Symmetry, Integrability and Geometry: Methods and Applications SIGMA 3 (2007), 077, 21 pages

Global Stability of Dynamic Systems of High Order

Mohammed BENALILI and Azzedine LANSARI

Department of Mathematics, B.P. 119, Faculty of Sciences,
University Abou-bekr BelKaid, Tlemcen, Algeria
E-mail: m_benalili@mail.univ-tlemcen.dz, a_lansari@mail. univ-tlemcen.dz

Received December 18, 2006, in final form June 04, 2007; Published online July 15, 2007
Original article is available at http://www.emis.de/journals/SIGMA/2007/077/
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Key words: global stability; vector fields; prolongations of flows

2000 Mathematics Subject Classification: 37C10; 34D23

1 Introduction

Global stability of dynamic systems is a vast domain in ordinary differential equations and it
is one of its main topics. Many works have been done in this context, we list some of them:
[3, 4, 5, 6, 7, 8. However, little is known in the stability of high order (see [10] and [2]).
In this paper, we are concerned with the global asymptotic stability of prolongations of flows
generated by some specific vector fields and their perturbations. The method used is based on
various estimates of the flows and their prolongations. To justify the study of the dynamic of
prolongations of flows, we consider the Lie algebra y(R™) of vector fields on R™ endowed with
the weak topology, which is the topology of the uniform convergence of vector fields and all
their derivatives on a compact sets. The Lie bracket is a fundamental operation not only in
differential geometry but in many fields of mathematics, such as dynamic and control theory.
The invertibility of this latter is of many uses i.e. given any vector fields X, Z find a vector
field Y such that [X,Y] = Z. In the case of vector fields X defined in a neighborhood of
a point a with X (a) # 0 we have a positive answer: since in this case the vector field X is
locally of the form 8%1 and the solution is given by

T1
Y(th...,a?n):/ Z(t,:cg,...,xn)dt,
-r

where ||z| = max |z;] < r. In the case of singular vector fields, i.e. X(a) = 0 little is known.
i<n

Consider a singular vector field X defined in a neighborhood U of the origin 0 with X (0) =0
and let ¢ be the flow generated by X. Suppose that X is complete and consider a vector field Y
defined on an open set V' D ¢4(U) for all ¢ € R. The transportation of a vector field Y along
the flow ¢, is defined as

()Y () = (Dépy - Y) 0 p_4(x)

and the derivative with respect to ¢ is given as follows

d
Z(00:Y = [(60):X, (60):Y].
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Put Y, = — fg((;ﬁs)*st, then

[X71/t] = _Z|t:0(¢t)*/0 (Qbs)*ZdS = _/0 %((ZSS)*ZdS =7 - (¢t)*Z~

So if (¢¢)«Z converges to 0 and the integral Y = — 0+°°(¢5)*st is convergent in the weak
topology, then Y is a solution of our equation.

As applications of the right invertibility of the bracket operation on germs of vector fields at
a singular point we refer the reader to the papers by the authors [1, 2] (see also [10]).

2 Generalities

First we recall some definitions on global asymptotic stability as introduced in [9]. Let ||-|| be
the Euclidean norm on R", K C R™ is a compact set and f any smooth function on R", we put

I£115 = sup max | D*f(x)|| . (1)
zeK |al<r

Definition 1. A point a € R" is said globally asymptotically stable (in brief G.A.S.) of the
flow ¢ if

i) a is an asymptotically stable (in brief A.S.) equilibrium of the flow ¢;

ii) for any compact set K C R™ and any ¢ > 0 there exists Tx > 0 such that for any
t > Tk we have ||¢¢ (x) —a|| < efor all z € K.

Definition 2. The point a € R” is said globally asymptotically stable of order r (1 < r < c0)
for the flow ¢, if

i) a is a G.A.S. point for the flow ¢y;

ii) for any compact set K C R"™ and

Ve>0, 3Tk >0 suchthat Vt>Tx = ¢ —al||X <,

where I denotes the identity map.

A vector field X will be called semi-complete if the X-flow ¢; = exp(tX) is defined for all
t>0.

First we quote the following proposition which characterizes the uniform asymptotic stability,
for a proof see the book of W. Hahn [5].

Let (¢); denote a flow defined on R™.

Proposition 1. The origin 0 in R™ is G.A.S. point for the flow ¢, if for any ball B(0,p),
centered at O and of radius p > 0, there exist to > 0 and functions a, b such that

[fe(@)| < a(ll=[])b(?) (2)

with a a continuous function on B(0,p) monotonously increasing such that a(0) = 0 and b is
a continuous function defined for any t > ty monotonously decreasing such that . thm b(t) = 0.
— 100

3 Estimates of prolongations of flows

We start with some perturbations of linear vector fields.
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3.1 Perturbation of linear vector fields

Consider the following linear vector field

= 0
X1=) awiz—,
i=1 Ori

where the coefficients a; € [a,b] C R and are not all 0.
The Xi-flow, 1} = exp(tX1) is then

Up () = ze® = (21e™,... 2e™") VEER (3)
and its estimates are given by
b
il e < gt ()] < o] e (4)

Consider now a perturbation of the vector field X7 of the form Y7 = X7 + Z1, where Z7 is
a smooth vector field globally Lipschitzian on R™. The explicit form of the Y;-flow is then

t
wmwzm“+/zm@u»w, (5)
0
a; -+ 0
where A =
0 - ap

Lemma 1. If the perturbation Z1 fulfills
1Zu@) <o ¥R (6)

then the vector field Y1 is complete and the Y1-flow satisfies the estimates
Co) bt , €0 1 ( CO) bt _ €0
_ — < < - .
(Il = 2) e + 9 < @)l < (llef + L) ¥~ &

Proof. Clearly the Yi-flow 1} is bounded for any t € [0,7] with T < 400 and any x € R™.
The same is true if we replace t by —t. Then v} is complete.
Consider now the equation

1d

5 1@ = (@), 0wl (@) + 2 (v} (@) -

Letting y = [|1} (z)]], we deduce

1d
ay® — coy < §£y2 <by*+coy,  y(0) =z

and by integrating we obtain

C C C C
(ol = 2) e + 2 <y < (Jlol + ) e = 2. n
a a b b

Let B(0,1) be the open unit ball centered at the origin 0.
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Lemma 2. If the perturbation Z1 fulfills the estimates

1Z1(z)|| < ¢y ||lz||*™ Va2 e B(0,1) and any integer m > 1,
1Z1(@)]| < cgllzl|  for every = € R\ B(0,1), (8)

then Yy is complete and the Yi-flow fulfills the following estimates for antt > 0

2]l e®t < [Jof ()| < ||| €™,
] e~f < |9l y(2)|| < |z e " (9)

with ¢y = max {cp, ¢j}, ap = a — co and by = b+ ¢y.
Proof. Taking account of the explicit form of the flow (5) and the estimates (8), we deduce
that Y; is complete. If z € B (0,1) then || Z;(x)| < ¢ ||z]|*™™ < ¢, ||z|, letting ¢o = max {c}, ¢/}
then || Z1(x)|| < co ||z| for any = € R™. If we put y = Hwtl(x)H the equation (7) leads to
d

(@< Sy<oran v =l
and putting by = b+ ¢g, ag = a — cg, we deduce the following estimates

x| et <y < |z|| et for any t > 0.
The same is also true in the on R™\ B (0,1). [

Lemma 3. Suppose that all the coefficients «; are negative, a < a; < b < 0.
If the perturbation Z1 fulfills the estimates

1Z1(x)|| < e ||z]|*T™ for any x € R™ and any integer m > 1, (10)

then the vector field Y1 is semi-complete and the Y1-flow satisfies the estimates for any t > 0

1

lall et (1= 22 flz™ (1 = e™)) (11)
< [et@ < llzle® (1= 2 2l ™ (1 = emy)

Proof. By the relation (5) and the estimates (10), we deduce that the vector field Y] is semi-
complete. Letting y = Hi/)tl(x) H and taking into account the equation (7) and the estimates (10)
we deduce that

d
ay — coy' T < Ty S<by+ coy't™, y(0) = ||z

and by integration we have

1 1

Co m o Tm
Jall et (1= 2 flz|™ (L= ™)) " <y < ol (1= 2 2" (=€) T .

Example 1. Let the vector field

- N O
X3 = Z (Oéil'i + ﬁil‘il—i_mZ) —

i—1 O
such that all the coefficients fulfilling

a<a; <b<0, a <pB <V <0
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and all the exponents m; are even positive integers with 0 < m{, < m; < mg. The associated
flow ¢} = exp(tX3) is the solution of the dynamic system

Lola) = Xsoou(a),  ola)=w

or in coordinates

(¢t( )); = ai (Be(2)); + Bi (¢e(x); 7™, ¢o(x) = =

This latter is a Bernoulli type equation and its solution is given by

—1

(63(x), = mie™! <1 o ’")) " (12)

The X3-flow ¢} = exp (tX3) then has the explicit form

-1
¢3 () = ze™ <1 + éxm (1 — eamt)>
«
and the following estimates are true, V¢ > 0

2] e < |67 ()] < llll €. (13)

3.2 Estimation of the kt® prolongation of the Y;-flow

Denote by ni(t,z,v) = Dy} (x)v, where v € R", the first derivative with respect to x of the
Yi-flow, solution of the dynamic system

d
dtnl(t T, V) (DyXl + Dyzl)n%(tﬂxﬂ/% ﬁ%(ovxaV) =v

with y = ¥} ().
Lemma 4. If the perturbation Z1 fulfills the estimate
IDZy(z)|| < e1 for any x € R, (14)
then the derivative of the Yi-flow is complete and has the following estimates, for anyt >0
et < HDQZ} )H < Mt e bt < HDwit(l‘)H < et (15)
withar =a—c, and by =b+cy .

Proof. Consider as in previous lemmas the following equation

2dt H771 t z V)H2 - <7ﬁ(t,m,y), (a"i_DZl)?ﬁ(tvva» (16>

and put z = Hn%(t,x,u) ,

1d
(a—c1)2% < = —22

S S e a(0) =] (a7

and then

|v||emt < z < ||v| et for any ¢ >0 and v e R™ [
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Lemma 5. If the perturbation Z1 fulfils the estimates

HDlZl(J:)H < ||z||*™ for any x € B(0,1) and all integers m > 1,
|D'Zi(2)|| < ¢/ =" VaeR"\ B(0,1)

with | = 0,1, then the first derivative of the Yi-flow is complete and is estimated by, for any

t>0
M < DYf ()| < e < DYl (a)]] < e

with ¢; = max{c), ¢/}, 4y =a—c; and by =b+¢;, 1 =0, 1.

Proof. For any = € B (0,1) we have ||D'Z(z)| < ¢ | < q |z||*~" and letting ¢
max {c],c/}, we get for any x € R" |D!Z(2)| < ¢ |z|*". By the same arguments as

previous lemmas we get the estimates (18).

Lemma 6. Suppose that all the coefficients «; are negative, a < a; < b < 0.
If the perturbation Zy fulfills the estimates

1Z1(2)|| < collz||™™, |IDZy(z)|| < i l|lz|™  for all 2 € R™ and any integers m > 1.

Then the estimates of the first derivation of the Yi-flow are as follows, for anyt > 0

c1

_c B
eft <1 — % ng“m (1 — eamt)> mcq < ||D1/Jt1($)H < ebt <1 _ %) Hme (1 o ebmt)) meq

Proof. Letting y = ||¢} ()| and z = ||n{ (¢, z,v)]| in equation (16), we get

1d
(a — Clym>22 < 5%22 < (b+ Clym)z2: 2(0) = |v|l

and taking into account the estimates given by the relation (11), we obtain

1 -1
Jall™ et (1= S ™ (1= o)) <y < ™ e (1= ™ (1 - )

consequently

||v|| exp at—cl/t |z||™ emasds
o 1— @™ (1~ ewms)

2 < |v]lexp (bt + 1 /t o)™ e™ds
- o 1= [lzI™ (1 — ebms)

which has the solution

c1

vl e (1= 2 flo)™ (1 = emty) 0

c

<z < |yl e (1 - %0 ]|™ (1 — ebmt))*mTo for v €R".

Example 2. We consider the same vector field as in Example 1. Denote by &i(¢,z,v)
D¢} (x)v, Vv € R", the first derivation of the X3-flow. In coordinates, we have for any i, j

1,....,n,

—1

(@), = e (14 2 (1 o))

67}

(18)

n
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so we deduce that

Bl mz o aymt 717% )
(61w, = et (14 B (1 - eoomy) T
J

)

and by the estimates (13) we get

“ < ||Dgi ()| < €

The second derivative is

82 I m; oy O T m; oY _2_”%7,‘
371:12(¢?(x)) —(+m )ill—l-z t(l—elzt)<1+ixil(1—ellt)> .

Consequently, for [ = 1,2 and any = € B (0, p) with p > 0 arbitrary fixed, there are constants
M; > 0 such that

| D'} ()| < Mye®.

3.3 Perturbation of a nonlinear vector field

Consider the nonlinear vector field

Zﬂl 1+mZ - with all m; >0 andall §; <0.

The explicit form of the Xo-flow is then given by

62 (x) = w(1 — mpta"™) = (19)
for any ¢t > 0 in the sense
((ﬁ?(w))l =x;(1— miﬂitx;m)%, 1<i<n.
Lemma 7. If the following assumptions are true
i) all the coefficients B; are non positive, —a’ < 3; < —b' <0

ii) all the exponents m; are even positive integers; 0 < mo <m; < my,.
Then the vector field Xs is semi-complete and the Xo-flow satisfies the estimates

=1 ’ ;/1
] (1 + Bt [2]™) 7 < [[67 (@) < [l (1 + a/mbt ™) ™5 for any ¢ 0. (20)

Proof. Clearly the flow ¢7 = exp(tX2) given by (19) is semi-complete i.e. defined for all ¢ > 0.
Consider the equation

O I CAONACCO )
and put y = ¢?(x), then
Py < L <y (o) =

and we get the estimates given in (20). [



8 M. Benalili and A. Lansari

3.4 Estimation of the k** order derivation of the X,-flow

Let &3(t,x,v) = D2 (z)v, V v € R™ be the first derivation of the Xo-flow.

By formula (19), we get in coordinates

N Y . i) 1 if i=j,
ax] (¢t( )) (1 mlﬁlt‘ri ) 5@ with 61 _{ 0 if Z#],
where i,5 =1,...,n.
Consequently
—— / —1—%
(1+ Umt le]™) ™70 < DG (@) < (14 ampt ™) 7. (21)

To get the estimates of the second derivative, we put

w; = 1 —mfBitx]™,

SO
d _ 0 .
. w; = m;(w; — 1)z and oz, ( tz(a:))l =w; ™.
Consequently

82 1 _ _ _ 1 a2 a2
895 (¢t< )) (14 mg)a; hw; ™ (w; ? —w; 1) = a7 wi ™ (1 T 22) ’

where a? and a3 are real constants. Let p > 0 be any arbitrary and fixed real number, then for
any = € B(0,p) and any ¢t > tg > 0 and [ = 1,2 there is M; > 0 such that

1
/

1L
|D'¢7 ()| < Myt~ ™.
Suppose that for [ =1,...,k — 1, with fixed k, there exist constants ag- and M; > 0 such that

o _1 a
@(‘b?(x))z: i wl i Zijv

Jj=1

SLs,

l

where a; are real constants and

11
|D'62()|| < Mt ™ Wit 0.

For the estimates of the k"™ derivative, we compute

k k
ok 1 a’
2 _ T Z j
k (¢t (Jl‘))Z - 50
Bq:i =1 w;
k-1 k-1
d ,; a;
2—k J
830 (¢t( ))Z d{l/‘l ! T w]
j=1 )
1=k, —- — aﬁ; ' . a;‘?_l , 1=k, —- . af
=x; "w; ™ j(l—k—jmi)—i— j+1(1+jmi) =x; "w; mig —,
i=1 \ Wi wi j=1 Wi
j= —
where o are real constants.

J
So we resume
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Proposition 2. Suppose that

i) all the coefficients satisfy 3; <0, —a’ < 3; < =V,

ii) the exponents m; are even natural numbers such that 0 < mgp < m; < my.

Let p > 0 be any arbitrary fixed real number. For any x € B(0,p), for any t >ty > 0 and
V k > 1 there exist a constant M > 0 such that

1
7

|ID* @) < Myt (22)

3.5 Estimates of the Y>-flow
Let

Yo = Z (Biz; 7™ + Zoy()) 9

ox;
i=1 ¢

the perturbation of the nonlinear vector field X5 and denote by ¥? = exp(tY3) the solution of
the dynamic system

d
Gli@) =Yeouvi(2),  gla)=w
In coordinates we have, i = 1,...,n,
0 "
a%,i(tw) = @'@Z}%,}L it x) + Zoi (V7 (2)) V2,:(0,2) = x;.
Putting
yi(t) = 1y (1, @)
and
2 =1 o Fr
@) =57 0= (17 00 )
we get
/ o —1—-m; 8
Y (t) - _min,i (ta x)awli(ta x)
The Cauchy problem reads as

yt) = —miB; — mi () Zo(yT @), w(0) = 2™

and has the following solution

—m; t g -1
yi(t) = x; ™ — myfit — mz/ yi(s) Zai(ym (s)ds,
0

i.e.
t --L
Poi(t,x) = x; <1 —m; Stz — mzx:nl/ ¢i(s,x)1mi22i(z/)§(x))ds> ' ,
0
so we have the explicit form of the Ys-flow
¢ “m
st = (1= motem e [0 zianas) " (23)
0

Now we will estimate the Ys-flow.
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Lemma 8. Suppose that
i) all the coefficients satisfy 3; <0, —a’ < 3; < =V';
i) the exponents m; are even natural numbers with 0 < mo < m; < mj;
1i1)
1 Zai ()| < cf |2:l**™if @€ B(0,1),
1 Zai ()| < cf [T if 2 € R™\ B(0,1)
with ¢y = max {cpy, i}, bo=b'—cy >0, ap = a’ + ¢o.
Then

1) the vector field Ya is semi-complete;
2) the Ya-flow has the estimates

=1 ’ ;,1
]l (1 + agmot [[[™°) ™0 < [[0F ()| < [l]| (1 + bormgt [J]™0 ) ™o ; (24)

3) let p > 0 and ty > 0 be fized, then for any x € B(0,p) and any t > ty > 0 there is
a constant My > 0 such that

[ (@) < Mo [lallt ™. (25)

Proof. Let z € B(0,1), by assumption we have || Zo;(z)]| < ¢ |zi*T™ < ¢ |ag)"™™, put
co = max {c}, ¢y} then for any x € R™ we deduce ||Z2;(z)|| < co|x;] . Now taking account of
the relation (23) we deduce that for any ¢ € [0, 7]

_1
|07 @) < [l (14 mt [lz|™ 0 = co)) ™™ < ]
hence the vector Y is semi-complete, i.e. defined for all ¢ > 0.

Consider the equation

1d

53 W2@), 12 = ((W2(@)), . 6 (WP (@), ™ + Zs (¥ (@) )

we get y; = || (wtz(x))l | and v;(0) = |x;|, so we deduce

1d ) ‘

5@2%'2 < (Bitco)y; ™™ < = = co)y; T
and

Ld , 24m; / 2+m;

i 2 (Bi —co)y; "™ > —(a" +co)y;

We put bg = V' — cg and ag = a’ + ¢, the solutions are estimated as

1 . 1
(Jzsl ™™ + agmt) ™™ < || (¥ (@), | < (il ™™ + bomt) ™. (26)
Hence, we have the estimate (25). [

Now, we estimate the first derivation of the Yo-flow. Let ni(t,z,v) = Dy?(z)v, Vv € R
the solution of the dynamic system

d
%U%(ta% V) = (DyX2 + DyZQ)n%(taxa l/)') 77%(07337 V) =V

with y = ¥?(x).
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Lemma 9. Suppose that
i) the coefficients are such that 3; <0, —a’ < 3; < —V';
i1) the coefficients m; are even natural numbers, 0 < mgo < m; < my;
1i1)
1D Zai ()| < ¢} |i ™ if x € B(0,1),
1D Zoi(@)|| < ¢ |2 ™ if 2 € R\ B(0,1)

with 1 =0,1;
iv)
aozal+00, bp=b —cy >0
and

a; = a'(1+mg) +c1, by =b(1+mg) —c1 >0

with ¢; = max {c}, ¢/'}.
Then the first derivation of the Ya-flow has the following estimates, for any t > 0
b1
' (27)

_ @ N
(1 + bomot 2™ ) "5 < |[DY2(a)| < (1+ agmpt )™ ) 7%

Let p > 0 be arbitrary and fized for any © € B(0,p), and any t > ty > 0 there is a constant

M7 > 0 such that
by
' (28)

1Dy ()| < Myt =05

Proof. Let z € B(0,1), for [ = 0,1 we have
1D" Zai ()] < f faa*~H™ < ] a7

Let ¢; = max {c}, ¢/} then for z € R" one has
1D Zoi(@)|] < e a0

Consider the equation
ld 4 2 1 1
5%“772(@ Zz, V)H = <n2(t7 z, V)v (DyX2 + DyZ2) 772(’57 Z, l/)>

and put z(t) = ||ni (¢, z,v)| with z(0) = ||v||, then

sup ((L+ma)fi +en)l| (97 (@)); ™) 2* < 2° sup (bl (7(), ™)

li 2 <
2dt” = i=1,..n
and
1d . . . -
st =l (L m)fi— )| (WF@), ™) 222 2 inf (=ail| (@), ™).

The solutions fulfill the following estimates

t
e it (oo [l (2000, 17as)

=1,...,

<= < Iullewp s (b [ 11 (03a), Imds)

i=1,...,n



12 M. Benalili and A. Lansari

with, by (26)

.
||

14+ agm;t |:CZ’

2 ; |24
mr < I (¥ <$))" ™ < 14 bom;t |z;|™

So we deduce

! i ™
N L -d
lv[| exp izllr,l.--,n < “ /0 L+ boms |z;|™ 8>

' i ™
<z(t) <|lv|exp sup |—b1 mrds ) .
. . 0 s |

i=1,...,

Consequently the solutions satisfy

) b
HV”iiilnf n(l + bomt |z5|™) P < z(t) < ||v|| _sup (1 4+ agmyt |z;|™") @omi.

=1,..., i=1,...,n

Then there are constants mg > 0 and m(, > 0 such that

_ a1
V]| (1 + bomot [|]| ™)~ Pomo < || Dy (x)v |
r -,
< |lv|| (1 + agmgt [|z[|™) om0 Vv € R™ and for any t > 0.

Hence, we have the estimate (28). [

3.6 Perturbation of binomial vector fields

Let
" 0

Y3 = Z (Oéifﬁi + ﬁz$zl+ml + ZSi(ﬂf)) G

i=1 ¢

with a < a; <b<0,ad <6 <V <0and 0 < mg < m; < my, be the perturbation of
the binomial vector field X3 and let ¥} = exp(tY3) be the Y3-flow which is the solution of the
dynamic system

d

@Tﬁt(l’) = Y3 0 ¢y(m), Yo(x) =2

and in coordinates, we get
9 1+m; 3
a%,i(tax) = i3,i(t, x) + By " (8 @) + Zz i (¥3 () ¥i(0,2) = z;

which is a Bernoulli type equation and by the same method as in the proof of previous lemmas
and with putting

yi(t) =1 " (t, @)

and

M) =7 0 = (57 O 0)
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we get the solution

bt = (14 a1 )
(2

—1

' o
—mia sG] zg,xw;”(:c))e‘”mfw)

and the implicit form of the Ys-flow reads as

1

m

t

o) = (14 Zam(1 - ety - e [ )] " tudepenas) T o
0

3.7 Estimation of the Y;-flow

By the same arguments as in the previous, we get the following estimates of the Y3-flow.

Lemma 10. If the following assumptions are true
i) all the coefficients «; are negative, —a < a; < —b < 0;
it) all the coefficients B; are non positive, —a' < 3; < —b';
i11) the exponents m; are even natural numbers with 0 < mo <m; < mg;
iv)

1 Zsi(2)|| < cf lws**™ if x € B(0,1),
1 Zsi(2)|| < cff s ™ if 2 € R*\ B(0,1)
with ¢y = max{cy, cj}, bop=b' —cy >0, ap = a’ + ¢p.

Then
1) there exist constants m > 0 and m’ > 0 such that the Y3—flow has the estimates, ¥ t > 0

1

Jall e= (14 22 flaf™ (1 = emomt))

/

_ b(] !’ _ 2 m
< I < lel e (14 el =)
2) for any t > 0 there are positive constants ¢c; and ca such that
et ]| e < [ ()| < ea |zl e (30)

3) the vector field Y3 is semi-complete.

By similar calculations as in previous lemmas, we get the following estimates to the first
derivative of the Y3-flow.

Lemma 11. Suppose that
i) all the coefficients a; are negative, —a < a; < —b < 0;
i1) all the coefficients B;are non positive, —a’ < 3; < —b';
ii1) the exponents m; are even natural numbers such that 0 < my < m; < mj;
i
)

|D' Zsi (2)|| < ¢ |ai)* ™ ifx € B(0,1),
|D Zsi(x)|| < o/ |a|' ™™ if 2 € R™\ B(0,1)

with 1 =0,1;
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v)
ap = d + ¢y, bp=b —cy >0
and
a; = ad (1+mgp) +c, by =b(1+mg)—c1 >0

with ¢; = max {c}, ¢/'}.
Then there exist constants m > 0 and m' > 0 such that for any t > 0

aj

“Bom
e <1 + %0 |lz||™ (1 — e_bmt)) ’

b1

a ! / 7(1 m’
< IDU @) < e (14 2 flaf™ (1= e

and for any t > 0, there is a constant My > 0 such that

HDdJ?(:z:)H < Mlefbt.

4 Global stability of prolongations of flows

With notations of the previous sections, we will give global stability of some flows.

4.1 Global stability of the Y;-flow

Lemma 12. Let the vector fields

n

Y1 = Z (cvzi + Z1i(x)) 81

»
i=1 v

with the following assumptions
i) all the coefficients are negative, —a < a; < —b < 0;

1Z1(x)|| < &b ||lz]|*™ Ve B(0,1) and ¥m > 1,
1Z1(z)] < g llz]l Y2z e R"\ B(0,1);

i11) bp = b — co > 0, where ¢g = max {c{, cj}.

Then the origin 0 is a globally asymptotically stable equilibrium to the Y1-flow ¥} on R™.

Proof. Let ¢} = exp(tY7) be the Y;-flow, then by the assumptions and the estimates given by

Lemma 2 we get that
H¢t1(x)H < ||z)|e bt Vit >0and Vo € R"
and by Proposition 1, the origin 0 is G.A.S. for ¥} on R™.

Example 3. We consider the vector field

X3 = Zn: (OziCCi + ﬁlleerz) 4

0x;
i=1 v
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of Example 1 with a < a; <b <0, d < B; <b <0. The X3-flow ¢} = exp (tX3) is then given
by
=
¢3 () = ze™ (1 + gm’m (1- eamt)> "
Let p > 0 be arbitrary and fixed real number. By the estimates (13), we have for any = € B(0, p)
and any t >ty > 0

|67 (@) < llz[l ="
By Propositionl the origin 0 is a G.A.S. for the flow ¢} on R™.

4.2 Global stability of the first prolongation of the Y;-flow

Lemma 13. With the same assumptions as in Lemma 12 and the following conditions

|DZy(z)|| < e ||z VaxeB(0,1) andVm > 1,
|DZy(z)|| < VazeR"\ B(0,1)
with by =b—c¢1 > 0 and ¢; = max{c}, ] }.
Then the origin 0 is a globally asymptotically stable for the first prolongation of the Yi-flow
¥ on R™.
Proof. By the estimates (18) and the hypothesis we deduce that
| DYt ()| < |lv]|e ™t YiE>0, YveR®

and by Proposition 1,we obtain that the origin 0 is a G.A.S. equilibrium on R" for 17% (t,z,v) =
Dy} (x)v. [

4.3 Global stability of the k" prolongation of the Y;-flow

Suppose that
i) all the coefficients are negative, —a < o; < —b < 0;
ii) forany [ =1,...,k—1

ID'Zy (z)|| < ¢ |=|*™™  for any z € B(0,1) and for any integer m >1— 1,
ID'Zy(2)]| <¢f VazeR"\B(0,1),
apg = a + cg, bo=b—1co >0,
a; =a-+c, bi=b—c1 >0
with ¢, = max{c}, ¢/}, by=¢q V1> 2.
Put 0} (t,z,v,...,v) = D¥} (x)v* where v € R™. Since by Lemmas 12 and 13 the origin 0 is
an G.A.S. equilibrium for nll, with [ = 0,1, on R", we suppose that this property remains true

for { =0,1,...,k —1 with £ > 2 i.e. for any p > 0 and any = € B(0, p) there exist constants
M; > 0 such that for any ¢t > tg > 0

ID" g ()| < Mye™ ™.

We will show that the origin 0 is a G.A.S. equilibrium for n]f on R". nf(t,x,u,...,y) =

DFp}(2)v* is solution of the dynamic system

d
anlf:Dle-nf+Glf(t,x,y), nlf(O,a;,V,...,V):y
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with y = ¥} (x) and

k !
Gitt,z,v) =Y DYi(y) Y, | I D¢t
=2 i1+t =k \j=1
ij>0
k-1 l . k
_ DéZl(y) Z H Diiyp} (z)v/h +D§Z1(y) (Dq/;tl(m)u) .
=2 itti=k \J=1
i>0

Consequently we get

itz v,...,v) = Dtz / DU} (2))G¥ (s, x,v)ds.
The integral is well defined at s = 0, since
Jim Doy (45 (@) = Dy (x)

and there exist constants Al > 0 such that

lim Gk (s,z,v) ZAZDZ Zi(y

s—0t

We will show that it converges uniformly with respect to = as t + co. Put

I = / | DSL @ @) |G (s, 2, v)ds.

Since ||D!Zy(z)|| < ¢ ¥V 1 > 1,V 2 € R", there are constants b; > 0 such that ¥ y € R",
||D?lJYl(y)|| < b; and by the assumption of recurrence there exist constants M; > 0 such that

|D'pf ()| < Mye ™ Yt > 0.
We deduce that there is a constant Cj > 0 such that

k t
I <> biM, / e bilt=stsll g < ) e~ b1t,
1=2 0

So for any x € R™ one has

: I R 1 !
lim I < Mb T ds = — Mb
LINEDS el [ eteds b 2 M

and the integral [ is uniformly convergent with respect to x € R™ as t — 400. Consequently

+oo
Jim [k = lim (D} (@) + / lim Dyt (L @)IIGE(s, 2,v)l|ds = 0
— 400 t——+o00 0 t—-4o00

and there is a constant M, ,’C > (0 such that

—+00
151l < [|1Dyf (z)v | +/O 1D (s (@) GE (s, 2, v)||ds < My |v]|"e".

This show by Proposition 1 that the origin 0 is a G.A.S. equilibrium to n¥ on R". We formulate
our proving as follows

Proposition 3. Let k > 0 be any integer. The origin 0 is a G.A.S. equilibrium of order k for
the Y1-flow and there is a constant My, > 0 such that ¥Vt > 0

ID i ()| < Mye™", Dol (2)]| < Mye™". (32)
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5 Global stability of a flow generated
by nonlinear perturbed vector fields

First we will start with monomial vector fields.

5.1 Global stability of the Xs-flow
Let

0
X § 1+m;
=1

with
(i) all the coefficients 3; < 0 such that —a’ < 3; < —¥';
(ii) all the exponents m; are even natural integers with 0 < mgy <m; < m{).
Let ¢? = exp (tX3) be the Xp-flow. By the estimations (19) we obtain

;1
6 @) < llall (1 + a'mgt | ™ ) ™.

Let p > 0 be arbitrary fixed, for any x € B(0,p) and any t > ty > 0 there is a constant
My > 0 such that

1

167 (x)Il < Mo x|t .

By Proposition 1, the origin is a globally asymptotically stable equilibrium to the flow ¢? on R".
Let | =1,2,... any positive integer. By Proposition 2, we have: for any fixed p > 0, and all
x € B(0,p) and t >ty > 0, there exist constants M; > 0 and M] > 0 such that

1
7

S D
ID'¢(x)| <Myt ™ and  ||D'¢d(2)] < M.

So the origin 0 is a G.A.S. equilibrium for D!¢?(z) on R™.
Resuming our proving, we get

Proposition 4. Let k > 0 be any integer. Under the above conditions (i) and (ii), the origin O
1s a G.A.S. of order k for the Xo-flow on R™.

5.2 Global stability of high order of the Y>-flow
Let

n

Y, = Z (ﬁmiprmi + Zai(x)) 9

: Ox;
=1

be a smooth vector field on R™ such that
i) all the coefficients §; < 0 are non negative with —a’ < 8; < —U';
ii) m; are even natural numbers with 0 < mgy <m; < m6;
iii) for k=0,...,1+m;

|D* Zai(@)l] < c s> it w € B(0,1):;
|D* Zoi(@)l] < il ™ it e € R\ B(0,1);
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iv) for any k > 2 +m;
1D* Zai ()| < ex;

v)
ag = a' + co, a; = a'(1+mg) +c,
b02b1—60>0, blzb/(1+m0)—cl>a0m6
with ¢ = max {c}, ¢}
Remark 1. If € B(0,1) then ||D*Zy(z)| < ¢, |z F™ < ¢ || F™. Putting ¢ =
max {c], ¢]'}, we deduce that for any x € R have || D¥Zy(z)| < cx || LR
5.2.1 Global stability of the Y>-flow on R™

Let 1? = exp (tY2) be the Yo-flow and let p > 0 be arbitrary and fixed, so by the estimates (25)
for all z € B(0,p) and all t > tp > 0 there is a constant My > 0 such that

1

i (@) < Mo it ™.

So by Proposition 1, the origin 0 is a G.A.S. equilibrium for the Ya-flow 92 on R™.

5.2.2 Global stability of prolongation of the Ys-flow on R™

We proceed by recurrence. Since it is already true for k& = 0, we suppose that for any [ =
1,...,k—1, with & > 2, the origin 0 is a G.A.S. to D"4?(x) on R™ that is to say for any fixed
p>0,all x € B(0,p) and all t > ¢y > 0 there are constants M; > 0 such that

b1

ID'7 ()| < Mt 06 and | D'y(z)] < M.

We will show that 0 is a G.A.S. for D¥y?(x) on R".
Put 0§ (t,x,v,...,v) = D*)2(x)vF ¥V v € R™ which is solution of the dynamic system

gL =D,Ys -y + Gh(t,2,v), n5(0,z,v,...,v)=v

with y = ¥?(x) and

l
Kt z,v) ZDI Ya(y Z H D)2 ()

21+~~-+il:k j=1
ij>0
By the method of the resolvent, we deduce

775(75»33,1/,-- ) D¢t / D¢t s s )Gk(s €T, I/)dS

Clearly the integral

1
I :/0 1Dvi (W2 @)IIG5 (s, 2, v)]ds
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is well defined at s = 0 and s = ¢, since
Tim Dy (¥3(w)) = Dyi ().

By the recurrent assumption D't2(x) are bounded and there exist constants A; > 0 such that

Jim, IG5 (s, 2, v)I| < ZAzHDle( .
=2

In the same way

lim Dy? ,(¢%(z)) = identity.

s—t—

Now, we have to show that

t
113:/1 IDY7 (3 (@)1 G (5,2, v) | ds

converges uniformly on any compact set K C R™ as t — 0.
Let x € K, by the relations (26) and (28) we get for all t > 0

-1
o

-1
lzl| (1 + agmot [|z]™) 70 < 47 (@)I| < [l] (1 + bomit ] ) ™,
by

__a LI
(14 bomot [[]|™) " Fomo < | Dy (z)]| < (1 4 agmpt [|«]|™) “omo.

So |lyll = v#(@)|| < [lzf| and |[Dy? ,(2(x))|| is bounded. Since for any z € R™ and any
I=1,...,14my, | D' Zy(2)|| < ¢ x| 7™ then D] Y5(y) are bounded. Now by the assumption
of recurrence there exist constants M; > 0 such that for any ¢t > 0

b1

1D ()l < Myt om0

with agm{, < by i.e. aob;n, > 1, and we deduce the existence of constants C; > 0 such that
0

1by k Ib -1
lim 7<) C Ceamhds <) C -1 .
Lk Z l/ s 008 = ; ! <a0m6 )

The integral I,f converges uniformly on any compact K C R™ as t — +o0.
Now since the integral is well defined at s = 0, then
lim 3 (t, @, v, ..., v)|| < lim [ Dy ()|l = ||v]|
hence there is a constant M}, > 0 such that
ID 5 ()| < M.

In the same way as above the integral fg | D2 (2 (x))|||GE (s, z,v)||ds is well defined and

putting 7 = 3 we obtain

1
775(15,.%‘, V?"'?’/) = DI/J?(CL‘)V—I—t/O D’Lﬂ?(kf)(l/ftzr(x))Gg(tT,ﬂf,V)d7~
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Since by = V(1 +mg) — ¢1 > agmy, , by the estimates (26) and (28), we deduce the existence of
a constant M > 0 such that

1
105 (¢, 2, v, v) | < IDYF ()| +t/0 IG5 (tr, 2, v)|dr

by
k 1 anm/ 1+m/—l1 b

tT) “0"o ||z 0 -1

< DY)+t i (t7) ] ——dr < Mt “omb.

—
S (1 bt o ™6)

Which shows that the origin 0 is a G.A.S. equilibrium for 7§ on R™. We formulate this fact as

Proposition 5. Let k > 0 be any integer. Under the above conditions (i), (ii), (i), (iv)
and (v), the origin 0 is a G.A.S. of order k on R™ for the Ya-flow and there is a constant
My, > 0 such that for any t >ty > 0

R
ID*7 ()| < Myt 0. (33)
5.3 Global stability of prolongations of the Y;-flow
Let

n

. 0
Y3 = Z (qizi + Bz} ™™ + Zsi(2)) pr
i=1

with
i) all the coefficient «; are negative with —a < a; < —b;
ii) all the coefficients 5; < 0 and —d’ < 3; < =V';
iii) the exponents m; are even natural numbers with 0 < mg < m; < m6;

iv) For any k =0,...,1+m;

|D* Zai(@)]] < > ™ itz e B(0,1),
|D* Zsi(@)l| < il ™ it e € R\ B(0,1);

v) for any k > 2+ m;
ID* Zsi(2)]| < ex;
vi)

ap = da + co, a1 = a'(1+ mg) + c1,
bgzb/*60>0, blzb/(1+m0)*61>0

with ¢ = max {c},c}}.

Remark 2. If z € B(0,1) then || D*Zy;(z)|| < ¢, |a:|* ™ < ¢ Jag | H™
Let ¢, = max {c}, ¢/}, for any € R" one has || D¥Zs;(z)|| < ¢ EN s
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5.3.1 Global stability of the Y3-flow R™
Denote by 1} = exp(tY3), by the estimates (30), we have
|3 ()| < Cllzlle™® VYt >0andVazeR",

where C' > 0 is a constant. So by Proposition 1, 0 is a G.A.S. on R™. We proceed by recurrence;
since the property is true in case & = 0, we assume that the property remains true for any
l=1,...,k—1, with k fixed i.e. 0 is a global G.A.S. of nk(t,x,v,...v) = | D9} (x)v*| on R"
and there exist constants M; > 0 such that for any ¢t > 0

1D} ()| < Mye™™.
We will show that 0 is a G.A.S. equilibrium to 77§ on R™.
n’?f(t, x,v,...,v) is a solution to the dynamic system
d
@ﬁg = Dyn]?f + Gé(f,gxu)

with y = ¥3(x) and

l

k
Gi(t,w,v) =) Divs(y) > | [] DY} ()
=2 i1+---+il=k j:1
ij>0

By the method of the resolvent, we get

Wt v,. .., v) = Dy + /0 DU () Gl 7, )i

and by the same argument as for the Y!-flow, we deduce that for any integer k& > 0 there exist
a constant M, such that V¢ >0

ID*9 ()| < My ||| ™"
By Proposition 1, we have

Proposition 6. Under the above conditions (i), (ii), (iii), (iv), (v) and (vi), the origin 0 is a
G.A.S. equilibrium of order k on R™ to the Ys-flow .
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