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1 Introduction and motivation

The notion of symmetry has always been playing a key role in fundamental particle physics.
The conventional way to represent symmetries is, from a mathematical point of view, the notion
of Lie algebra. Indeed, placing oneself within the framework of the Standard Model and using
Lie algebras to group the symmetries of Nature, one has several powerful no-go theorems.

One can mention here the O’Raifeartaigh theorem [1] which further led to the Coleman–
Mandula theorem [2]. Accepting the assumptions of the interacting relativistic quantum field
theory (QFT)1, the theorem states what are possible symmetries of Nature. One assumes that
the symmetry group contains the Poincaré group as a subgroup, that the S-matrix is based on
the local, interacting relativistic quantum field theory in 4 dimensions (thus one has e.g. analytic
dependence of the center-of-mass energy s and invariant momentum transfer t of the elastic-
scattering amplitude); that there are only a finite-number of different particles associated with
one-particle states of given mass and that there is energy gap between vacuum and one-particle
states. The theorem then states that the demanded symmetry group is the direct product of
an internal symmetry group and the Poincaré group. These internal symmetry transformations
act only on particle-type indices and have no matrix elements between particles of different
four-momentum or different spin.

However, a crucial hypothesis of the Coleman–Mandula theorem (completely natural at that
moment) is utilisation, at infinitesimal level, of the notion of Lie algebras to group symmetries.
It is exactly on utilisation of this hypothesis that we will speculate here.

Independently of all this, it is well-known that particle physics today needs to go beyond
its Standard Model. One of the most appealing candidates for New Physics is supersymmetry
(SUSY). SUSY extends the Poincaré symmetries by using a larger class of algebraic structures,

1An interested reader can consult for this purpose e.g. the book [3] of J. Lopuszanski. Note also that one can
recall here the axiomatic approach to QFT (for example, the Wightman formalism [4]).
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Lie superalgebras. The Coleman–Mandula no-go theorem is therefore not contradicted. More-
over, a somewhat analogous no-go theorem exists, the Haag–Lopuszanski–Sohnius theorem [5]
which states that, within the same framework of interacting relativistic QFT, the only Lie su-
peralgebras extending the Poincaré symmetries are the SUSY extensions. Analogously to the
Coleman–Mandula theorem, we put the emphasis here on the fact that this theorem uses Lie
superalgebras to group symmetries.

Indeed, one may raise the question of using other type of algebraic structure to group symmet-
ries. Here we review the use of a specific algebraic extension of the Poincaré algebra (introduced
in a more formal framework in [6, 7]) to the construction of a field theoretic model. The model
treated here was first introduced in by N. Mohammedi et. al. in [8] and further developed by
G. Moultaka et. al. in [9].

Let us also mention that a different algebraic structure, Lie parasuperalgebras [10], gave
birth to a different field theoretic model called parasupersymmetry, which was developed by
J. Beckers and N. Debergh in [11]. In relation to this subject note that parasupersymmetry was
introduced in a non-equivalent way by V.A. Rubakov and V.P. Spiridonov in [12]. Furthermore,
fractional supersymmetry was also analysed as a quantum mechanics model by a series of authors
in [13, 14, 15, 16, 17, 18, 19, 20]. Let us recall that a different approach was given by R. Kerner
in [21]. Finally let us also mention that mathematical literature offers another example of an
exotic algebraic structure, n-Lie algebras [22].

The physical motivation of such an approach is two-sided. First, the aim would be to develop
a self-coherent model which may offer answers to some of today’s open questions of fundamental
physics via the use of new types of symmetries. However, if this is proven not to be the case,
then such an approach should lead to enforcement of the existing no-go theorems.

The attempt presented here shows that there are considerable difficulties for constructing
such a model. Therefore, as stated above, one may see this type of approach as a first step
towards enforcement of no-go theorems, in the sense that stronger no-go theorems, which use
also other types of algebraic structures (in this case cubic ones), might be obtained.

This review is organised as follows. In the Section 2 we give the general algebraic setting
for this approach. In the Section 3 several comments are made on the foundation of this type
of exotic approach. Connection with other constructions are discussed. In the Section 4 we
construct bosonic multiplets associated to this structure. In the Section 5 a free theory is
obtained. In the Section 6 we study the possibilities of interaction within the bosonic multiplets
obtained previously. Finally, some technical details are given in the Appendix.

Let us also notice here that this review is a continuation of [23].

2 Underlying algebraic structure

In this section we give definitions for the algebraic setting used; general aspects are briefly
discussed (for more details one may refer to [6, 7] and [24]).

In [6, 7], a complex Lie algebra of order F (F ∈ N∗) is defined as a ZF -graded C-vector space
g = g0 ⊕ g1 ⊕ g2 ⊕ · · · ⊕ gF−1 satisfying the following conditions:

1. g0 is a complex Lie algebra.

2. For all i ∈ {1, . . . , F − 1}, gi is a representation of g0.

3. For all i = 1, . . . , F − 1 there exists an F -linear, g0-equivariant map

µi : SF (gi) → g0,

where SF (gi) denotes the F -fold symmetric product of gi, satisfying the following (Jacobi)
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identity:

F+1∑
j=1

[Yj , µi(Y1, . . . , Yj−1, Yj+1, . . . , YF+1)] = 0,

for any i = 1, . . . , F − 1 and for all Yj ∈ gi, j = 1, . . . , F + 1.

Note that if F = 1, by definition g = g0 and a Lie algebra of order 1 is a Lie algebra. If
F = 2, then g is a Lie superalgebra. In this sense, Lie algebras of order F appear as some kind
of generalisations of Lie algebras and superalgebras.

Note that, by definition, the following Jacobi identities are satisfied:

(i) For any X,X ′, X ′′ ∈ g0,[[
X,X ′] , X ′′]+

[[
X ′, X ′′] , X]+

[[
X ′′, X

]
, X ′] = 0.

This relation expresses the fact that g0 is a Lie algebra.

(ii) For any X,X ′ ∈ g0 and Y ∈ gi, i = 1, . . . , F − 1,[[
X,X ′] , Y ]+

[[
X ′, Y

]
, X
]
+
[
[Y,X] , X ′] = 0,

since gi is a representation of g0.

(iii) For X ∈ g0 and Yj ∈ gi, j = 1, . . . , F , i = 1, . . . , F − 1

[X,µi(Y1, . . . , YF )] = µi([X,Y1] , . . . , YF ) + · · ·+ µi(Y1, . . . , [X,YF ])

(results from the g0-equivariance of the map µi).

(iv) For all Yj ∈ gi, j = 1, . . . , F + 1, i = 1, . . . , F − 1,

F+1∑
j=1

[Yj , µi(Y1, . . . , Yj−1, Yj+1, . . . , YF+1)] = 0,

which corresponds to condition 3 of the definition.

Recall here that in the case of Lie (super)algebras Jacobi identities are included as a necessary
element which is related to the associativity of the corresponding Lie groups. However, in
our case, even though one has corresponding Jacobi identities (see above), one does not know
a corresponding exponentiation to obtain some “group”.

One important thing to notice here is that, if g0⊕ g1⊕· · ·⊕ gF−1 is a Lie algebra of order F ,
with F > 1, for any i = 1, . . . , F − 1, the vector spaces g0 ⊕ gi is also Lie algebra of order F .
The particular algebraic extension we use here is of this type and considers the case F = 3; we
denote the map µ by the 3-entries bracket {·, ·, ·}; the algebra writes:

[Lmn, Lpq] = i(ηnqLpm − ηmqLpn + ηnpLmq − ηmpLnq),
[Lmn, Pp] = i(ηnpPm − ηmpPn),
[Lmn, Vp] = i(ηnpVm − ηmpVn), [Pm, Vn] = 0,
{Vm, Vn, Vr} = ηmnPr + ηmrPn + ηrnPm, (1)

where

{Vm, Vn, Vr} = VmVnVr + VmVrVn + VnVmVr + VnVrVm + VrVmVn + VrVnVm (2)
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stands for the symmetric product of order 3, Lmn are the usual generators of the Lorentz
algebra so(1, 3), Pm are the momentums (m,n = 0, . . . , 3) and ηmn = diag (1,−1,−1,−1) is the
Minkowski metric.

Note that, from the point of view of fundamental physics, there is no special in this value of F ;
this approach attempts, as was already stated before, to explore the possibility of constructing
a field theoretical model based on cubic symmetries.

Comparing to the SUSY extension one can already make a certain number of comments.
As already noticed, by using a different algebraic structure a construction of this type evades
a priori the hypothesis of no-go theorems. Moreover, one can notice from the second line of (1)
that the 3-charges V lie in the vector representation of the Lorentz algebra and not in the
spinor representation, as was the case for SUSY. This will have as a first consequence the fact
that the multiplets to be obtained later will be either bosonic or fermionic (one will not have
statistics-mixing multiplets, as is the case for SUSY).

Another thing to notice is the following: if the supercharges Q are referred to as “square
roots of translations” (since Q2 ∝ P , see for example [25]), we can speak of the generators V as
some kind of “cubic roots of translations” (since V 3 ∝ P ).

3 Comments on the foundation of this approach;
connection with other constructions

We have thus seen in the previous sections the motivation and the basis of the foundation of
this approach. In this section we argue more thoroughly on some implications of such a con-
struction when reporting it to the usual concepts of QFT. We start by having a closer look
to the representations of the complexified Poincaré algebra. Then, the first subsection makes
a formal connection between the generators V and the the supercharges Q of SUSY. The second
subsection refers to the assumption of analytic dependence of a field theoretic model.

3.1 Representations of dimension 4 of the Poincaré algebra

In studying different classifications of the extensions of Poincaré algebra, a key role is played by
the study of its representations. We present here such results for 4-dimensional representations,
other results also to be found in [24].

Notice here that, when considering both our extension and the SUSY extension2, one uses
representations of the Poincaré algebra of dimension 4. We now point out what are all these
4-dimensional representations.

For this, consider the complexified Poincaré algebra. It is well-known that its semi-simple
part is isomorphic to sl(2)⊕sl(2). This can be seen explicitly by performing the following change
of basis in the Lorentz algebra:

U1 = iM01 −M23, U2 = −1
2
(M02 −M12 + iM03 − iM13),

U3 =
1
2
(M02 +M12 − iM03 − iM13),

W1 = iM01 +M23, W2 = −1
2
(M02 −M12 − iM03 + iM13),

W3 =
1
2
(M02 +M12 + iM03 + iM13).

2Obviously, we refer here to the simplest SUSY extension, N = 1 and with no central charges (see for examp-
le [25]).
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The semi-simple part writes

[U1, U2] = −2U2, [W1,W2] = −2W2,

[U1, U3] = 2U3, [W1,W3] = 2W3,

[U3, U2] = U1, [W3,W2] = W1. (3)

The basis (3) is more handy when one confront the problem of writing down all the representa-
tions of the complexified Poincaré algebra. (Indeed, then one can make direct use of the highest
weight representations of sl(2).)

Let us denote now the spin j representations of sl(2) by Dj . Furthermore, denote by D(j1,j2)

the representation of sl(2)⊕ sl(2) of spin j1 with respect to the first copy of sl(2) and of spin j2
with respect to the second copy of sl(2), and thus of dimension (2j1 + 1)(2j2 + 2).

Then all the 4-dimensional representations of sl(2)⊕ sl(2) are:

D( 3
2
,0), D(1,0) ⊕D(0,0), D( 1

2
, 1
2
), D( 1

2
,0) ⊕D(0, 1

2
), D( 1

2
,0) ⊕D

2
(0,0), D

4
(0,0). (4)

Notice that the third representation in this list corresponds to the vector representation of the
Poincaré algebra, the representation where the momentums Pm also lie. Moreover, it is also the
representation in which the vector generators Vm of (1) lie. The fourth representation in this
list is a spinor representation, and the supercharges Q of the SUSY extensions lie here.

Consider now the 4 pairs of weights αi, i = 1, . . . , 4 (with respect to two copies of sl(2)) of
the 4 generators of the representation considered here. The list (4) leads to the following table
of weights:

α1 α2 α3 α4

(−3, 0) (−1, 0) (1, 0) (3, 0)
(−2, 0) (0, 0) (2, 0) (0, 0)
(1,−1) (−1, 1) (1, 1) (−1,−1)
(1, 0) (−1, 0) (1, 0) (−1, 0)
(1, 0) (−1, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0, 0)

3.2 Formal connection with the SUSY supercharges

We make here a formal connection between the bracket for the generators V (bracket defined in
equation (2)) and the usual anticommutator of two supercharges Q. This approach is inspired
by the fact that, as already noticed in Section 2, the SUSY supercharges Q are square roots
of translations and the generators V are cubic roots of translations. Hence one may think of
a possible connection V 3 ∝ P ∝ Q2.More exactly, recall from the 3SUSY algebra (1) the relation

{Vm, Vn, Vr} = ηmnPr + ηmrPn + ηrnPm. (5)

The SUSY algebra (with the conventions of [25]) includes the relation:

{Qα, Q̄β̇} = 2(σm)αβ̇Pm (6)

(with α, β̇ = 1, 2). Hence one may calculate some connection between the 3-entries bracket (5)
and the anticommutator (6). Writing explicitly the SUSY algebra anticommutators (6), one
can then express any momentum Pm as a function of them; these expressions are then inserted
in (5) thus leading to

{Vm, Vn, Vr} = (σmnr)αβ̇{Qα, Q̄β̇}, (7)

where the matrices σmnr have the explicit form (60).
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The purpose of such connection with the SUSY supercharges would be to acquire some
information on what would be the “allowed” possibilities for a vector generator which extends
the Poincaré symmetry. However, this does not seem to be the case here, because in all generality
(that is not considering only Lie superalgebras) the SUSY supercharges Q are not the only
fermionic generators to extend the Poincaré symmetries. Indeed, this is the case, as proved by
the Haag–Lopuszanski–Sohnius theorem, but only within the framework of Lie superalgebras.
Considering other type of algebraic structures, other type of fermionic generators may a priori
lead to non-trivial extensions and hence relations of type (7) could be obtained.

3.3 Connection with other constructions

Already in the introduction we have mentioned other extensions of the Poincaré symmetry.
Some other constructions are now referred to.

In [26], G. Grignani et. al. propose a model for planar P, T -invariant fermions. In this
model, a hidden N = 3 SUSY leads to a non-standard super-extension of the (2+1)-dimensional
Poincaré group. In [27], K.S. Nirov and M.S. Plyushchay investigate hidden symmetries of a P, T -
invariant system of topologically massive U(1) gauge fields. This system realizes an irreducible
representation of a non-standard super-extension of the (2+1)-dimensional Poincaré group. The
non-standard behaviour means that the anticommutator of corresponding supercharges results
in an operator different from the Hamiltonian.

In the context of parabosonic systems, in [28], M.S. Plyushchay founds a hidden polynomial
SUSY. One may wonder whether or not a relation between this structure and the structure
investigated in this review can be established. This seems to be unlikely, since, even if non-
linear, the algebraic structure of [28] is a superalgebra, which is not the case here. Thus, the two
structure are already different at the level of the definition of the algebraic structure. However,
one may further address the issue of a possible formal connection, like the one established in
the previous subsection for the case with the SUSY algebra. This still does not seem to be
the case for the non-linear superalgebra appearing in [28], because one cannot easily obtain the
momentum as function of the anticommutators, as was done in Appendix A for the case of the
SUSY algebra.

Another interesting issue is related to the construction of [29], where a relativistic wave
equation involving the cubic root of the Klein–Gordon operator is defined. The equation con-
sidered here can be related to fractional supersymmetry in the following sense: one considers
localised 1-dimensional fractional supersymmetry, fractional supergravity; quantising this model
one obtains this new type of wave equation (see [16]).

3.4 The assumption of analicity

We have seen in section 1 that one of the assumptions of the Coleman–Mandula theorem was the
analytic dependence of the elastic scattering amplitude on the momentum and spin variables.
As S. Coleman and J. Mandula say in their original paper [2], the naturalness of this assumption
being above any doubt, being “something that most physicist believe to be a property of the
real world”. In this subsection we will look to this issue in more detail and give an illustration of
why additional exotic symmetries in the Standard Model frame would violate this assumption.
We do this explicitly on a simple example of two-body scattering. We then discuss what this
becomes for the case of SUSY and of the algebra (1). This short discussion is drawn upon
E. Witten’s analyse in [30].

In the simplest case of two-particle scattering, considering that the momentum and angular
momentum are the only conserved charges, one has the cross section depending only on the
scattering angle θ.



Extension of the Poincaré Symmetry and Its Field Theoretical Implementation 7

Let us now assume that one has an additional conserved charge, say a symmetric, traceless
tensor Zmn, which closes with the rest of the Poincaré generators by commutation relations.
These commutation relations are not trivial and hence Zmn has no trivial matrix elements
between particles of different four-momentum and spin.

For simplicity, we consider here only spinless particle states. By Lorentz invariance, one takes
for the matrix element of Zmn in a one-particle state of momentum p

〈p|Zmn|p〉 = pmpn −
1
4
ηmnp

2. (8)

(The new matrix element is expressed with the help of the momentum four-vector.) Now, for the
two-particle scattering above, assume that the matrix element in the two-particle state |p1p2〉
is the sum of the matrix elements in the states |p1〉 and |p2〉. Hence, the conservation of Z,
〈p1p2|Zmn|p1p2〉 = 〈p′1p′2|Zmn|p′1p′2〉, leads to p1 mp1 n + p2 mp2 n = p′1 mp

′
1 n + p′2 mp

′
2 n. This is

a supplementary conservation law, which can be satisfied only for θ = 0, and hence the analytic
dependence is lost.

If one considers now the case of SUSY, one cannot make the same reasoning. Indeed, since
Q is a spinor, one cannot construct a matrix element 〈p|Qα|p〉 (the analogous of (8)) with the
help of only momentum and spin variables.

To conclude this section, let us now shortly discuss what would this become for the case of
the construction (1). As we have already mentioned the additional symmetries Vm are Lorentz
vectors and close within a structure of Lie algebra of order 3. Hence, one can a priori construct
a matrix element like, for example 〈p|Vm|p〉 = C pm, which will lead to a certain constraint.
This gives rise to a new, exotic conservation law which, as above, would contradict analytic
dependence; the theory constructed upon in 4 dimensions would have to be non-interacting.

This short remark is an indication towards conclusion on impossibility of interactions for the
model discussed in this review. This goes along the result we prove in Section 6.

4 Representations of the algebra, bosonic multiplets

We have so far introduced the algebra (1) and argued on some of the foundations of this type
of exotic approach. In this section we start construction of the field theoretic model as follows.
Irreducible matrix representations are exhibited. These lead to different type of multiplets
(bosonic or fermionic) amongst which we consider here the bosonic ones. Transformation laws
of these bosonic fields are then obtained. We then give some technical properties of these
multiplets, the properties that will prove to be useful for the sequel. Before ending this section
we stop for a moment from the implementation of our field theoretical moment and we make
some comments regarding the relation with the spin-statistics theorem.

4.1 Irreducible representations

The algebra (1) has two inequivalent 6-dimensional representations

V+m =

 0 Λ1/3σm 0
0 0 Λ1/3σ̄m

Λ−2/3∂m 0 0

 , V−m =

 0 Λ1/3σ̄m 0
0 0 Λ1/3σm

Λ−2/3∂m 0 0

 (9)

with σm = (σ0 = 1, σi), and σ̄m = (σ̄0 = 1,−σi), σi the Pauli matrices and Λ a parameter with
mass dimension that we take equal to 1 (in appropriate units). For details on the manner this
representation has been obtained, one can refer to [8]. These two representations are referred
to as conjugated to each other and they will give rise to different types of multiplets, as we will
see later on.
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One may also notice here that these representations are not proven to be the only irreducible
representations. Thus, if other representations exist then they may lead also to physics results.

4.2 Multiplets

The matrices V+ and resp. V− (9) act on the triplets of Weyl spinors Ψ+ and resp. Ψ−,

Ψ+ =

ψ1+

ψ2−
ψ3+

 or Ψ− =

ψ1−
ψ2+

ψ3−

 , (10)

where ψ1+ is a left-handed (LH) 2-component Weyl spinor, ψ̄2− is a right-handed (RH) 2-com-
ponent Weyl spinor etc.

The transformation law associated to this type of new symmetry writes

δvΨ± = vmV±mΨ±, (11)

where v is the transformation parameter.
The representation space of the algebra (1) is constituted of the states generated by Ψ.

A very interesting remark to be made here is that this representation space has a Z3-graded
structure (the representation space for the SUSY algebra having a similar Z2-graded structure).
Technically, this result comes from the dimension of the irreducible representation, 6 = 3 · 2:
the 6-dimensional matrices Vm act on 3 copies of Weyl spinors (which are each of them 2-
dimensional).

In further use, we call the states of ψ1 states of gradation −1, the states of ψ2 states of
gradation 0 and the states of ψ3 states of gradation 1.

One has further similitude with SUSY, in the sense already mentioned of “cubic roots of
translations”: one has ψ1 → ψ2 → ψ3 → ψ1 (that is, acting with the generator V on a state of
gradation −1 one has a state of gradation 0, acting again with a generator V one has a state
of gradation 1 and finally, acting one more time with a generator V , one has a state of gra-
dation −1). One could have reached the same final state just by acting with some translation
generator on the initial state (recall that a similar phenomena happened in the case of SUSY,
see for example [25]). Some comments regarding this issue and the relation to the spin-statistics
theorem are made in the last subsection of this section.

Taking now into consideration the vacuum, a singlet for this new symmetry, one has to specify
in which representation of the Lorentz algebra it lies. Considering it in the trivial representation
of the Lorentz algebra, equation (10) leads directly to two fermionic multiplets. We will not
be concerned here with these fermionic multiplets; they have been treated in [8] where a non-
conventional kinetic Lagrangian was obtained.

Another possibility for the vacuum, a Lorentz vector, was also treated in [8] leading to the
same type of results.

However, considering now the vacuum lying in the spinor representation of the Lorentz alge-
bra, one obtains bosonic multiplets. The vacuum can be a LH or RH Weyl spinor, Ω+ and Ω−.
Therefore one has four possibilities Ξ±± for a tensor product Ψ± ⊗ Ω, with Ψ± given in (10)

Ξ++ = Ψ+ ⊗ Ω+ =

Ξ1++

Ξ2−+

Ξ3++

 , Ξ−− = Ψ− ⊗ Ω− =

Ξ̄1−−
Ξ2+−
Ξ̄3−−

 ,

Ξ−+ = Ψ− ⊗ Ω+ =

Ξ1−+

Ξ2++

Ξ3−+

 , Ξ+− = Ψ+ ⊗ Ω− =

Ξ1+−
Ξ2−−
Ξ3+−

 . (12)
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The following step is decomposition of these products of spinors on p-forms. For the case
of Ξ++, defined in equation (12)), this writes (see [23] for technical details)

Ξ1++ = ϕ+
1
4
Bmnσ

mn, Ξ2−+ = Ãmσ̄
m, Ξ3++ = ˜̃ϕ+

1
4

˜̃Bmnσ
mn, (13)

where we denote by ϕ, ˜̃ϕ two scalar fields, Ãm a vector and Bmn, ˜̃Bmn two self-dual 2-forms.
Applying this analysis for the four product of spinors (12) leads to the four multiplets Ξ±±

with the following field content

Ξ++ =

ϕ,Bmn

Ãm

˜̃ϕ, ˜̃Bmn

 , Ξ+− =

 A′
m

ϕ̃′, B̃′
mn

˜̃A
′
m

 ,

Ξ−− =

ϕ
′, B′

mn

Ã′
m

˜̃ϕ
′
, ˜̃B

′
mn

 , Ξ−+ =

 Am

ϕ̃, B̃mn
˜̃Am

 , (14)

where ϕ, ˜̃ϕ, ϕ′, ˜̃ϕ
′
, ϕ̃, ϕ̃′ are scalars fields, Ã, Ã′, A, ˜̃A, A′, ˜̃A

′
are vector fields, B, B̃, ˜̃B, B′,

B̃′, ˜̃B
′
are 2-forms. As we have mentioned above, these 2-forms, namely B, B̃, ˜̃B are self-dual

(i.e. ∗B = iB, where by ∗B we mean the dual of B) and resp. B′, B̃′, ˜̃B
′
are anti-self-dual (i.e.

∗B′ = −iB′); thus these 2-forms must be complex. To have minimum field content, one takes
Ξ++ = Ξ∗

−− and Ξ+− = Ξ∗
−+ (that is ϕ = ϕ

′∗, B = B
′∗, etc.) We call the couples Ξ++ −Ξ−−,

Ξ+−−Ξ−+ conjugated multiplets and the couples Ξ++−Ξ+−, Ξ−−−Ξ−+ interlaced multiplets.
Following the convention defined earlier, one can say, for example for the multiplet Ξ++ that

the fields ϕ, B are of gradation −1, the field Ã is of gradation 0 and the fields ˜̃ϕ, ˜̃B are of
gradation 1.

At this level of our construction let us notice that in the same multiplet one has scalar and
vector fields as well as 2-form. In SUSY models, the scalar fields combine with fermions making
supermultiplets. Here, as noted before, since the generators V lie in the vector representation of
the Lorentz algebra, one has multiplets of the same statistics, that is either bosonic or fermionic
multiplets. Later on in this section we obtain Lagrangians presenting explicit gauge fixation
terms for the fields. Moreover, in Subsection 5.4, compatibility of this new type of symmetry with
the Abelian gauge invariance is analysed. This means that, if one applies a gauge transformation
to some multiplet, the same type of multiplet is obtained (this property being also present for
SUSY models).

4.3 Transformation laws of the fields

The transformation laws of the fields are obtained from the transformation law (11), using
the explicit form (9) of the matrices V±m (see again [23] for detailed calculus). We give the
explicit formulae obtained for the Ξ++ multiplet, similar formulae being obtained for the other
multiplets:

δvϕ = vmÃm, δvBmn = −(vmÃn − vnÃm) + iεmnpqv
pÃq,

δvÃm = (vm
˜̃ϕ+ vn ˜̃Bmn), δv ˜̃ϕ = vm∂mϕ, δv

˜̃Bmn = vp∂pBmn. (15)

4.4 Derivation of a multiplet

We now obtain an interesting property of these multiplets, property which will be used when
analysing compatibility of our model with Abelian gauge invariance (see Subsection 5.4) and
when treating the possibilities of interaction (see Section 6).
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Let us denote from now on by X[mn]± the (anti-)self-dualisation of any second rank ten-
sor Xmn, i.e. X[mn]± = Xmn −Xnm ∓ iεmnpqX

pq.

Let us now consider the fields of a Ξ+− multiplet, that is A′
m; ϕ̃′, B̃′

mn; ˜̃A
′
m to construct

a different type of multiplet using partial derivatives ∂m. Thus, to construct a Ξ++ multip-
let, one has to have expressions for any field of the Ξ++ multiplet. Saturating the Lorentz
indices, respecting the Z3 gradation and the (anti-)self-dual character of the different 2-forms,
one possible solution is

DΞ+− =
(
ψ,ψmn, ψ̃m,

˜̃
ψ,

˜̃
ψmn

)
≡
(
∂mA

′m, ∂[mA
′
n]+

; ∂mϕ̃
′ + ∂nB̃′

nm; ∂m
˜̃A
′m
, ∂[m

˜̃A
′
n]+

)
. (16)

The last thing for this set to form a Ξ++ multiplet is that it transforms as requested by equa-
tion (15). This is checked by directly applying the transformations laws (15) on equation (16).
Thus we have shown a mechanism to obtain a multiplet of a certain type (here Ξ++) by “de-
riving” a multiplet of another type (here Ξ+−). We call DΞ+− a derivative multiplet. One can
actually define such a “derivation” for every 3SUSY multiplet Ξ±±.

4.5 The spin-statistics connection

Before going further in developing this model, we would like to address here the legitimate
question of the connection with the spin-statistics theorem, theorem which states that bosons
obey the Bose–Einstein statistics and fermions obey the Fermi–Dirac statistics. So one may ask
where does our model stay from this point of view?

The additional symmetries V even though they lie in the vector representation of the Lorentz
algebra do not close with classical (anti)commutation relations. Usually in physics literature (for
example in the case of superalgebras), one denotes generators that close with commutators as
bosonic generators and to generators that close with anticommutators as fermionic generators.
Obviously this is not the case here: V are neither bosonic nor fermionic generators (this is
how our construction evades the no-go theorems and apparently, one of the prices to pay).
Nevertheless, the physical fields ϕ, A, B are bosons (and in the case of the fermionic multiplets
in [8] they are fermions), thus obeying the conventional statistics. Technically, we got to this
situation by decomposition on p-forms.

A connected aspect here is the following. In the SUSY case, one has a Z2-graded structure
which, at the level of the representation space translates by a division of the representation
space in two subspaces, a bosonic and a fermionic subspace. This interpretation is obviously
lost here: we have now a Z3-graded representation space and we do not have a correspondence
of these subspaces to some type of particle, as was the case for SUSY. However, as mentioned
above, one finds the conventional types of fields at the level of the physical fields ϕ, A, B etc.

5 Free theory

In this section we construct free Lagrangians invariant under the transformations (15); one thus
obtains a new symmetry. From now on we denote the field strengths associated to the fields by
Fmn = ∂mAn− ∂nAm for any vector field Am and by Hmnp = ∂mBnp + ∂pBmn + ∂nBpm for any
2-form Bmn.

5.1 Coupling between conjugated multiplets

If we consider the quadratic couplings between conjugated multiplets, as denoted in Subsec-
tion 4.2, one can construct two invariant Lagrangians, one for each pair Ξ++ − Ξ−− and
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Ξ+− −Ξ−+

L0 = L0(Ξ++) + L0(Ξ−−)

= ∂mϕ∂
m ˜̃ϕ+

1
12
Hmnp

˜̃H
mnp

+
1
2

?Hm
? ˜̃H

m
− 1

4
F̃mnF̃

mn − 1
2
(
∂mÃ

m
)2

+ ∂mϕ
′∂m ˜̃ϕ

′
+

1
12
H ′

mnp
˜̃H
′mnp

+
1
2

?H ′
m

? ˜̃H
′m
− 1

4
F̃ ′

mnF̃
′mn − 1

2
(
∂mÃ

′m)2 (17)

and

L′0 = L0(Ξ−+) + L0(Ξ+−)

=
1
2
∂mϕ̃∂

mϕ̃+
1
24
H̃mnpH̃

mnp − 1
4

?H̃m
?H̃m − 1

2
Fmn

˜̃F
mn

− (∂mA
m)
(
∂n

˜̃A
n)

+
1
2
∂mϕ̃

′∂mϕ̃′ +
1
24
H̃ ′

mnpH̃
′mnp − 1

4
?H̃ ′

m
?H̃ ′m − 1

2
F ′

mn
˜̃ ′
F

mn

− (∂mA
′m)
(
∂n

˜̃A
′n)
.(18)

We consider here L0, the analyse for L′0 being identical. Here we have denoted ∗Hm =
1
6εmnpqH

npq = ∂nBmn the dual of the field strength H. Since we use complex conjugated
terms, the Lagrangian (17) is real; furthermore, it is of gradation 0.

Let us now perform in (17) the following change of variables

Ã1 =
Ã+ Ã′
√

2
, Ã2 = i

Ã− Ã′
√

2
, B1 =

B +B′
√

2
, B2 = i

B −B′
√

2
,

˜̃B1 =
˜̃B + ˜̃B

′

√
2

, ˜̃B2 = i
˜̃B − ˜̃B

′

√
2

, ϕ1 =
ϕ+ ϕ′√

2
, ϕ2 = i

ϕ− ϕ′√
2

,

˜̃ϕ1 =
˜̃ϕ+ ˜̃ϕ

′

√
2

, ˜̃ϕ2 = i
˜̃ϕ− ˜̃ϕ

′

√
2

. (19)

The Lagrangian writes now

L0 = ∂mϕ1∂
m ˜̃ϕ1 − ∂mϕ2∂

m ˜̃ϕ2

+
1
6
H1mnp

˜̃H
mnp

1 + ∂nB1nm∂p
˜̃B1

pm − 1
6
H2mnp

˜̃H
mnp

2 − ∂nB1nm∂p
˜̃B1

pm

− 1
4
F1mnF1

mn +
1
4
F̃2mnF̃2

mn − 1
2
(
∂mÃ1

m
)2 +

1
2
(
∂mÃ2

m
)2
.

Notice at this point that by the redefinition (19), we find ourselves with 2-forms B1, B2,
˜̃B1

and ˜̃B2 which are neither self-dual nor anti-self-dual. Moreover, one observes ?B1 = B2, ? ˜̃B1 =
˜̃B2. Therefore, one can eliminate two of them, for example B2 and ˜̃B2; thus L0 now becomes

L0 = ∂mϕ1∂
m ˜̃ϕ1 − ∂mϕ2∂

m ˜̃ϕ2 +
1
6
H1mnp

˜̃H
mnp

1 + ∂nB1nm∂p
˜̃B1

pm

− 1
4
F1mnF1

mn +
1
4
F̃2mnF̃2

mn − 1
2
(
∂mÃ1

m
)2 +

1
2
(
∂mÃ2

m
)2
. (20)

Proceeding with the analysis of this Lagrangian, one notices that the terms in the first line
of (20) are not diagonal. For this purpose, we now define

ϕ̂1 =
ϕ1 + ˜̃ϕ1√

2
, ˆ̂ϕ1 =

ϕ1 − ˜̃ϕ1√
2

, ϕ̂2 =
ϕ2 + ˜̃ϕ2√

2
, ˆ̂ϕ2 =

ϕ2 − ˜̃ϕ2√
2

,

B̂1 =
B1 + ˜̃B1√

2
,

ˆ̂
B1 =

B1 − ˜̃B1√
2

, (21)
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and, with the new fields, L0 writes

L0 =
1
2
∂mϕ̂1∂

mϕ̂1 −
1
2
∂m

ˆ̂ϕ1∂
m ˆ̂ϕ1 −

1
2
∂mϕ̂2∂

mϕ̂2 +
1
2
∂m

ˆ̂ϕ2∂
m ˆ̂ϕ2

− 1
4
F̃1mnF̃1

mn +
1
4
F̃2mnF̃2

mn − 1
2
(
∂mÃ1

m
)2 +

1
2
(
∂mÃ2

m
)2

+
1
6
Ĥ1mnpĤ

mnp
1 + ∂nB̂1nm∂pB̂

pm
1 − 1

6
ˆ̂
H1mnp

ˆ̂
H

mnp

1 − ∂n ˆ̂
B1nm∂p

ˆ̂
B

pm

1 . (22)

The above Lagrangian writes also as

L0 =
1
2
∂mϕ̂1∂

mϕ̂1 −
1
2
∂m

ˆ̂ϕ1∂
m ˆ̂ϕ1 −

1
2
∂mϕ̂2∂

mϕ̂2 +
1
2
∂m

ˆ̂ϕ2∂
m ˆ̂ϕ2

− 1
2
∂mÃ1n∂

mÃ1
n +

1
2
∂mÃ2n∂

mÃ2
n +

1
4
∂mB̂1np∂

mB̂1
np − 1

4
∂m

ˆ̂
B1np∂

m ˆ̂
B1

np. (23)

This form is actually suitable for further diagonalisation computations (see Subsection 5.3).
Let us now consider the general gauge transformations

Am → Am + ∂mχ, Bmn → Bmn + ∂mχn − ∂nχm, (24)

where χ and χm are the gauge parameters. Hence one sees in the Lagrangian (22) presence of
kinetic terms and Feynman gauge fixing terms (of type −1

2 (∂mA
m)2 for a generic vector field A

or of type ∂nBnm∂pB
pm for a generic 2-form B). These gauge fixing terms are not just a choice

of gauge, but they are required by the invariance.
The gauge fixing terms above (of type −1

2 (∂mA
m)2 and resp. ∂nBnm∂pB

pm) imply some
constraints on the gauge parameters defined in (24), namely

∂m∂mχ = 0, ∂m(∂mχn − ∂nχm) = 0. (25)

We will come back on this issue of gauge transformation in Subsection 5.4. The presence of
these gauge fixing terms has a lot of consequences on different aspects of the model.

The first of them is related to the number of degrees of freedom of our fields. A p-form in D
dimensions has Cp

D independent components. Let us now introduce for simplification differential
forms notations, namely A[p] for a generic p-form, d for the exterior derivative (mapping a p-form
into a (p+ 1)-form) and for d† for its adjoint (mapping a p-form into a (p+ 1)-form).

If one deals with a generic free p-form ω[p], then the gauge transformation is

ω[p] → ω[p] + dχ[p−1],

where the gauge parameter χ[p−1] is a (p−1)-form. Using the reducibility character of the gauge
transformation, one obtains at the end degrees of freedom for such a free off-shell p-form (see
for example [32]).

Consider for example the well-known case of a photon, a 1-form, in four dimensions, we have
C1

3 = 3 degrees of freedom. To find the well-known number of 2 degrees of freedom for a physical
photon, one uses Ward identities (for a detailed analysis see for example [33]).

For the general case of a on-shell p-form (p ≤ D−2) in D dimensions, similar Ward identities
lead to Cp

D−2 physical degrees of freedom.
This is not the case for the fields here; the gauge parameters are subject to constraints of

type (25); thus one cannot anymore eliminate degrees of freedom of the p-form as was the case
before. Hence, the p-form has Cp

D degrees of freedom (4 for a vector field and 6 for a 2-form).
Another important aspect of the Lagrangian (23) is that the fields

ˆ̂ϕ1, ϕ̂2, Ã2,
ˆ̂
B1 (26)
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have wrong sign for their kinetic term. This implies a priori a problem of unboundedness from
below of their potentials. This problem might by corrected by suitable self-interaction terms,
but as we will see in the following section this is not the case because this type of terms is not
allowed by this symmetry.

A possible solution to the problem of unboundness from below is based on Hodge duality of
p-forms. Recall that for the situation of free forms, dualisation is performed at the level of the
field strength; this implies equivalence of the theories of a p-form and a (D− 2− p)-form (in D
dimensions). Indeed, starting from a generic p-form ω[p], one considers its field strength, dω[p]

which is a (p + 1)-form. Considering its Hodge dual, we have a (D − p − 1)-form, which is the
field strength of (D − p − 2)-form. One can see that these theories are equivalent, having the
same number of physical degrees of freedom Cp

D−2 = CD−p−2
D−2 . This can be written schematically

as

F[p+1] = dω[p] ∼= (∗F )[D−p−1]

��
ω[p]

OO

ω′[D−p−2]

In [9], a different type of dualisation is proposed for our model. This dualisation is performed
at the level of the potential directly and not at the level of its field strength, as above. This
means that one replaces the fields (26) which have wrong signs in the Lagrangian, by their
Hodge dual fields. Using appropriate identities relating p-forms kinetic terms and their Hodge
duals, one has correct signs for these Hodge dual fields (see [9] for details).

Finally, notice that because of the gauge fixation present here, any p-form and its Hodge dual
(with whom we have replaced in the Lagrangian the p-forms (26)) will have the same number
of degrees of freedom CD−p

D = Cp
D.

5.2 Coupling between interlaced multiplets

So far we have analysed invariant terms that arise from couplings of conjugated multiplets,
Ξ++ − Ξ−− and Ξ+− − Ξ−+. We now look closer to couplings between the pairs of interlaced
multiplets, Ξ++−Ξ+− and Ξ−−−Ξ−+. We prove that quadratic coupling terms between these
pairs are also invariant.

Starting the calculations with the fields given in (14), one can write the following 0-graded,
real Lagrangian

Lc = Lc(Ξ++,Ξ+−) + Lc(Ξ−−,Ξ−+)

= λ
(
∂mϕ

˜̃A
′
m + ∂m

˜̃ϕA′m − ∂mÃ
mϕ̃′ − ∂mÃnB̃

′mn + ∂mBmn
˜̃A
′
n + ∂m ˜̃BmnA

′n)
+ λ?

(
∂mϕ

′ ˜̃Am + ∂m
˜̃ϕ
′
Am − ∂mÃ

′mϕ̃− ∂mÃ
′
nB̃

mn + ∂mB′
mn

˜̃A
n

+ ∂m ˜̃B
′
mnA

n
)
, (27)

with λ = λ1 + iλ2 a complex coupling constant with mass dimension.
To study the invariance of (27) one may study separately the invariance of Lc(Ξ++,Ξ+−)

and Lc(Ξ−−,Ξ−+) because they do not mix under 3SUSY transformations (15). Up to total
derivative, one has δvLc(Ξ++,Ξ+−) = 0.

A few remarks are in order to be made now. First, one can check that the gauge fixation
of L0 and L′0 is still demanded by the terms of Lc (the last two lines of equation (29)). Indeed,
if one looks at the 2-form B, then terms of type 1

2B
mnFmn fix the gauge, while terms of type

?BmnFmn are gauge invariant. These terms, known as BF -terms are related to topological
theories [34, 35, 36, 37]. Nevertheless, this line of work is not the one used here (for example we
have never been concerned with surface terms in any of our invariance calculations).
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A last thing to notice is that couplings like Am∂mϕ present in (29) are of Goldstone type.
Usually, they are gauged away and are responsible for appearance of mass (see for example [33]).
However, one sees that this mechanism cannot be applied in the case of our model, since, as we
have already stated above, the gauge is partially fixed.

5.3 Diagonalisation of the total Lagrangian

The total Lagrangian to be considered is

Lt = L0 + L′0 + Lc, (28)

where L0 and L′0 are given in (17) and resp. (18) and Lc is given in (27). Since L is quadratic in
the fields, we deal with a non-interacting theory and it should be possible, by field redefinitions
to write the Lagrangian in a diagonal form.

In order to do this, we first perform the changes of variable (19) and (21) that make L0 exp-
licitly real and diagonal. Obviously, the same redefinitions (keeping the same type of notations
for the redefined fields) must be made for L′0. After all this, the field content is:

6 scalar fields, ϕ̂1, ˆ̂ϕ1, ϕ̂2, ˆ̂ϕ2 (in L0), ϕ̃1, ˜̃ϕ2 (in L′0);

6 vector fields, Ã1,
˜̃A2 (in L0), Â1,

ˆ̂
A1, Â2,

ˆ̂
A2 (in L′0);

3 two-forms B̂1,
ˆ̂
B1 (in L0) B̃2 (in L′0).

We thus have a total of 15 independent fields. Expressed with these new fields, Lt decouples
into 3 distinct pieces, each of them having the exact same dependence on a set of 5 fields (two
scalars, two vectors and one 2-forms, denoted generically by ϕ1, ϕ2, A1, A2 and B). This
Lagrangian writes

L(ϕ1, ϕ2, A1, A2, B) =
1
2
(∂mϕ1)2 −

1
2
(∂mϕ2)2 −

1
2
(∂mA1n)2 +

1
2
(∂mA2n)2 +

1
4
(∂mBnp)2

+ λ1

(
A1

m∂mϕ1 +A2
m∂mϕ2 −Bmn∂mA1n − ?Bmn∂mA2n

)
+ λ2

(
−A2

m∂mϕ1 +A1
m∂mϕ2 +Bmn∂mA2n − ?Bmn∂mA1n

)
. (29)

Thus, for diagonalising the total Lagrangian Lt it is enough to work on L(ϕ1, ϕ2, A1, A2, B).
Expressing the Lagrangian in the Fourier space, the first step is to complete a perfect square for
the terms involving Ã1 (we denote in the rest of this subsection the Fourier transforms by tilde,
not to be confused with the tilde in the fields we had until equation (29)). One has to define

Ã′
1m(p) = Ã1m(p) +

λ1

p2
ipmϕ̃1(p) +

λ2

p2
ipmϕ̃2(p) +

λ1

p2
iprB̃rm(p) +

λ2

p2
ipr(?B̃rm(p)).

The next step is to complete a perfect square for the terms involving Ã2 (the Fourier transform
of the vector field A1); one defines

Ã′
2m(p) = Ã2m(p)− λ1

p2
ipmϕ̃2(p) +

λ2

p2
ipmϕ̃1(p) +

λ2

p2
iprB̃rm(p)− λ1

p2
ipr(?B̃rm(p)).

A final diagonalisation can be written for ϕ̃. Thus one defines

ϕ̃′(p) = ϕ̃(p) +
λ1λ2

1
2(p2 − (λ2

2 − λ2
1))

ϕ̃2(p).

After all this, the Lagrangian finally writes as

L̃ =
1
2
(
p2 − (λ2

2 − λ2
1)
)
ϕ̃′1(p)ϕ̃

′
1(−p)
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− 1
2

(
p2 − (λ2

2 − λ2
1) +

λ2
1λ

2
2

1
2(p2 − (λ2

2 − λ2
1))

)
ϕ̃2(p)ϕ̃2(−p)

− 1
2
p2Ã′

1m(p)Ã′
1
m(−p) +

1
2
p2Ã′

2m(p)Ã′
2
m(−p) +

1
4
p2B̃mn(p)B̃mn(−p)

+
1
2

1
p2
prps(λ2

1 − λ2
2)
(
B̃rm(p)B̃sm(−p)− ?B̃rm(p)?B̃sm(−p)

)
+
λ1λ2

p2
prps

(
B̃rm(p)?B̃sm(−p) + B̃sm(p)?B̃rm(−p)

)
. (30)

One can now remark that not all values of the parameters λ1 and λ2 are allowed if we do not want
tachyons to be present. Some allowed values (which considerably simplify the Lagrangian (30))
are λ1 = λ2 or λ1 = 0. However one remarks a non-conventional form of the kinetic term for
the 2-form B. One final remark is that we have done this diagonalisation on the Lagrangian
without dualisation mentioned at the end of Subsection 5.1; the sign of the kinetic terms will not
change; however the same type of calculation may be performed for the dualised Lagrangian.

One more remark is to be made. Even if we have so far considered non-massive fields,
invariant mass terms can be explicitly added to our Lagrangian (see [9]). Moreover, as one can
easily see from the 3SUSY algebra (1), P 2 is a Casimir operator and therefore all states in an
irreducible representation must have the same mass.

The analysis done so far for the massless multiplets do not drastically change. For exam-
ple, in the massive case one has no gauge invariance and the number of degrees of freedom
remains the same (one does not have gauge parameters to eliminate any degree of freedom).
For diagonalisation of the total free Lagrangian, these mass terms do not change our analysis
qualitatively.

5.4 Compatibility with Abelian gauge invariance

We now look closer to the problem of the compatibility with Abelian gauge symmetry. We have
seen that these two symmetries are closely connected, in the sense that the gauge symmetry
is fixed by the Feynman gauge fixing terms required in the Lagrangian (see Subsections 5.1
and 5.3). So far we have also seen some of the consequences of this gauge fixing, such as
possibility of dualisation related to the equal number of degrees of freedom (see Subsection 5.1)
and also impossibility of gauging away the coupling terms of Lc (27).

Nevertheless, another question is appropriate at this level. If one acts with the gauge trans-
formation on a multiplet will the result be a multiplet? Or, schematically, Ξ

gauge−→ Ξ′? So what
one has to check is whether or not Ξ′ is a 3SUSY multiplet. (Recall that this is the case for
SUSY, where a gauge transformation transforms a vector superfield V to V + Φ + Φ†, with Φ
a chiral superfield (see for example [25]).) Moreover we also find in what conditions gauge
parameters may form a 3SUSY multiplet.

I. Let us first write the general gauge transformation one uses for the physical fields ϕ̂1, ϕ̂2,
ˆ̂ϕ1, ˆ̂ϕ2, Ã1, Ã2, B̂1,

ˆ̂
B1

ϕ̂1 → ϕ̂1 + k̂1, Ã1m → Ã1m + ∂mχ̃1, B̂1mn → B̂1mn + ∂mχ̂1n − ∂nχ̂1m. (31)

and similarly for the rest of the fields (k̂1 being some constant). Recall that these physical fields
were obtained from linear redefinitions of the original fields (14). Hence one can write down
gauge transformations of the fields (14) also. For example, the vector field Ã1 was obtained from
the fields Ã and Ã′ by the redefinition (19), Ã1 = 1√

2
(Ã+ Ã′). Hence the gauge parameter χ̃1

of (31) is written as χ̃1 = 1√
2
(χ̃+ χ̃′) that will thus allow us to obtain the gauge parameters χ̃

and χ̃′ of the field Ã and respectively Ã′.
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The gauge transformations for the original fields (14) thus write

φ→ φ+ k, Ãm → Ãm + ∂mχ̃, B(±)
mn → B(±)

mn + ∂mχn − ∂nχm ∓ iεmnpq∂
pχq (32)

and similarly for the rest of the fields. Note, however, that for the case of 2-forms, compatibility
between the transformations (31) and (32) needs a closer look. Indeed, write in p-form notation
the transformation (32) for the self-dual 2-form Bmn

B → B + dχ[1] − i∗(dχ[1]). (33)

Recall now that B′ = B∗; one has

B′ → B′ + dχ∗[1] + i∗(dχ∗[1]). (34)

(One should pay attention to the notations used for dual and complex conjugation, that is
∗B denotes the dual of B whereas B∗ denotes the complex conjugated of B.) Equation (19)
combined these two 2-forms in the real 2-form B1 = 1√

2
(B+B′). Thus, its gauge transformation

writes

B1 → B1 +
1√
2

(
d(χ[1] + χ∗[1])− i∗d(χ[1] − χ∗[1])

)
. (35)

One immediate solution for (35) to be the gauge transformation (31) for a 2-form, is to impose
that the 1-form χ[1] is real.

However, we now prove that this compatibility can still be achieved even if the 1-form χ[1] is
complex. For this denote by λ[1] = 1√

2
(χ[1] +χ∗[1]) and λ[3] = −i 1√

2
∗(χ[1]−χ∗[1]). Notice that λ[1]

and λ[3] are real. One has ∗∗(χ[1] − χ∗[1]) = χ[1] − χ∗[1] and using also the definition d† = ∗d∗,
equation (35) writes

B1 → B1 + dλ[1] + d†λ[3]. (36)

We now prove that for a 2-form B1 one can write a gauge transformation as B1 → B1 + dλ[1],
with d†dλ[1] = 0 but also as B1 → B1 + d†λ[3] with dd†λ[3] = 0. Indeed, since d†dλ[1] = 0 this
means that there exists a 3-form λ[3] such that dλ[1] = d†λ[3]. Thus, the gauge transformation
can be written as B1 → B1 + d†λ[3]. Moreover, adding this two equivalent types of gauge
transformations one can write a “general” gauge transformation for B1 as in (36). This means
that (31) and (32) are compatible for the 2-forms even if the gauge parameter χ[1] is complex.

We now show what are the constraints on the gauge parameters k, χ̃ and χm of the the gauge
transformations (32). As before, the case of the scalar and vector gauge parameter is simple,
leading to

∂mk = 0 and 2χ̃ = 0.

For the case of a 2-form B(±), one checks separately the invariance under (33) of (dB(±))2 and
(d†B(±))2 3. This gives d†dχ[1] = 0. Hence, these constraints on a general gauge parameter χ[p]

write

d†dχ[p] = 0. (37)

In our particular case, using component notations, one has

∂mk = 0, 2χ̃ = 0, 2χn − ∂n∂mχ
m = 0. (38)

3Note that for the case of a real 2-form the gauge parameter χ′[1] defined in (31) is from the same reason

subject to the constraint d†dχ̂[1] = 0.
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The strategy we adopt here is to find explicit forms of the gauge parameters defined in (32)
and subject to the constraints (38).

II. The second step of our analysis is to have some transformations of a multiplet into a multi-
plet of same type, transformation that can then be matched with the gauge transformation (32).
Since in Subsection 4.4 we have introduced the derivative multiplets (that transform like 3SUSY
multiplets), we can use them to do the job:

Ξ++ → Ξ++ +DΞ+−. (39)

For instance, one can use the derivative of a multiplet Ξ+− =
(
λm, λ̃, λ̃mn,

˜̃
λm

)
, writing thus (39)

as

ϕ→ ϕ+ ∂mλ
m, Bmn → Bmn + ∂mλn − ∂nλm − iεmnpq∂

pλq,

Ãm → Ãm + ∂mλ̃+ ∂nλ̃nm, ˜̃ϕ→ ˜̃ϕ+ ∂m ˜̃
λm,

˜̃Bmn → ˜̃Bmn + ∂m
˜̃
λn − ∂n

˜̃
λm − iεmnpq∂

p ˜̃
λ

q
. (40)

III. The last step of this programme is to make (40) a gauge transformation, that is to match
it with (32) and the conditions (38)4.

First remark that the actual matching of these transformations implies a non-trivial condition
for the parameters of the transformation of the vector field, namely

∂nλ̃nm = ∂mχ (41)

and, since λ̃nm is antisymmetric, one has

2χ = 0. (42)

Now, imposing the conditions (38) on the set of gauge parameters
(
λm; λ̃, λ̃mn; ˜̃λm

)
, one has

∂m (∂ · λ) = ∂m (∂ · ˜̃λ) = 0, (43)

2λm = 2
˜̃
λm = 0, (44)

2λ̃+ ∂m∂nλ̃nm ≡ 2λ̃ = 0. (45)

We have now to find explicit solutions of the gauge parameters which are compatible with
all these constraints. In order to do this,

1) we determine the solutions for λ̃, χ satisfying the constraints (45), (42);

2) knowing χ, we then construct an anti-self-dual 2-form λ̃mn satisfying (41);

3) we finally find explicit solutions for λm,
˜̃
λm satisfying (43), (44).

Existence of these solutions would prove at this step compatibility between 3SUSY and the
Abelian gauge invariance.

1. If the scalar functions λ̃ and χ depend only on the space-time Lorentz invariant xmx
m,

then the conditions (45), (42) determine uniquely their form, λ̃(x2) ∝ χ(x2) ∝ 1/x2 up to some
additive constants. In the context of the symmetry (1), whose generators and transformation
parameters are 4-vectors, it is somewhat natural to include dependence of a 4-vector ξm. More-
over, by analysing solutions of (45) and (42) when ξ2 is equal to or different from 0, we find

4Since these equations have practically the same form, it now becomes clear why we have chosen to work with
gauge transformations of type (32) and not the gauge transformations (31) of the real fields since we work directly
on the Ξ++.
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more general configurations for λ and χ when ξ2 = 0 (see [9]). Hence we explicitly treat this
case in this subsection.

We thus have to treat an equation of type

2f(x2, x · ξ) = 0, (46)

where f denotes generically λ̃ or χ. A solution for this equation is given by

f(x2, ξ · x) = G(ξ · x) + (ξ · x)−1H

(
x2

(ξ · x)

)
, (47)

where G and H are arbitrary functions.
This provides us an explicit form for the parameters λ̃ or χ

λ̃(ξ · x, x2) = G1(ξ · x) + (ξ · x)−1H1

(
x2

(ξ · x)

)
, (48)

χ(ξ · x, x2) = G2(ξ · x) + (ξ · x)−1H3

(
x2

(ξ · x)

)
, (49)

completing thus step 1 of the programme.
2. As already stated, we now have to find a form of λ̃mn which satisfies the constraint (41),

with χ given by (49) above. A possible solution is

λ̃mn

(
ξ · x, x2

)
= x[mξn]−F

(
ξ · x, x2

)
, (50)

where the function F is expressed in terms of G2, H3 appearing in (49):

F
(
ξ · x, x2

)
= −(ξ · x)−2H3

(
x2

(ξ · x)

)
+ (ξ · x)−1G2(ξ · x)− 2(ξ · x)−3

∫ ξ·x

0
G2(t)t dt. (51)

3. Similarly to step 1, we now investigate possible solutions for the gauge parameters λm, ˜̃
λm,

which satisfies equations (43) and (44). We consider them as functions of the vectors x and ξ
and, as before, we assume ξ2 = 0. Hence, the problem is reduced to finding explicit solutions
for

∂m∂pAp(x, ξ) = 0, 2Am(x, ξ) = 0 (52)

(which are just equations (43) and (44), A standing for λm or ˜̃
λm). Some solution of these

equation is given by

Am(x, ξ) = g(ξ · x)ξm + αxm +
(

1
(x2)2

αmr + βmr

)
xr + κ

(
x2

(ξ · x)3
ξm − xm

(ξ · x)2

)
, (53)

where g is an arbitrary function, κ, α, βmn arbitrary constants and αmn an arbitrary anti-
symmetric tensor.

Thus one can now write the following expressions for the last gauge parameters λm or ˜̃
λm

λm

(
ξ · x, x2

)
= g1(ξ · x)ξm + αxm

+
(

1
(x2)2

αmr + βmr

)
xr + κ1

(
x2

(ξ · x)3
ξm − xm

(ξ · x)2

)
, (54)

˜̃
λm

(
ξ · x, x2

)
= ˜̃g1(ξ · x)ξm + ˜̃αxm

+
(

1
(x2)2

˜̃αmr + ˜̃
βmr

)
xr + ˜̃κ1

(
x2

(ξ · x)3
ξm − xm

(ξ · x)2

)
. (55)
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We have therefore obtained a proof of existence of gauge transformations which are compatible
with our symmetry. Nevertheless, we have found constrained forms of our gauge parameters λm,
λ̃, λ̃mn and resp. ˜̃

λm (equations (54), (48), (50) and resp. (55)).
Before ending this section, let us mention that a discussion related to Noether currents was

initiated in [8], mostly in relation with to the case of algebra of conserved charges compared to
the case where symmetries are grouped within Lie (super)algebras. Furthermore some conserved
currents were explicitly calculated in [38].

6 Study of interaction possibilities

In the previous section we have considered non-interacting terms allowed by 3SUSY invariance.
Here we investigate the possibility of interacting terms, terms which must have a degree in the
fields higher than 2 (thus not being possible to diagonalise them back to kinetic terms). The
main result is that for the bosonic multiplets considered, no such interaction terms are allowed.

To approach this issue we make a systematic study of all interaction possibilities for our
multiplets. We first find what are the fields Ψ (content and transformation laws) that can
couple to multiplets in an invariant quadratic way. We then express these fields Ψ as a function
Ψ(Ξ++,Ξ−−,Ξ+−,Ξ−+). We find this function to be linear in the multiplets; hence the most
general invariant terms which can be constructed are quadratic and thus non-interacting.

6.1 Possible couplings of a given multiplet

We focus on the coupling of a Ξ++ multiplet, the other cases being similar. Considering its field
content, the most general possibility of quadratic coupling with some set of unknown fields Ψ is

L(Ξ++,Ψ) = ϕ
˜̃
ψ + ˜̃ϕψ +

1
4
B(+)mn ˜̃

ψmn +
1
4

˜̃B
(+)

mnψ
mn − Ãmψ̃

m (56)

with ψ, ˜̃
ψ two scalars, ψ̃m a vector and ψmn, ˜̃

ψmn two 2-forms which are self-dual. A priori
some of the fields Ψ can be set to zero.

To find the set of fields Ψ we impose that (56) transforms as a total derivative. We first
treat the case where the fields Ψ contain no derivative terms. Applying (15) directly, one has
the variation of (56) and is able to prove (see [9]):

I: If the ψ f ields contain no derivative terms and (56) is invariant, then they form a multiplet
of type Ξ++.

Similar type of arguments lead to the same conclusion if the ψ fields contain at most one
derivative term.

Let us now allow a higher number of derivatives in the fields Ψ. For example, if one considers
two derivatives, one can write fields of type

ψ = 2λ, ψm = α2λm + β∂m∂nλ
n, ψmn = α′2λmn + β′∂p∂[mλn]+p.

Generally speaking, if one consider an even number n of partial derivatives, the terms that can
be added are

ψ = 2
n
2 λ, ψm = α2

n
2 λm + β2

n−2
2 ∂n∂mλn, ψmr = α2

n
2 λmr + β2

n−2
2 ∂p∂[mλn]+p.

If n is an odd number, one can construct

ψ = 2
n−1

2 ∂mλm, ψm = α2
n−1

2 ∂mλ+ β2
n−1

2 ∂pλpm, ψmp = 2
n−1

2 ∂[mλn]+.
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Similar arguments lead to the same type of result I.
We have thus seen which are the most general couplings of a given multiplet. We now have

the set of fields Ψ, its content and transformation laws in terms of the λ fields. In the remainder
of this section we see what is the most general way one can construct these Ψ fields out of the
original Ξ±± multiplets.

6.2 Generalised tensor calculus

Here also we focus on the Ξ++ multiplet, the other cases being similar. So, what we look for is
to express the fields ψ, ψmn, ψ̃m, ˜̃

ψ, ˜̃
ψmn of the previous subsection as functions of the fields of

the multiplets Ξ++, Ξ−−, Ξ+−, Ξ−+ and of their derivatives.
After direct explicit calculations (see [23] for details) one proves

II. The only function Ψ with at most f irst order derivatives in the f ields and transforming as
a Ξ++ multiplet is

Ψ(Ξ++,Ξ+−,Ξ+−,Ξ−−) = αΞ++ + βΞ∗
−− + γDΞ+− + µDΞ∗

−+.

Moreover, if one considers several copies of the same multiplet, the conclusion does not
change. The case of functions involving higher number of derivatives does not change the final
conclusion either: the ψ fields can be obtained only linearly out of the four considered bosonic
multiplets. Comparing this result with the result of the previous subsection (which was stating
that these ψ fields are the most general possibility to quadratically couple the multiplets to
some arbitrary fields) one concludes that no invariant terms of order higher than two in the
fields can be constructed. This means that one cannot obtain invariant self-interacting terms
for the bosonic multiplets Ξ±±.

7 Concluding remarks

Even if we have proven in the previous section impossibility of writing invariant interaction
terms, this situation can be compared with incompatibility for the usual electromagnetism,
where photons do not self-interact. Hence, one may think of a possibility of constructing non-
Abelian models.

More general possibilities of interaction have to be investigated for a verdict on this issue.
One might reconsider at this level the fermionic multiplets of [8] and investigate a possible
interaction between them and boson multiplets. Furthermore, interactions with a different type
of bosonic multiplets (eventually more general multiplets) may be taken into consideration. Let
us also mention that considering p-forms with p ≥ 2 implies a high rigidity for the interaction
possibilities, see [40]).

Some deeper analysis of possible mechanisms of elimination of unphysical degrees of freedom
of the fields may be appropriate. This may eventually involve some presence of ghosts, in
connection with suited quantification procedures.

In [39], G. Moultaka et. al. consider the algebra (1) in arbitrary dimensions; this leads to the
implementation of a new, cubic symmetry at the level of p-forms. Recalling that the p-forms of
the bosonic multiplets couple naturally to extended objects of dimension (p−1) ((p−1)-branes);
one could seek for such an invariant theory for interacting p-branes.

A different type of remark is to be made when one considers different types of algebraic
structure mentioned in Section 1: possible useful connections in between do not seem very
likely, since these algebraic structures are different from the very definition.

However, recalling the construction of [29] of a relativistic wave equation involving the cubic
root of the Klein–Gordon operator, let us mention that as Dirac equation is related to SUSY,
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this cubic root of the Klein–Gordon operator is related to fractional supersymmetry. As already
mentioned here in Subsection 3.3, in [16] for 1-dimensional fractional supersymmetry, the theory
is localised leading to a local fractional supergravity. In the case of the (3+1)-dimensional model
reviewed here, a generalisation in such a direction constitutes a promising perspective of future
work.

Finally, let us argue on the fact that maybe before starting more field theoretical develop-
ments of this type of models, it would be more important to have a closer look at their very
foundations, i.e. the implications they would have when compared to some of basic notions of
field theory, like for example the assumptions of analicity of no-go theorems, canonical quanti-
sation rules etc. This type of study may give stronger information of what may or may not be
pertinent for coherent physical approaches.

A Determination of the matrices σmnr

In this appendix we show how one obtains the connection (7) between the generators V and
the SUSY supercharges Q; we thus obtain the explicit form of the matrices σmnr appearing in
equation (7).

First recall equations (5) and (6) of the algebra (1) resp. SUSY algebra:

{Vm, Vn, Vr} = ηmnPr + ηmrPn + ηrnPm, {Qα, Q̄β̇} = 2(σm)αβ̇Pm (57)

(with α, β̇ = 1, 2, see [25] for conventions on the SUSY algebra).
With use of the form of the Pauli matrices σm, the second equation of (57) writes explicitly{

Q1, Q̄1̇

}
= 2(P0 + P3),

{
Q1, Q̄2̇

}
= 2(P1 − iP2),{

Q2, Q̄1̇

}
= 2(P1 + iP2),

{
Q2, Q̄2̇

}
= 2(P0 − P3). (58)

These equations allow one to express the momentums Pm as a function of the SUSY algebra
anticommutators:

P0 =
1
4
(
{Q1, Q̄1̇}+ {Q2, Q̄1̇}

)
, P1 =

1
4
(
{Q1, Q̄2̇}+ {Q2, Q̄1̇}

)
,

P2 =
i

4
(
{Q1, Q̄2̇} − {Q2, Q̄1̇}

)
, P3 =

1
4
(
{Q1, Q̄1̇} − {Q2, Q̄1̇}

)
. (59)

One can now insert equations (59) in the first equation of (57). For example, one has

{V0, V0, V0} = 3P0

and, inserting the first of equations (59) one has

(σ000)1,1̇ =
3
4
, (σ000)2,2̇ =

3
4
.

Similarly one gets the rest of the entries of the matrices σmnr. Thus the non-zero entries of these
matrices are:

(σ000)1,1̇ =
3
4
, (σ000)2,2̇ =

3
4
,

(σ001)1,2̇ =
1
4
, (σ001)2,1̇ = −1

4
,

(σ002)1,2̇ =
i

4
, (σ001)2,1̇ = − i

4
,

(σ003)1,1̇ =
1
4
, (σ003)2,2̇ = −1

4
,
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(σ111)1,2̇ = −3
4
, (σ111)2,1̇ = −3

4
,

(σ112)1,2̇ = − i
4
, (σ112)2,1̇ =

i

4
,

(σ113)1,1̇ = −1
4
, (σ003)2,2̇ =

1
4
,

(σ222)1,2̇ = −3i
4
, (σ222)2,1̇ =

3i
4
,

(σ223)1,1̇ = −1
4
, (σ223)2,2̇ =

1
4
,

(σ333)1,1̇ = −3
4
, (σ333)2,2̇ =

3
4
,

(σ011)1,1̇ = −1
4
, (σ011)2,2̇ = −1

4
,

(σ022)1,1̇ = −1
4
, (σ022)2,2̇ = −1

4
,

(σ033)1,1̇ = −1
4
, (σ033)2,2̇ = −1

4
,

(σ033)1,1̇ = −1
4
, (σ033)2,2̇ = −1

4
,

(σ122)1,2̇ = −1
4
, (σ122)2,1̇ = −1

4
,

(σ133)1,2̇ = −1
4
, (σ133)2,1̇ = −1

4
,

(σ233)1,2̇ = − i
4
, (σ233)2,1̇ = − i

4
. (60)
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