine-Gordon and ¢p*-equations.
Evidently, the internal structure of solitons in highly dispersive media can manifest itself in
inelastic processes of the soliton interaction. Formation of the soliton complexes is one of
consequences of such an interaction. Hence the existence of the soliton complex solution can be
also considered as the argument in favour of the non-integrability of nonlinear equations.
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7 Conclusions

The results of the present consideration are summarized as follows:

1. Exact static and moving solutions describing kinks and soliton complexes are found in the
equations describing highly dispersive models with nonlinear interatomic interactions. However
the presence of the exact solutions (especially, moving kinks with arbitrary velocities) does
not argue for complete integrability of the systems. In particular, it is demonstrated that the
Kosevich-Kovalev equation is not completely integrable in the case 3y > 80 due to an existence
of the soliton complex solution. It is also shown that there is not the standard multisoliton
formula for this equation in the special case v = 33/2.

2. As a result of application of the criterion of the non-integrability, based on presence
of the internal mode in a soliton spectrum, it is shown that the regularized dispersive sine-
Gordon equation with the fourth-order mixed derivative and the nonlinear dispersive term is
not completely integrable for the v < (3/2. Soliton dynamics in this system demonstrates
a complex behavior including bound state formation and dissociation processes. However it
should be expected for the case v = (3/2 that soliton interactions in the system could be close
with the dynamical behavior in the integrable model.

3. In general, finding of the exact solutions for spectra of linear excitations of solitons,
including the internal modes, for the generalized sine-Gordon and ¢*-models allow us to make
conclusions about the near-integrable soliton properties or a complex internal structure and the
non-trivial dynamics in the highly dispersive systems. Finally it is believed that existence of the
internal mode can serve as the criterion of non-integrability of a nonlinear system, supplementing
efficiently other integrability checks, like, e.g., the Painlevé test.
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