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Abstract. We use the spectra of Dirac type operators on the sphere Sn to produce sharp L2

inequalities on the sphere. These operators include the Dirac operator on Sn, the conformal
Laplacian and Paenitz operator. We use the Cayley transform, or stereographic projection,
to obtain similar inequalities for powers of the Dirac operator and their inverses in Rn.
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1 Introduction

Sobolev and Hardy type inequalities play an important role in many areas of mathematics and
mathematical physics. They have become standard tools in existence and regularity theories for
solutions to partial differential equations, in calculus of variations, in geometric measure theory
and in stability of matter. In analysis a number of inequalities like the Hardy–Littlewood–
Sobolev inequality in Rn are obtained by first obtaining these inequalities on the compact
manifold Sn and then using stereographic projections to Rn to obtain the analogous sharp
inequality in that setting. See for instance [10]. This technique is also used in mathematical
physics to obtain zero modes of Dirac equations in R3 (see [9]).

In fact the stereographic projection corresponds to the Cayley transformation from Sn minus
the north pole to Euclidean space. Here we shall use this Cayley transformation to obtain some
sharp L2 inequalities on the sphere for a family of Dirac type operators. The main trick here
is to employ a lowest eigenvalue for these operators and then use intertwining operators for the
Dirac type operators to obtain analogous sharp inequalities in Rn.

Our eventual hope is to extend the results presented here to obtain suitable Lp inequalities
for the Dirac type operators appearing here, particularly the Dirac operator on Rn.

2 Preliminaries

We shall consider Rn as embedded in the real, 2n dimensional Clifford algebra Cln so that for
each x ∈ Rn we have x2 = −‖x‖2. Consequently if e1, . . . , en is an orthonormal basis for Rn
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then

eiej + ejei = −2δij

and

1, e1, . . . , en, e1e2, . . . , en−1en, . . . , ej1 , . . . , ejr , . . . , e1, . . . , en

is an orthonormal basis for Cln, with 1 ≤ r ≤ n and j1 < · · · < jr.
Note that for each x ∈ Rn\{0} we have that x is invertible, with multiplicative inverse −x

‖x‖2 .
Here, up to a sign, x−1 is the Kelvin inverse of x. It follows that {A ∈ Cln : A = x1 · · ·xm with
m ∈ N and x1, . . . , xm ∈ Rn\{0}} is a subgroup of Cln. We shall denote this group by GPin(n).

We shall need the following anti-automorphisms on Cln:

∼: Cln → Cln : ej1 · · · ejr → ejr · · · ej1

and

− : Cln → Cln : ej1 · · · ejr → (−1)rejr · · · ej1 .

For A ∈ Cln we denote ∼ (A) by Ã and we denote −(A) by A. Note that for A = a0 + · · ·+
a1...ne1 · · · en the scalar part of AA is a2

0 + · · ·+ a2
1...n := ‖A‖2.

Lemma 1. If A ∈ GPin(n) and B ∈ Cln then ‖AB‖ = ‖A‖‖B‖.

Proof. ABAB = B AAB = B‖A‖2B = ‖A‖2BB. Therefore Sc(ABAB) = ‖A‖2Sc(BB) =
‖A‖2‖B‖2, where Sc(C) is the scalar part of C for any C ∈ Cln. The result follows. �

In [1] it is shown that if y = M(x) is a Möbius transformation then M(x) = (ax+b)(cx+d)−1

where a, b, c and d ∈ Cln and satisfy the conditions

(i) a, b, c, d ∈ GPin(n).

(ii) ac̃, c̃d, d̃b, b̃a ∈ Rn

(iii) ad̃− cc̃ ∈ R\{0}.

In particular if we regard Rn as embedded in Rn+1 in the usual way, then y = (en+1x +
1)(x+ en+1)−1 is the Cayley transformation from Rn to the unit sphere Sn in Rn+1. This map
corresponds to the stereographic projection of Rn onto Sn\{en+1}.

The Dirac operator in Rn is
∑n

j=1 ej
∂

∂xj
. Note that D2 = −4n, where 4n is the Laplacian

in Rn, and D4 is the bi-Laplacian 42
n.

3 Eigenvectors of the Dirac–Beltrami operator on Sn

We start with the Dirac operator Dn+1 =
∑n+1

j=1 ej
∂

∂xj
in Rn+1. For each point in x ∈ Rn+1\{0}

this operator can be rewritten as x−1xDn+1. Now xDn+1 = x∧Dn+1−x·Dn+1. Now x∧Dn+1 =∑
1≤j<k≤n+1 eiej(xj

∂
∂xk

− xk
∂

∂xj
) and x · Dn+1 is the Euler operator

∑n+1
j=1 xj

∂
∂xj

= r ∂
∂r where

r = ‖x‖. It is well known and easily verified fact that if pm(x) is a polynomial homogeneous
of degree m ∈ N then x · Dpm(x) = mpm(x). So in particular if Dn+1pm(x) = 0 then x ∧
Dn+1pm(x) = −mpm(x). So pm(x) is an eigenvector of the operator x ∧Dn+1.

Further it is also easily verified that if qm(x) is homogeneous of degree m ∈ −N then
x ·Dn+1qm(x) = mqm(x). So if Dn+1q = 0 then x ∧ Dn+1q = mq and q is an eigenvector
of x ∧Dn+1.
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Now let us suppose that pm : Rn+1 → Cln+1 is a harmonic polynomial homogeneous of
degree m ∈ N. In [12] it is shown that pm(x) = pm,1(x) + xpm−1,2(x) where Dn+1pm,1(x) =
Dn+1pm−1,2(x) = 0, with pm,1(x) homogeneous of degree m and pm−1,2(x) homogeneous of
degree m− 1.

Definition 1. Suppose U is a domain in Rn+1 and f : U → Cln+1 is a C1 function satisfying
Dn+1f = 0 then f is called a left monogenic function.

A similar definition can be given for right monogenic functions. See [4] for details.
In [14] it is shown that if U is a domain in Rn+1\{0} and f : U → Cln+1 is left monogenic

then the function G(x)f(x−1) is left monogenic on the domain U−1 = {x ∈ Rn+1 : x−1 ∈ U}
where G(x) = x

‖x‖n+1 . Note that on Sn ∩ U−1 for any function g defined on U the functions
G(x)g(x−1) and xg(x−1) coincide.

Let H m denote the restriction to Sn of the space of Cln valued harmonic polynomials ho-
mogeneous of degree m ∈ N ∪ {0}. This is the space of spherical harmonics homogeneous of
degree m. Further let Pm denote the restriction to Sn of left monogenic polynomials homo-
geneous of degree m ∈ N ∪ {0}, and let Qm denote the restriction to Sn of the space of left
monogenic functions homogeneous of degree −n −m where m = 0, 1, 2, . . .. Then we have il-
lustrated that Hm = Pm ⊕Qm. This result was established in the quaternionic case in [15] and
independently for all n in [14].

As L2(Sn) =
∑∞

m=0 Hm then it follows that L2(Sn) =
∑∞

m=0 Pm ⊕ Qm where L2(Sn) is the
space of Cln+1 valued square integrable functions on Sn. Further we have shown that if pm ∈ Pm

then pm is an eigenvector of the Dirac–Beltrami operator Γw, where Γw is the restriction to Sn of
x ∧Dn+1. Here w ∈ Sn. Further pm has eigenvalue m. Also if qm ∈ Qm is an eigenvector of Γw

with eigenvalue −n−m. Consequently the spectrum, σ(Γw) of the Dirac–Beltrami operator Γw

is {0} ∪ N ∪ {−n,−n − 1, . . .}. As 0 ∈ σ(Γw) the linear operator Γw : L2(Sn) → L2(Sn) is not
invertible.

Further within our calculations we have also shown that if h : Sn → Cln+1 is a C1 function
then Γwwh(w) = −nwh(w)− wΓwh(w). By completeness this extends to all of L2(Sn).

4 Dirac type operators in Rn and Sn and conformal structure

The Dirac type operators that we shall consider here in Rn are integer powers of D. Namely Dm

form ∈ N. In [3] it is shown that if y = M(x) = (ax+b)(cx+d)−1 is a Möbius transformation and
f : U → Cln is a Ck function then DkJk(M,x)f(M(x)) = J−k(M,x)Dkf(y), where Jm(M,x) =

c̃x+d
‖cx+d‖n+m for m an odd integer and Jm(M,x) = 1

‖cx+d‖n+m for m an even integer. This describes
intertwining operators for powers of the Dirac operator in Rn under actions of the conformal
group.

In [13] the Cayley transformation C(x) = (en+1x + 1)(x + en+1)−1 is used to transform the
euclidean Dirac operator, D, to a Dirac operator, DS , over Sn. This Dirac operator is also
described in [2, 5] and elsewhere. In [7] a simple geometric argument is used to show that
DS = w(Γw + n

2 ). Using the spectrum of Γw it can be seen that on L2(Sn) the operator DS

has spectrum σ(DS) = σ(Γw) + n
2 which is always non-zero. In fact σ(DS) = {n

2 + m : m =
0, 1, 2, . . .} ∪ {−n

2 −m : m = 0, 1, 2, 3, . . .}. Consequently DS has an inverse D−1
S on L2(Sn) and

following [6] the spherical Dirac operator has as fundamental solution C1(w, y) := D−1
S ? δy for

each y ∈ Sn. Here δy is the Dirac delta function. In [13] it is shown that C1(w, y) = 1
ωn

y−w
‖y−w‖n

where ωn is the surface area of the unit sphere in Rn. See also [11].
In fact one can for each α ∈ C introduce the Dirac operator Dα := w(Γ+α). Provided −α is

not in σ(Γw) then Dα is invertible and has fundamental solution D−1
α ? δy. See [16] for further
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details. A main advantage that the Dirac operator DS has over Dα for α not equal to n
2 is

that DS is conformally invariant. We shall use this fact to obtain our sharp inequalities in Rn.
By applying DS to C2(w, y) := 1

(n−2)ωn

1
‖w−y‖n−2 it may be determined [11] that DSC2(w, y) =

C1(w, y)− wC2(w, y). Consequently DS(DS − w)C2(w, y) = δy.
It is well known that in Rn+1 the Laplacian in spherical co-ordinates is

∂2

∂r2
+
n

r

∂

∂r
+

1
r2
4w,

where 4w is the Laplace–Beltrami operator on Sn. It follows from arguments presented in [15]
that 4w = ((1− n)− Γw)Γw. Using this fact we can now simplify the expression DS(DS − w)
as follows:

DS(DS − w) = D2
S −DSw.

But

DSw = w
(
Γw +

n

2

)
w = w2

(
−Γw − n+

n

2

)
= −wDS .

So

D2
S −DSw = D2

S + wDS = DSw
(
Γw +

n

2

)
+ wDS = −wDS

(
Γw +

n

2

)
+ wDS

=
(
Γw +

n

2

)(
Γw +

n

2

)
−
(
Γw +

n

2

)
= Γ2

w + nΓw − Γw +
n2

4
− n

2

= −4w +
n2 − 2n

4
= −4w +

n

2

(
n− 2

2

)
.

This operator is the conformal Laplacian 4S on Sn described in [2, 5] and elsewhere.
One may also introduce generalized spherical Laplacians of the type 4α,β = (Γw +α)(Γw +β)

where α and β ∈ C. Provided −α and −β do not belong to σ(Γw) then the Laplacian is invertible
with fundamental solution 4−1

α,β ? δy. In [11] it is shown that 4α,−α−n+1 is a scalar valued
operator. This operator is invertible provided α does not belong to σ(Γw). Further, explicit
formulas for this operator are presented in [11].

Again a main advantage of the conformal Laplacian, 4S over the other choices of Laplacians
presented here is its conformal covariance. We shall see the advantage of this in the next section.

In [11] we introduce the operators

D
(k)
S := DS(DS − w) · · ·

(
DS −

(k − 1)
2

w

)
for k odd, k > 0, and

D
(k)
S := DS(DS − w)(DS − w) · · ·

(
DS −

k

2
w

)
for k even and k > 0.

When k = 1 we obtain DS , when k = 2 we obtain 4S and when k = 4 the operator
D

(4)
S = 4S(DS − w)(DS − 2w). Moreover

(DS − w)(DS − 2w) = D2
S − wDS − 2DSw − 2 = D2

S + wDS − 2 = −4S − 2.

Consequently D(4)
S = −4S(4S + 2). When n = 4 this operator becomes −4S(4S + 2) is the

Paenitz operator on S4 described in [2] and elsewhere. As 2 ∈ σ(DS) when n = 4 it may be
seen that 0 is in the spectrum of DS − 2w. Consequently when n = 4 zero is in the spectrum of
the Paenitz operator and so this operator is not invertible on L2(S4). It is easy to see that it is
invertible in all other dimensions.
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5 Some Sharp L2 inequalities on Sn and Rn

Theorem 1. Suppose that φ : Sn → Cln+1 is a C1 function. Then

‖DSφ‖L2 ≥
n

2
‖φ‖L2 .

Proof. As φ ∈ C1(Sn) then φ ∈ L2(Sn). It follows that

φ =
∞∑

m=0

∑
pm∈Pm

pm +
−∞∑
m=0

∑
qm∈Qm

qm,

where pm and qm are eigenvectors of Γw. Further the eigenvectors pm can be chosen so that
within Pm they are mutually orthogonal. The same can be done for the eigenvectors qm. More-
over as φ ∈ C1 then DSφ ∈ C0(Sn) and so DSφ ∈ L2(Sn). Consequently

DSφ = w

 ∞∑
m=0

(
m+

n

2

) ∑
pm∈Pm

pm +
∞∑

m=0

(
−n

2
−m

) ∑
qm∈Qm

qm

 .

But wpm(w) ∈ Qm and wqm(w) ∈ Pm. Consequently

DSφ =
∞∑

m=0

(
m+

n

2

) ∑
qm∈Qm

qm +
∞∑

m=0

(
−n

2
−m

) ∑
pm∈Pm

pm.

It follows that

‖DSφ‖L2 =
∞∑

m=0

(
m+

n

2

)2 ∑
qm∈Qm

‖qm‖2
L2 +

∞∑
m=0

(
−n

2
−m

)2 ∑
pm∈Pm

‖pm‖2
L2

≥
(n

2

)2

 ∞∑
m=0

∑
pm∈Pm

‖pm‖2
L2 +

−∞∑
m=0

∑
qm∈Qm

‖qm‖2
L2


as ±n

2 are the smallest eigenvalues of Γw + n
2 . That is ±n

2 are the eigenvalues closest to zero.
Therefore

‖DSφ‖2
L2 ≥

(n
2

)2
‖φ‖2

L2 .

The result follows. �

It should be noted from the proof of Theorem 1 that this inequality is sharp.
In the proof of Theorem 1 it is noted that the operator DS takes Pm to Qm and it takes Qm

to Pm. This is also true of the operator DS + αw for any α ∈ C. As 4S = DS(DS + w) it now
follows that the spectrum, σ(4S), of the conformal Laplacian, 4S , is {−(n

2 +m)(n
2 +m + 1),

−(n
2 +m)(n

2 +m− 1) : m ∈ N ∪ {0}}. So the smallest eigenvalue is n(2−n)
4 . We therefore have

the following sharp inequality:

Theorem 2. Suppose φ : Sn → Cln+1 is a C2 function. Then

‖4Sφ‖L2 ≥
n(n− 2)

4
‖φ‖L2 .

We now proceed to generalize Theorems 1 and 2 for all operators D(k)
S . We begin with:
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Lemma 2. (i) For k even the smallest eigenvalue of Dk
S is

n(2− n) · · · (n+ k − 2)(k − n)
2k

and
(ii) for k odd

n(n+ 2)(2− n) · · · (n+ k − 1)(k − 1− n)
2k

.

Proof. Let us first assume that k even. As DS +αw : Pm → Qm and DS +αw : Qm → Pm for
any α ∈ R then

(n+ 2m)(2− n− 2m) · · · (n+ k − 2 + 2m)(k − n− 2m)
2k

and
(2m− n)(n+ 2 + 2m) · · · (k − 2− n− 2m)(n+ k + 2m)

2k

are eigenvalues of D(k)
S for m = 0, 1, 2, . . .. But for any positive even integer l the term (n+ l−

2 + 2m)(l−n− 2m) is closer to zero than (l− 2−n− 2m)(n+ l+ 2m). The result follows for k
even. The case k is odd is proved similarly. �

It should be noted that when n is even and k ≥ n then 0 is an eigenvalue ofD(k)
S . Consequently

in these cases D(k)
S is not an invertible operator on L2(Sn).

From Lemma 2 we have:

Theorem 3. Suppose φ : Sn → Cln+1 is a Ck function. Then for k even

‖D(k)
S φ‖L2 ≥

|n(2− n) · · · (n+ k − 2)(k − n)|
2k

‖φ‖L2

and for k odd

‖D(k)
S φ‖L2 ≥

|n(n+ 2)(2− n) · · · (n+ k − 1)(k − 1− n)|
2k

‖φ‖L2 .

Again these inequalities are sharp.
When n is odd then of course n

2 is not an integer. It follows that in odd dimensions zero is
not an eigenvalue for the operator D(k)

S . In the cases n even and k ≥ n the smallest eigenvalue is
zero so for those cases the inequality in Theorem 3 is trivial. This includes the Paenitz operator
on S4. It follows that none of these operators have fundamental solutions. The fundamental
solutions for D(k)

S for all k when n is odd and for 1 ≤ k < n when n is even are given in [11].
We shall denote them by Ck(w, y).

As n(n+2)(2−n)···(n+k−1)(nk−1−n)
2k is the smallest eigenvalue for D(k)

S for k odd then

−2k

n(n+ 2)(2− n) · · · (n+ k − 1)(k − 1 + n)

is the largest eigenvalue of D(k)−1
S for n odd or for 1 ≤ k ≤ n− 1 when n is even.

Similarly for k even and n odd and k even with 1 < k < n− 1 for n even

2k

n(2− n) · · · (n+ k − 2)(k − n)

is the largest eigenvalue of D(k)−1
S .

Similarly to Theorem 3 we now have the following sharp inequality:
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Theorem 4. Suppose φ : Sn → Cln+1 is a continuous function. Then for n odd and k even
and for n even and k even with 1 < k < n

‖Ck(w, y) ? φ(w)‖L2 ≤
2k

|n(2− n) · · · (n+ k − 2)(k − n)|
‖φ‖L2

and for n odd and k odd and n even and k odd with 1 ≤ k ≤ n− 1

‖Ck(w, y) ? φ(w)‖L2 ≤
2k

|n(n+ 2)(2− n)) · · · (n+ k − 1)(k − 1− n)|
‖φ‖L2 .

Let us now turn to Rn and retranslate Theorems 3 and 4 in this context. In [11] the Cayley
transformation C(x) = (en+1 + 1)(x+ en+1)−1 is used to show that

D
(k)
S = J−k(C, x)−1DkJk(C, x), (1)

where Jk(C, x) = 2
n−k

2 (x+en+1)

(‖1+‖x‖2)
n−k+1

2

when k is odd and Jk(C, x) = 2
n−k

2

(1+‖x‖2)
n−k

2

when k is even.

Note that Jk(C, x) ∈ GPin(n + 1). By applying Lemma 1 we now see that on Rn the Cayley
transformation can be applied to Theorem 3 to give:

Theorem 5. Suppose φ : Rn → Cln+1 is a Ck function with compact support. Then for each
k ∈ N for n odd and for k = 1, . . . , n− 1 for n even(∫

Rn

‖Dkφ(x)‖2(1 + ‖x‖2)kdxn

) 1
2

≥ |n(n+ 2) · · · (n+ k − 1)(k − 1− n)|
(∫

Rn

‖φ‖22k

(1 + ‖x‖2)k
dxn

) 1
2

for k odd, and(∫
Rn

‖4
k
2
nφ(x)‖2(1 + ‖x‖2)kdxn

) 1
2

≥ |n(2− n) · · · (n+ k − 2)(k − n)|
(∫

Rn

‖φ(x)‖22k
(1 + ‖x‖2)k

dxn

) 1
2

for k even.

Proof. For any Möbius transformation M(x) = (ax + b)(cx + d)−1 the associated Jacobian
over a domain in Rn is 2n

‖cx+d‖2n . Consequently for ψ : Sn → Cln+1 a Ck function the integral∫
Sn ‖D(k)

S ψ(w)‖2dσ(w) by equation (1) becomes∫
Rn

‖J−k(C, x)−1DkJk(C, x)ψ(C(x))‖2 2ndxn

(1 + ‖x‖2)n
.

By Lemma 1 this expression becomes

1
2k

∫
Rn

(1 + ‖x‖2)k‖DkJk(C, x)ψ(C(x))‖2dxn.

Further∫
Sn

‖ψ‖2dσ(x) =
∫

Rn

‖ψ(C(x))‖2 2ndxn

(1 + ‖x‖2)n

=
∫

Rn

‖Jk(C, x)−1Jk(C, x)ψ(C(x))‖ 2ndxn

(1 + ‖x‖2)n
.
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By Lemma 1 this last expression becomes

2k

∫
Rn

‖Jk(C, x)ψ(x)‖2(1 + ‖x‖2)−kdxn.

On placing Jk(C, x)ψ(C(x)) = φ(x) Theorem 3 now gives the result. �

In [11] it is shown that the kernel Ck(w, y) is conformally equivalent to the kernel Gk(x− y)
in Rn, where Gk(x− y) = Ck

ωn

x−y
‖x−y‖n+1−k when k is odd and Gk(x− y) = Ck

ωn

1
‖x−y‖n−k when k is

even. Here Ck is a real constant chosen so that DGk = Gk−1 for k > 1 and with C1 = 1.
As J−k(C, x)−1D

(k)
S Jk(C, x) = Dk then D−k = Jk(C, x)−1D

(k)−1
S J−k(C, x). Consequently:

Theorem 6. Suppose h : Rn → Cln+1 is a continuous function with compact support. Then for
n odd and k odd and for n even and any odd integer k satisfying 1 ≤ k < n(∫

Rn

∥∥∥∥∫
Rn

Gk(x− y)h(x)dxn)
∥∥∥∥2 1

(1 + ‖y‖2)k
dyn

) 1
2

≤ 1
|n(n+ 2) · · · (n+ k − 1)(k − 1− n)|

(∫
Rn

‖h(x)‖2(1 + ‖x‖2)kdxn

) 1
2

and for n odd and k even and for n even and k an even integer satisfying 1 < k < n(∫
Rn

∥∥∥∥∫
Rn

Gk(x− y)h(x)dxn

∥∥∥∥2 1
(1 + ‖y‖2)k

dyn

) 1
2

≤ 1
|n(n+ 2)(2− n) · · · (n+ k − 2)(k − n)|

(∫
Rn

‖h(x)‖2(1 + ‖x‖2)kdxn

) 1
2

.

6 Dirac type operators in Rn

In this section we demonstrate a somewhat alternative approach to obtained Theorems 5 and 6.
We have previously seen that DSpm = (m + n

2 )pm for pm ∈ Pm, that DSqm = (−n
2 −m)qm

for qm ∈ Qm and J−1
−1 (C, x)DJ1(C, x) = DS . Consequently

DJ1(C, x)pm(C(x)) =
2

1 + ‖x‖2

(
m+

n

2

)
J1(C, x)pm(C(x))

and

DJ1(C, x)qm(C(x)) =
2

1 + ‖x‖2

(
−n

2
−m

)
J1(C, x)qm(C(x)).

Further:

Proposition 1. ψ(w) ∈ L2(Sn) if and only if 1

(1+‖x‖2)
1
2
J1(C, x)ψ(C(x)) ∈ L2(Rn). Further if

ψ′(x) = 1

(1+‖x‖2)
1
2
J1(C, x)ψ(C(x)) and φ′(x) = 1

(1+‖x‖2)
1
2
J1(C, x)φ(C(x)) for ψ and φ ∈ L2(Sn)

then ∫
Sn

φ(w)ψ(w)dσ(w) =
∫

Rn

φ
′(x)ψ′(x)dxn.

This leads us to:
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Theorem 7. Suppose h : Rn → Cln+1 is a smooth function with compact support. Then(∫
Rn

‖Dh(x)‖2(1 + ‖x‖2)dxn

) 1
2

≥ n

(∫
Rn

‖h(x)‖2

1 + ‖x‖2
dxn

) 1
2

.

In [11] it is shown that J−2(C, x)−14SJ2(C, x) = 4n. Proposition 1 can easily be adapted
replacing J1(C, x) by J2(C, x) and 2

1+‖x‖2 by 4
(1+‖x‖2)2

. From Theorem 2 we now have:

Theorem 8. Suppose that h is as in Theorem 7. Then(∫
Rn

‖4nh(x)‖2(1 + ‖x‖2)2dxn

) 1
2

≥ n(n− 2)
(∫

Rn

‖h(x)‖2

(1 + ‖x‖2)2
dxn

) 1
2

.

Using Lemma 2 we also have

Theorem 9. Suppose h is as in Theorem 7. Then for n odd and k even and for n even and k
an even integer belonging to {1, . . . , n− 1}(∫

Rn

‖4
k
2
nh(x)‖2(1 + ‖x‖2)kdxn

) 1
2

≥ |n(2− n) · · · (n+ k − 2)(k − n)|
(∫

Rn

‖h(x)‖2

(1 + ‖x‖2)k
dxn

) 1
2

and for n odd and k odd and for n even and k belonging to {1, . . . , n− 1}(∫
Rn

‖Dkh(x)‖2(1 + ‖x‖2)k)dxn

) 1
2

≥ |n(n+ 2)(2− n) · · · (n+ k − 1)(k − 1− n)|
(∫

Rn

‖h(x)‖2

(1 + ‖x‖2)k
dxn

) 1
2

.

Theorem 10. Suppose h : Rn → Cln+1 is a continuous function with compact support. Then
for k odd and n odd and for n even and k odd and satisfying 1 ≤ k ≤ n− 1(∫

Rn

‖Gk ? h(x)‖2

(1 + ‖x‖2)k
dxn

) 1
2

≤ 1
|n(n+ 2)(2− n) · · · (n+ k − 1)(k − 1− n)|

(∫
Rn

‖h(x)‖2(1 + ‖x‖2)kdxn

) 1
2

and for n odd and k even and for n even and k even and satisfying 1 < k < n(∫
Rn

‖Gk ? h(x)‖2

(1 + ‖x‖2)k
dxn

) 1
2

≤ 1
|n(n+ 2)(2− n) · · · (n+ k − 2)(k − n)|

(∫
Rn

‖h(x)‖2(1 + ‖x‖2)kdxn

) 1
2

.

7 Concluding remarks

Let us consider the Paenitz operator on S5. Via the Cayley transform this operator stereograph-
ically projects to the bi-Laplacian, 42

5 on R5. If we restrict attention to the equator, S4, of S5 we
see that the restriction of the Paenitz operator in this context stereographically projects to the
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restriction of 42
5 to R4. This operator is the bi-Laplacian 42

4 in R4, while the restriction of the
Paenitz operator on S5 to its equator, S4, is the Paenitz operator on S4. The Paenitz operator
on S4 has a zero eigenvalue. Consequently there is no real hope of obtaining inequalities of the
type we have obtained here in Rn for the bi-Laplacian in R4. This should explain the breakdown
of the Rellich inequality, described in [8], for the bi-Laplacian in R4. The same rationale also
explains similar breakdowns of inequalities for Dk in Rn for n even and k ≥ n.

It should be clear that similar sharp L2 inequalities can be obtained for the operator DS +αw
provided−α is not in the spectrum of wDS . These operators conformally transform toD+ α

1+‖x‖2
in Rn. When −α is in the spectrum of wDS then we obtain a finite dimensional subspace of the
weighted L2 space L2(Rn, (1+ ‖x‖2)−2), with weight (1+ ‖x‖2)−2, consisting of solutions to the
Dirac equation Du+ α

1+‖x‖2u = 0.
All inequalities obtained here are L2 inequalities. It would be nice to see similar inequalities

for other suitable Lp spaces.
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