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1 Introduction

During the last decade, a considerable progress in application of the Separation of Variables
method to a broad class of quantum integrable models has been achieved. This progress was
initiated by the paper [1] of Sklyanin who has proposed (using the R-matrix formalism) a recipe
for a Separation of Variables in the case of quantum Toda chain where the algebraic Bethe
ansatz fails. The next important step was done by Kharchev and Lebedev [2] who realized an
iterative procedure of obtaining the eigenfunctions of the n-particle open Toda chain by some
integral transformation from the eigenfunctions of the (n − 1)-particle open Toda chain. This
iterative method was applied later to a relativistic Toda chain [3].

The Separation of Variables was found to be effective for the derivation of the eigenfunctions
of the commuting Hamiltonians of the n-particle quantum Toda chain with boundary interac-
tion [4, 5] in the framework of Sklyanin’s approach to the integrable boundary problems [6].
In the paper [5] the n-particle eigenfunctions of the quantum Toda chain when the first and
last particles are exponentially interacting with the walls (the two-boundary interaction) is con-
structed by means of an integral transformation of the eigenfunctions for the Toda chain with
one-boundary interaction (the auxiliary problem). These eigenfunctions, in turn, are constructed
using the eigenfunctions of the n-particle open Toda chain.

Recently, a Separation of Variables was applied to the N -state spin lattice model – the
Baxter–Bazhanov–Stroganov (BBS) model [7, 8]. In the R-matrix formulation of this model the
cyclic L-operator [9, 10] emerged. These operators are intertwined by the six-vertex R-matrix at
a root of unity. The cyclic L-operator of the BBS model reduces (at special values of parameters)
to the L-operator of the quantum Relativistic Toda Chain (RTC) at a root of unity [11].
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The goal of this contribution is to find common eigenvectors of commuting Hamiltonians of
the RTC at a root of unity with boundary interaction. We use for this the approach from [5].

Let us describe briefly the structure of the paper. We start with a short account of the model
under consideration and remind its properties based on the presentation in [11] (Section 2). We
recall the standard Sklyanin formalism introducing a chain of L-operators satisfying some RLL =
LLR relations as well as its “twisted” version (2.3) such that the corresponding (“twisted”)
monodromy matrix satisfies the “Reflection Equations” and some “unitarity” condition. We
specify a “boundary matrix” solution K+(λ) of the dual Reflection Equations which are necessary
for a description of a two-boundary RTC. We close this section with a Hamiltonian generating
function to the two-boundary RTC.

We give the explicit formulas for the eigenvectors of the open RTC in the Section 3 using the
eigenvectors formulas for the open Bazhanov–Stroganov quantum chain of which the open RTC
is a (specified) particular case [9].

In Section 4 we consider the eigenvectors of the one-boundary RTC specifying some par-
ticular choice of the boundary matrices. We identify the coefficients of the corresponding
generating function with the commuting one-boundary RTC Hamiltonians and compute the
common eigenvectors. The same questions are treated in Section 5 for the two-boundary RTC
using the Separation of Variables method. We write the Baxter equation for separated variables
explicitly (5.3).

Section 6 contains an another proof of the commutativity of the one-boundary RTC Hamilto-
nians of the Section 4. We show in fact that they belong to a wide class of Hamiltonians which
can be expressed like a sort of Gelfand–Retakh quasideterminants. This quasideterminants are
(in our case) just Plücker coordinates ∆s∆−1

0 on Grn−1(n). The commutation (and, hence the
existence of the common spectrum) is guaranteed by the results of [12] (see also [13, 14]).

We finish with a short discussion in the Section 7 and we leave some tedious computations
to the Appendix A.

We are dedicating this paper to the memory of Vadim Kuznetsov. His important contributions
to the subject of Separation of Variables and in particularly to its applications in quantum
integrable models with boundary interaction [4, 15, 16, 17] are widely acknowledged in the
Mathematical Physics community. In particular, it was Kuznetsov’s paper [16] where the Se-
paration of Variables was performed for the quantum relativistic Toda chain and commuting
Hamiltonians of the quantum RTC with integrable boundary interaction (the quantum RTC for
general classical root systems) were obtained.

2 The formulation of the model

In this section we recall briefly the subject of the model called the quantum Relativistic Toda
Chain (RTC) chain at root of unity [11].

Let ω = e2πi/N , N ≥ 2. For each particle k, k = 1, 2, . . . , n, of the n-particle RTC there is
a corresponding N -dimensional linear space (quantum space) Vk with the basis |γ〉k,γ ∈ ZN ,
and a pair of operators {uk,vk} acting on Vk by the formulas:

vk|γ〉k = vωγ |γ〉k, uk|γ〉k = u|γ − 1〉k.

The space of quantum states of RTC with n particles is V = V1 ⊗ V2 ⊗ · · · ⊗ Vn. We extend
the action of operators {uk,vk} to V defining this action to be identical on Vs, s 6= k. Thus we
have the following commutation relations

ujuk = ukuj , vjvk = vkvj , ujvk = ωδj,kvkuj .



Relativistic Toda Chain with Boundary Interaction at Root of Unity 3

Monodromy matrix for RTC with n particles is

Tn(λ) = L1(λ)L2(λ) · · ·Ln(λ) =
(

An(λ) Bn(λ)
Cn(λ) Dn(λ)

)
,

where

Lk(λ) =

(
1 + κ

λ vk − 1
λuk

u−1
k vk 0

)
, k = 1, 2, . . . , n. (2.1)

Thus the model depends on three parameters u, v and κ. It is possible to make this model to be
inhomogeneous by attaching the index k to the parameters u, v and κ. All the results presented
in this paper can be directly generalized to inhomogeneous case.

The straightforward calculation shows that the operators Lk(λ) satisfy the following commu-
tation relations:

R(λ, µ)L(1)
k (λ)L(2)

k (µ) = L
(2)
k (µ)L(1)

k (λ)R(λ, µ), (2.2)

where the standard notations L
(1)
k (λ) = Lk(λ) ⊗ I, L

(2)
k (µ) = I ⊗ Lk(µ) were used and the

R-matrix R(λ, µ) has the form

R(λ, µ) =


λ− ωµ 0 0 0

0 λ− µ (1− ω)µ 0
0 (1− ω)λ ω(λ− µ) 0
0 0 0 λ− ωµ

 .

Using (2.2), we obtain the following relation for monodromy matrix

R(λ, µ)T (1)
n (λ)T (2)

n (µ) = T (2)
n (µ)T (1)

n (λ)R(λ, µ).

We will use the method [6] of Sklyanin for description of RTC with integrable boundary
interaction. The L-operator (2.1) together with

L̃k(λ) = λσxL−1
k (θ/λ)σx =

(
κλ + ωθv−1

k −θu−1
k

λv−1
k uk 0

)
= ωθv−1

k σzLk(ωθ/λ)T σz (2.3)

satisfy the following relations

R(λ, µ)L(1)
k (λ)L(2)

k (µ) = L
(2)
k (µ)L(1)

k (λ)R(λ, µ),

R(λ, µ)L̃(1)
k (λ)L̃(2)

k (µ) = L̃
(2)
k (µ)L̃(1)

k (λ)R(λ, µ),

L̃
(2)
k (µ)R̃(λ, µ)L(1)

k (λ) = L
(1)
k (λ)R̃(λ, µ)L̃(2)

k (µ),

L
(2)
k (µ)R̃(λ, µ)L̃(1)

k (λ) = L̃
(1)
k (λ)R̃(λ, µ)L(2)

k (µ),

where

R̃(λ, µ) = µσ(2)
x R(λ, θ/µ)σ(2)

x =


θ − λµ 0 0 ωθ − θ
0 ωθ − λµ 0 0
0 0 ωθ − λµ 0
ωλµ− λµ 0 0 ωθ − ωλµ

 ,

σx =
(

0 1
1 0

)
, σz =

(
1 0
0 −1

)
.
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Here θ is an arbitrary parameter. It is important that R̃(µ, λ) = R̃(λ, µ) = P12R̃(λ, µ)P12, where
the operator P12 is the operator of permutation of two spaces. Then the matrix

U(λ) = L̃n(λ) · · · L̃1(λ)K−(λ)L1(λ) · · ·Ln(λ) =
(
A(λ) B(λ)
C(λ) D(λ)

)
satisfies the reflection equation

R(λ, µ)U (1)(λ)R̃(λ, µ)U (2)(µ) = U (2)(µ)R̃(λ, µ)U (1)(λ)R(λ, µ) (2.4)

if K−(λ) satisfies the same equation:

R(λ, µ)K(1)
− (λ)R̃(λ, µ)K(2)

− (µ) = K
(2)
− (µ)R̃(λ, µ)K(1)

− (λ)R(λ, µ). (2.5)

The solution K−(λ) with non-operator matrix elements is

K−(λ) =
(

α−( θ
λ − λ) η− + β−

θ
λ

η− + β−λ δ−( θ
λ − λ)

)
.

This solution depends on four parameters α−, β−, δ−, η−. It can be found directly solving (2.5)
or adapting the formulas from [18] (see also [16]). The matrix U(λ) satisfies the so-called
unitarity condition:

U(ωθ/λ) =
(
A(ωθ/λ) B(ωθ/λ)
C(ωθ/λ) D(ωθ/λ)

)
(2.6)

=
1

ω(θ − λ2)

(
(λ2 − ω2θ)A(λ) λ2(1− ω)B(λ) + (ωθ − λ2)C(λ)
ω(ωθ − λ2)B(λ) + ωθ(1− ω)C(λ) (λ2 − ω2θ)D(λ)

)
.

We have A(λ)A(µ) = A(µ)A(λ) from the reflection equation (2.4). It means that A(λ)
is generation function with respect to λ for commuting set of operators. These operators are
Hamiltonians for one-boundary RTC.

To describe a two-boundary RTC we need the dual reflection equation:

R(λ, µ)K(2)
+ (µ)Q(λ, µ)K(1)

+ (λ) = K
(1)
+ (λ)Q(λ, µ)K(2)

+ (µ)R(λ, µ),

where

Q(λ, µ) =
((

R̃t1(λ, µ)
)−1)t1 .

Its solution is

K+(λ) =
(

α+(ω2θ
λ − λ) η+ + β+

ωθ
λ

η+ω + β+λ δ+(ωθ
λ − ω−1λ)

)
.

Then the generation function for the Hamiltonians of the two-boundary RTC is given by t(λ) =
Tr (K+(λ)U(λ)) or explicitly:

t(λ) = α+(θω2/λ− λ)A(λ) + (β+λ + η+ω)B(λ)

+ (β+θω/λ + η+)C(λ) + δ+(ωθ/λ− ω−1λ)D(λ).
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3 Eigenvectors for the open RTC

In order to give explicit formulas for the eigenvectors for RTC we remind the definition (see
for example [19]) of wp(s) which is an analogue of Γq-function at root of unity. For any point
p = (x, y) of Fermat curve xN + yN = 1, we define wp(s), s ∈ ZN , by

wp(s)
wp(s− 1)

=
y

1− xωs
, wp(0) = 1. (3.1)

Due to the Fermat curve condition the function wp(s) is cyclic: wp(s + N) = wp(s).
The explicit formulas for the eigenvectors of open RTC, that is eigenvectors of An(λ), can be

extracted from [8], where the formulas for the eigenvectors of open Bazhanov–Stroganov quan-
tum chain (which includes RTC) were obtained. Here we give the resulting formulas specialized
to open RTC with a little change of notations.

The eigenvectors of open RTC are given in terms of wp(s) defined by the different points
pm,s;m′,s′ = (xm,s;m′,s′ , ym,s;m′,s′), m,m′ = 1, 2, . . . , n; s = 1, 2, . . . ,m; s′ = 1, 2, . . . ,m′, belonging
to Fermat curve xN + yN = 1. The x-coordinates of these points are defined by unknown
parameters (amplitudes) vm,s by xm,s;m′,s′ = vm,s/vm′,s′ . Then the corresponding ym,s;m′,s′ are
defined up to a root of 1. The parameters vm,s are defined by the initial value v11 := v and the
recurrent relations

vm1vm2 · · · vmm = vm−1,1vm−1,2 · · · vm−1,m−1v,

κ
∏
s 6=l

ym−1,s;m−1,l

ym−1,l;m−1,s

m∏
k=1

ym−1,l;m,k

m−2∏
s=1

ym−2,s;m−1,l

= 1, l = 1, 2, . . . ,m− 1.

In the case of homogeneous RTC these relations can be solved explicitly [11] (see also [8]).
We will use the notation |γn〉 ∈ V1 ⊗ · · · ⊗ Vn for the eigenvectors of the operator An(λ) of

the open RTC with n particles. These eigenvectors are labelled by n parameters γn,s ∈ ZN ,
s = 1, 2, . . . , n, collected into a vector

γn = (γn,1, . . . , γn,n) ∈ (ZN )n.

The formula

|γn〉 =
∑
γn−1

µ(γn−1)Q(γn−1|γn)|γn−1〉 ⊗ |
n∑

k=1

γn,k −
n−1∑
l=1

γn−1,l〉n,

where

µ(γn−1) =
n−1∏
j,l=1
(j 6=l)

wpn−1,j;n−1,l
(γn−1,j − γn−1,l − 1),

Q(γn−1|γn) =
ωγn−1,1+···+γn−1,n−1

n∏
k=1

n−1∏
l=1

wpn−1,l;n,k
(γn−1,l − γn,k − 1)

,

gives the eigenvectors |γn〉 of An(λ) from the eigenvectors |γn−1〉 ∈ V1 ⊗ · · · ⊗ Vn−1 of An−1(λ)
and basis vectors |γ〉n ∈ Vn. To find the formula for |γn−1〉 we can use the same formula and
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so on. At the last step we need the eigenvectors of 1-particle RTC which are just basis vectors
|γ1,1〉1 ∈ V1. The vectors |γn〉 obtained by the described procedure satisfy

An(λ)|γn〉 =
n∏

k=1

(
1 +

κvn,kω
γn,k

λ

)
|γn〉 =

n∏
k=1

(
1−

λn,k

λ

)
|γn〉,

Bn(λn,k)|γn〉 = − hk

λn,k
|γ−k

n 〉,

Bn(λ)|γn〉 = −hk

λ

n∑
k=1

∏
s 6=k

(
λn,k(λ− λn,s)
λ(λn,k − λn,s)

)
|γ−k

n 〉,

where λn,k = −κvn,kω
γn,k and hk = u

n−1∏
l=1

yn−1,l;n,k. In the above formulas the vector |γ−k
n 〉

means the vector |γn1, . . . , γnn〉 with γn,k replaced by γn,k − 1.
We will omit in what follows the index n in matrix elements of monodromy matrix.
At λ = ωµ, the rank of R(λ, µ) becomes 1. Therefore both sides of (2.2) become proportional

to R(λ, µ) with the coefficient being the so-called quantum determinant:

qdet Tn(µ) = D(ωµ)A(µ)−B(ωµ)C(µ) = qdet L1(µ) · · · qdet Ln(µ) =
V

(ωµ)n
, (3.2)

where

V =
n∏

k=1

vk, V|γn〉 =
n∏

k=1

(vn,kω
γn,k) |γn〉.

Now use (3.2) for µ = λn,r:

D(ωλn,r)A(λn,r)−B(ωλn,r)C(λn,r) =
V

(ωλn,r)n
.

Acting by both sides on |γn〉 we get

−B(ωλn,r)C(λn,r)|γn〉 =

n∏
k=1

(vn,kω
γn,k)

(ωλn,r)n
|γn〉.

Therefore

C(λn,r)|γn〉 =

n∏
k=1

(vn,kω
γn,k)

(ωλn,r)n−1hr
|γ+r

n 〉.

Since C(λ) is a polynomial in 1/λ of degree n− 1 we can reconstruct the action of C(λ):

C(λ)|γn〉 =
n∑

r=1

∏
m6=r

λn,r(λ− λn,m)
λ(λn,r − λn,m)

C(λn,r)|γn〉.

Finally using (3.2) after some calculation we get

D(λ)|γn〉 =
ωκ
λ

n∑
r=1

∑
k 6=r

[∏
m

vn,mωγn,m

(−κω)n

(
vn,kω

γn,k

(vn,kω
γn,k − ωvn,rωγn,r)(vn,rωγn,r − vn,kω

γn,k)

)

×
∏

s 6=k,r

(
vn,kω

γn,k(λ + κvn,sω
γn,s)

λ(vn,kω
γn,k − vn,sωγn,s)(vn,rωγn,r − vn,sωγn,s)

)(
hk

hr
|γ+r−k

n 〉 − |γn〉
)]

.
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4 Eigenvectors for the one-boundary RTC

We restrict our attention in what follows to the choice β± = δ± = 0. In this case the boundary
matrices become

K−(λ) =
(

α−( θ
λ − λ) η−

η− 0

)
, K+(λ) =

(
α+(ω2θ

λ − λ) η+

η+ω 0

)
.

Due to (2.3) we have

L̃n(λ) · · · L̃1(λ) = (ωθ)nV−1σzT
t(ωθ/λ)σz = (ωθ)nV−1

(
A(ωθ/λ) −C(ωθ/λ)
−B(ωθ/λ) D(ωθ/λ)

)
.

Therefore

A(λ) = (ωθ)nV−1

[
α−

θ − λ2

λ
A(ωθ/λ)A(λ) + η−(A(ωθ/λ)C(λ)− C(ωθ/λ)A(λ))

]
,

B(λ) = (ωθ)nV−1

[
α−

θ − λ2

λ
A(ωθ/λ)B(λ) + η−(A(ωθ/λ)D(λ)− C(ωθ/λ)B(λ))

]
,

C(λ) = (ωθ)nV−1

[
−α−

θ−λ2

λ
B(ωθ/λ)A(λ) + η−(−B(ωθ/λ)C(λ) + D(ωθ/λ)A(λ))

]
, (4.1)

D(λ) = (ωθ)nV−1

[
−α−

θ − λ2

λ
B(ωθ/λ)B(λ) + η−(−B(ωθ/λ)D(λ) + D(ωθ/λ)B(λ))

]
.

From (2.6) it follows that Ã(λ) defined by Ã(λ) = λA(λ)/(θ − λ2), or explicitly

Ã(λ) = (ωθ)nV−1

[
α−A(ωθ/λ)A(λ) +

η−λ

(θ − λ2)
(A(ωθ/λ)C(λ)− C(ωθ/λ)A(λ))

]
, (4.2)

satisfies Ã(ωθ
λ ) = Ã(λ). It means that Ã(λ) can be presented as

Ã(λ) = α−κn
(
(λ + ωθ/λ)n + (λ + ωθ/λ)n−1HB

1 + · · ·+ (λ + ωθ/λ)HB
n−1 + HB

n

)
, (4.3)

where the set of operators HB
1 ,HB

2 , . . . ,HB
n have to be identified with the commuting set of

Hamiltonians for the one-boundary RTC. Explicitly, HB
1 is given by (5.2) with η+ = 0. Our

problem is to find the common eigenvectors for this set.
For σ = (σ1, . . . , σn) ∈ (ZN)n, let

Ψσ =
∑
γn

Q(γn,σ)|γn〉, (4.4)

where the sum includes all Nn combinations of γn = {γn,1, . . . , γn,n} and

Q(γn,σ) =
n∏

r=1

ωγ2
n,r+γn,r

n∏
k=1

n∏
r=1

(
wpB

r,k
(γn,r − σk)wp̃B

r,k
(γn,r + σk)

)
×
∏
r<r′

(
vn,rω

γn,r − vn,r′ω
γn,r′

wp̃r,r′ (γn,r + γn,r′)

)
. (4.5)

Then, as it will be shown in the Appendix A, we have

Ã(λ)Ψσ = α−

n∏
k=1

(
(λ + κskω

σk)(ωθ/λ + κskω
σk)

skωσk

)
Ψσ
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= α−(−κ)n
n∏

k=1

(
(λ− λk)(ωθ/λ− λk)

λk

)
Ψσ, (4.6)

where sk, k = 1, 2, . . . , n, are some fixed amplitudes which will be defined later. Also we have
used a short notation λk = −κskω

σk . This form of the eigenvalue polynomial corresponds
to (4.3). We are using three types of points p̃r,r′ , pB

r,k and p̃B
r,k belonging to the Fermat curve

xN + yN = 1 in the definition of Q(γn,σ). They are defined by their x-coordinates:

x̃r,r′ = κ2vn,rvn,r′/(ωθ), xB
r,k = vn,r/sk, x̃B

r,k = κ2vn,rsk/(ωθ)

and the equations

η−v2
n,r

κn−2ωn+1θ

∏
r′ 6=r

ỹr,r′ = α−hr

n∏
k=1

yB
r,kỹ

B
r,k, r = 1, 2, . . . , n. (4.7)

To solve these equations we have to take the N -th degree of both parts of the equations (4.7)
and solve them with respect to elementary symmetric polynomials of sN

k , k = 1, 2, . . . , n. This
information is enough to find the values of sk and the coordinates of the Fermat points entering
Q(γn,σ).

Taking into account Laurent polynomial structure of C(λ) in λ it is clear that it is enough
to know the action formulas for C(λ) on Ψσ in 2n + 2 points of λ to reconstruct C(λ)Ψσ. The
following formulas are valid:

C(λk)Ψσ = η−fkΨσ+k , C(ωθ/λk)Ψσ = η−(ωθ)nf−1
k Ψσ−k , (4.8)

C(±
√

θ)Ψσ = η−(±
√

θ)nΨσ, (4.9)

where λk = −κskω
σk , fk =

n∏
r=1

λky
B
r,k/ỹB

r,k. The reconstructed formula for C(λ) is

C(λ)Ψσ =
θ − λ2

λ

n∑
k=1

∏
r 6=k

λk(λ− λr)(ωθ − λλr)
λ(λk − λr)(ωθ − λkλr)

× λk

ωθ − λ2
k

(
ωθ − λλk

θ − λ2
k

C(λk)Ψσ −
ωλk(λ− λk)

ω2θ − λ2
k

C(ωθ/λk)Ψσ

)
+

1
2

∑
ε=±1

n∏
r=1

(λ− λr)(ωθ − λλr)
λ(ε

√
θ − λr)(ωε

√
θ − λr)

(1 + ελ/
√

θ)C(ε
√

θ)Ψσ. (4.10)

Here we give some heuristic explanation of formulas (4.8). Let Ψσ be an eigenvector function
of A(λ) satisfying (4.6). Then acting by both sides of commutation relation

(ωµ− µ)(θ − λµ)C(λ)A(µ) + (µ− λ)(ωθ − λµ)A(λ)C(µ)
+(µ− λ)(ωλµ− λµ)B(λ)A(µ) = (θ − λµ)(ωµ− λ)C(µ)A(λ),

which follows from (2.4), on Ψσ at µ = λk we get

A(λ)C(λk)Ψσ =
(λ− ωλk)(θ/λ− λk)
(λ− λk)(θω/λ− λk)

C(λk)A(λ)Ψσ.

Using (4.6) we see that C(λk)Ψσ is an eigenvector of A(λ) with shifted zero, that is λk replaced
by ωλk. It means that C(λk)Ψσ is proportional to Ψσ+k . Clearly, this argumentation is not
sufficient to prove the relations (4.8). The derivation of these relations can be carried out
adapting the corresponding derivation from [5]. To prove (4.9) we use (4.1) at λ = ±

√
θ and

then (3.2).
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5 Eigenvectors for the two-boundary RTC.
Separation of variables

From (2.6) it follows

B(λ) =
C(λ)(ω − 1)θ + C(ωθ

λ )(θ − λ2)
ωθ − λ2

,

which gives

t(λ) =
ω2θ − λ2

λ
α+A(λ) + η+C(λ) + η+ωB(λ)

=
(ω2θ − λ2)(θ − λ2)

λ2
α+Ã(λ) + η+

C(λ)(ω2θ − λ2) + ωC(ωθ
λ )(θ − λ2)

ωθ − λ2
. (5.1)

We read off the structure of t(λ) from this expression

t(λ) = −(ω2θ2/λ2 − θ)(λ2 − θ)
α+α−κn

θ

(
(λ + ωθ/λ)n + (λ + ωθ/λ)n−1HBB

1 + · · ·

+ (λ + ωθ/λ)HBB
n−1 + HBB

n

)
+ η+η−pn(λ),

where

pn(λ) = (λ + ωθ/λ)θ(n−1)/2 if n is odd, pn(λ) = (1 + ω)θn/2 if n is even

and the set of operators HBB
1 ,HBB

2 , . . . ,HBB
n should be identified with the commuting set of

Hamiltonians for the two-boundary RTC. Explicitly,

HBB
1 = κ

n∑
k=1

(
vk + ωθκ−2v−1

k

)
−

n−1∑
k=1

(
uku

−1
k+1vk+1 + ωθκ−2uku

−1
k+1v

−1
k

)
− (η−/α−)u−1

1 v1 − (η+/α+)κ−1v−1
n un. (5.2)

Let ΦE, E = (E1, . . . , En), be a common eigenvector for the commuting set of operators
{HBB

k }:

HBB
k ΦE = EkΦE

and tE(λ) is corresponding eigenvalue polynomial for t(λ). In accordance with a procedure of
the Separation of Variables we are looking for ΦE to be in the form

ΦE =
∑
σ

∏
i<j

(
(λi − λj)(ωθ − λiλj)

) n∏
k=1

qk(σk,E) Ψσ,

where λk = −κskω
σk .

Using the action formula (5.1) for t(λ) on Ψσ together with (4.6) and (4.10) we get Baxter
equations for separated variables qk(σk,E):

tE(λk)qk(σk,E) = η+η−
(θ − λ2

k)
(ωθ − ω−2λ2

k)
ω1−2nfk qk(σk − 1,E)

+ η+η−
(ω2θ − λ2

k)
(θ − ωλ2

k)
ωn−1θnf−1

k qk(σk + 1,E), (5.3)
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where fk =
n∏

r=1
λky

B
r,k/ỹB

r,k. The corresponding Baxter equation can be considered (for each

k = 1, 2, . . . , n) as a homogeneous system of linear equations for N unknowns qk(σ,E), σ ∈ ZN .
The requirement of the existence of non-trivial solutions for all k = 1, 2, . . . , n fixes the common
spectrum for the commuting set of operators {HBB

k }. Unfortunately, this problem can not be
solved explicitly for general N . But if we know the spectrum we can construct the eigenvectors
solving the systems of linear equations. We would like to report about such a progress [7] in the
case of the periodic Baxter–Bazhanov–Stroganov model at N = 2 which contains in particular
the Ising model.

6 Another proof of commutativity of HB
k

In this section we describe an alternative approach to the proof of commutativity of Hamiltonians
using as an example the set of the one-boundary RTC Hamiltonians HB

k . This approach is based
on the results from [12]. Let us consider the generation function

A(λ) = α

n∏
k=1

(λ + ṽk)(θ/λ + ṽk)
ṽk

+ η

n∑
k=1

ũ−1
r ṽr

∏
s 6=k

(λ + ṽs)(θ/λ + ṽs)
ṽr − ṽs

= α
n∏

k=1

(Λ + ṽk + θ/ṽk) + η
n∑

k=1

ũ−1
k Ṽ

∏
s 6=k

(Λ + ṽs + θ/ṽs)
ṽk − ṽs

, (6.1)

where Λ = λ + θ/λ, Ṽ = ṽ1ṽ2 · · · ṽn. The set of operators ũj , ṽj satisfy the relations

ũjũk = ũkũj , ṽj ṽk = ṽkṽj , ũj ṽk = qδj,k ṽkũj ,

where q is a non-zero complex number. Note that this expression for A(λ) coincides with (4.2)
(see also (A.3)) up to a redefinition of parameters.

Expanding A in Λ we obtain

A = α (Λn + HB
1 Λn−1 + · · ·+ HB

n−1Λ + HB
n ). (6.2)

We will prove that the operators HB
k obtained by such expansion are pairwise commuting. Let

us introduce new operators Λk = −ṽk − θ/ṽk. Taking into account

Λk − Λs = (ṽk − ṽs)(θ/(ṽkṽs)− 1) ,

we get

A = α
n∏

k=1

(Λ− Λk) + η
n∑

k=1

Z̃k

∏
s 6=k

Λ− Λs

Λk − Λs
,

where

Z̃k = ũ−1
k ṽn

k

∏
s 6=k

ṽ2
s

(θ − ṽkṽs)
.

Finally using the interpolation formula for the polynomial
n∏

k=1

(Λ− Λk)− Λn of degree n− 1:

n∏
k=1

(Λ− Λk) = Λn −
n∑

k=1

Λn
k

∏
s 6=k

Λ− Λs

Λk − Λs
,
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we have

A = αΛn + α

n∑
k=1

Zk

∏
s 6=k

Λ− Λs

Λk − Λs
, (6.3)

where Zk = ηZ̃k/α− Λn
k . It is easy to verify that

[Λj ,Λk] = 0, [Zj , Zk] = 0, [Zj ,Λk] = 0, j 6= k. (6.4)

Theorem 1. For the set of operators Λk, Zk, k = 1, 2, . . . , n, satisfying (6.4), we have commu-
tativity of operators HB

k def ined by expansion (6.2) of A given by (6.3).

Proof. Let f be the n by n+1 matrix with the matrix elements fi,j , 1 ≤ i ≤ n, 0 ≤ j ≤ n, such
that any two of them belonging to different rows are commuting. Denote by ∆j , 0 ≤ j ≤ n, the
determinant of matrix f with j-th column omitted. Then from [12] it follows that the operators
Hk = ∆k∆−1

0 , k = 1, 2, . . . , n, are pairwise commuting.
Let us fix the matrix elements of f by the matrix elements fi,0 = Zi, fi,k = Λn−k

i , where i,
k = 1, 2, . . . , n. In this case we have ∆0 =

∏
m<l

(Λm − Λl). Expanding ∆s, s ≥ 1, with respect to

first column we have

∆s =
n∑

k=1

Zk(−1)k+1∆k;0,s,

where ∆k;0,s is the determinant of matrix f with k-th row and 0, s-th columns omitted. Therefore
for the generating function for commuting Hs = ∆s∆−1

0 we get

n∑
s=1

(−1)s+1HsΛn−s =
n∑

k=1

Zk

(
n∑

s=1

(−1)k+sΛn−s∆k;0,s

)
∆−1

0 .

The expression in the brackets is the determinant expanded with respect to k-th row of f with
0-th column omitted and all Λk replaced by Λ. Hence this expression is similar to ∆0 but with Λk

replaced by Λ. It gives

n∑
s=1

(−1)s+1HsΛn−s =
n∑

k=1

Zk

∏
s 6=k

Λ− Λs

Λk − Λs
.

Comparing this formula with (6.2) and (6.3) we get HB
k = (−1)k+1Hk and therefore the com-

mutativity of HB
k . �

Taking into account the discussion before the theorem we get that the function (6.1) is
a generating function for the commuting set of operators HB

k .

7 Discussion

We had applied in this contribution the Separation of Variables to obtain the commuting Hamil-
tonians eigenvectors of the quantum relativistic Toda chain at a root of unity with boundary
interaction. As we already have discussed in Introduction, the L-operator of the relativistic
quantum Toda chain at a root of unity is a special case of the cyclic L-operator of the Baxter–
Bazhanov–Stroganov model (BBS). It was shown in the papers ([7, 20]), that the BBS model at
N = 2 coincides with the free fermion point of the generalized Ising model. We plan to apply
the Separation of Variables method, used in this contribution, to the N = 2 BBS model with
integrable boundary conditions.
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A Derivation of the action formula for Ã(λ)

In this Appendix we will prove the formula

Ã(λ)Ψσ = α−(−κ)n
n∏

k=1

(
(λ− λk)(ωθ/λ− λk)

λk

)
Ψσ, (A.1)

where the eigenvector Ψσ is defined by (4.4), (4.5). In what follows we use the short notations
λn,k = −κvn,kω

γn,k and λk = −κskω
σk .

To prove (A.1) we use the expression (4.2)

Ã(λ) = (ωθ)nV−1

[
α−A(ωθ/λ)A(λ) +

η−λ

(θ − λ2)
(A(ωθ/λ)C(λ)− C(ωθ/λ)A(λ))

]
, (A.2)

and the action formulas

A(λ)|γn〉 =
n∏

k=1

(
1−

λn,k

λ

)
|γn〉, C(λ)|γn〉 =

n∑
k=1

∏
r 6=k

(
λn,k(λ− λn,r)
λ(λn,k − λn,r)

)
C(λn,k)|γn〉,

C(λn,k)|γn〉 =

n∏
m=1

λn,m

(−κ)nhk(ωλn,k)n−1
|γ+k

n 〉.

We have

(A(ωθ/λ)C(λ)− C(ωθ/λ)A(λ))|γn〉

=
θ − λ2

θλ

n∑
k=1

λn
n,k

∏
r 6=k

[(
1− λλn,r

ωθ

)(
1− λn,r

λ

)
1

λn,k − λn,r

]
C(λn,k)|γn〉.

Therefore

Ã(λ)|γn〉 = (ωθ)n

{
α−(−κ)n

n∏
k=1

(1− λλn,k/(ωθ))(1− λn,k/λ)
λn,k

|γn〉 (A.3)

+
η−
θ

n∑
k=1

λn
n,k

∏
r 6=k

[(
1− λλn,r

ωθ

)(
1− λn,r

λ

)
1

λn,k − λn,r

]
ω−1

hk(ωλn,k)n−1
|γ+k

n 〉

}
.

Acting Ã(λ) on Ψσ and shifting in an appropriate way the summation we get

Ã(λ)Ψσ =
∑
γn

Q(γn,σ)Ã(λ)|γn〉

= (ωθ)n
∑
γn

Q(γn,σ)

{
α−(−κ)n

n∏
k=1

(1− λλn,k/(ωθ))(1− λn,k/λ)
λn,k

+
η−
θ

n∑
k=1

∏
r 6=k

[(
1− λλn,r

ωθ

)(
1− λn,r

λ

)
1

ω−1λn,k − λn,r

]
λn,k

hkωn+1

Q(γ−k
n ,σ)

Q(γn,σ)

}
|γn〉.

Using (4.5) and (3.1) and then (4.7) we obtain

Q(γ−k
n ,σ)

Q(γn,σ)
=

κ2v2
n,k

λ2
n,k

n∏
m=1

(λm − λn,k)(1− λmλn,k/(ωθ))
λmyB

k,mỹB
k,m
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×
∏
r 6=k

(
ω−1λn,k − λn,r

λn,k − λn,r

ỹk,r

(1− λn,kλn,r/(ωθ))

)

=
α−θκnωn+1hk

η−λ2
n,k

n∏
m=1

(λm − λn,k)(1− λmλn,k/(ωθ))
λm

×
∏
r 6=k

(
ω−1λn,k − λn,r

λn,k − λn,r

1
(1− λn,kλn,r/(ωθ))

)
.

Finally, taking into account the identity

n∏
k=1

(Λ− Λn,k) +
n∑

m=1

∏
r 6=m

Λ− Λn,r

Λn,m − Λn,r

n∏
k=1

(Λn,m − Λk) =
n∏

k=1

(Λ− Λk)

with

Λ = −λ− ωθ/λ, Λk = −λk − ωθ/λk, Λn,k = −λn,k − ωθ/λn,k

we get (A.1).
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