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1 Introduction

Configuration spaces endowed with some algebraic structures are of interest in various areas of
mathematical physics. As a rule, Hamiltonian systems defined on their cotangent bundles have
certain mathematically and physically interesting features, especially when their Hamiltonians
are somehow suited to the mentioned algebraic structures, e.g., are invariant under their auto-
morphism groups or subgroups. The best known example is the theory of Hamiltonian systems
on the cotangent bundles of Lie groups or their group spaces (or even more general homogeneous
spaces) where by the group space we mean the homogeneous space with trivial isotropy groups,
i.e., groups which “forgot” about having the distinguished neutral element. The special atten-
tion in applications is paid to Hamiltonians invariant under left or right translations or under
both of them. The examples are the rigid bodies, incompressible ideal fluids [1], affinely-rigid
bodies (see for example [13, 14] and references therein), etc.

Usually in physics one deals with linear groups, i.e., groups faithfully realizable by finite
matrices. The only relatively known exceptions are GL(n,R) and SL(n,R), i.e., the covering
groups of GL(n,R) and SL(n,R) respectively. However, in spite of various attempts of F. Hehl,
Y. Ne’eman and others (see for example [6, 7]), their physical applicability is as yet rather doubt-
ful and questionable. So, one of the best known examples of Hamiltonian systems on algebraic
structures are (usually invariant) ones on the cotangent bundles of matrix groups or more gene-
rally some matrix manifolds. From the purely algebraic point of view, such configuration spaces
consist of second-order (and non-degenerate) tensors in some linear spaces. Geometrically they
represent linear transformations. Some questions appear here in a natural way. Namely, it is
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a rule that all second-order tensors, i.e., not only mixed ones, are of particular importance in
physics. Twice covariant or contravariant tensors represent various scalar products, e.g., metric
tensors, electromagnetic fields, gauge fields, etc. In a purely analytical sense all second-order
tensors are matrices. Obviously, due to the difference in the transformation rules, all they
are geometrically completely different objects. Nevertheless the natural question arises as to
the existence of geometrically and physically interesting Hamiltonian systems on the cotangent
bundles of manifolds of second-order tensors of other type than linear transformations. We mean
here first of all the manifolds of scalar products, both real-symmetric and complex-sesquilinear-
hermitian. Also the twice covariant and contravariant tensors without any special symmetries
may be interesting.

One of our motivations has to do with certain ideas concerning nonlinear quantum mecha-
nics. Various ways towards nonlinearity in quantum case were presented, e.g., in the review
papers [15, 16], from those motivated by paradoxes of the quantum measurement, the interplay
of unitary evolution and reduction, etc., to certain ideas based on geometry like, for instance,
the Doebner–Goldin nonlinearity [2, 3, 5]. However in this article we are motivated by another
idea. Namely, it is well known that the unitary evolution of a quantum system, described by
the Schrödinger equation, may be interpreted as a Hamiltonian system on Hilbert space. The
most convenient way to visualize this is to start from finite-dimensional, i.e., “n-level”, quantum
systems (n <∞). The scalar product is then fixed once for all and is an absolute element of
the system. The true “degrees of freedom” are represented only by the vector of the underlying
Hilbert space “wave functions”. And here some natural analogy appears with the situation in
Special Relativity vs. General Relativity:

• In specially-relativistic theories the metric tensor is fixed once for all as an absolute object,
whereas all physical fields are “flexible” and satisfy differential equations as a rule derivable
from the variational principle. The fixed metric tensor is then used as a “glue” to contract
tensor indices in order to build the scalar density of weight one dependent algebraically
on fields and their first-order derivatives.

• In generally-relativistic theories the metric tensor becomes flexible as well, it is included to
degrees of freedom and satisfies differential equations together with the other “physical”
fields. Moreover it becomes itself the physical field, in this case the gravitational one.

One can wonder whether one should not follow a similar pattern in quantum mechanics.
Just to make the scalar product “flexible” and dynamically coupled to the ψ-object, i.e., to the
“wave function”. But, as mentioned, the scalar product is a twice covariant tensor. And so
we return to the idea of Hamiltonian systems on manifolds of scalar products or more general
twice covariant or twice contravariant tensors. And the point is that such manifolds carry
some natural Riemannian, pseudo-Riemannian or hermitian metric structures (almost canonical)
which are essentially non-Euclidean, i.e., describe some curved geometries on manifolds of scalar
products. Because of this the coefficients at their derivatives in Lagrangians (as quadratic
forms of those velocities) are irreducibly non-constant. The resulting Euler–Lagrange equations
for them, and therefore also for the systems “wave function + flexible scalar products”, are
essentially nonlinear. This is the non-perturbative nonlinearity, i.e., it cannot be interpreted
as an artificial extra correction to some basic linear background. So, physically this is one
of natural candidates for the effective and geometrically interpretable nonlinearity in quantum
mechanics, perhaps somehow explaining the conflict between unitary evolution and reduction,
which exists essentially due to the linearity of the standard quantum mechanics.

Beside the above-mentioned physical motivations, one should also stress that such Hamil-
tonian models are interesting in themselves from the purely geometric point of view. They
are somehow similar to the (pseudo-)Riemannian metric structures on semisimple Lie groups, in
particular to the Killing tensor. Nevertheless their algebraic and geometric structure is different.
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As to our knowledge, such Riemannian geometries have not been yet studied in mathematics.
One has the feeling that being so canonical as Killing metrics on groups they may have some
interesting geometric properties and are worth to be investigated.

2 General problem

Let us take a set of n elements and some function ψ defined on it, i.e.,

N = {1, . . . , n} ∈ N, ψ : N → C.

Then we can define the “wave function” of the n-level quantum system as a following n-vector

ψ =

 ψ1

...
ψn

 , ψa = ψ(a) ∈ C.

Let H be a unitary space with the scalar product

G : H ×H → C,

which is a sesquilinear hermitian form. Then such an H will be our n-dimensional “Hilbert”
space (Cn).

So, let us consider the general Lagrangian

L = α1iGāb
(
ψāψ̇b − ψ̇āψb

)
+ α2Gābψ̇

āψ̇b +
[
α4Gāb + α5Hāb

]
ψāψb

+ α3

[
Gbā + α9ψ

āψb
]
Ġāb + Ω[ψ,G]dc̄bāĠābĠc̄d − V (ψ,G) , (1)

where

Ω[ψ,G]dc̄bā = α6

[
Gdā + α9ψ

āψd
][
Gbc̄ + α9ψ

c̄ψb
]

+ α7

[
Gbā + α9ψ

āψb
][
Gdc̄ + α9ψ

c̄ψd
]

+ α8ψ
āψbψc̄ψd, Ω[ψ,G]dc̄bā = Ω[ψ,G]bādc̄,

and the potential V can be taken, for instance, in the following quartic form

V (ψ,G) = κ
(
Gābψ

āψb
)2
.

The first and second terms in (1) (those with α1 and α2) describe the free evolution of wave
function ψ while G is fixed. The Lagrangian for trivial part of the linear dynamics (those
with α4) can be also taken in the more general form f

(
Gābψ

āψb
)
, where f : R → R. The term

with α5 corresponds to the Schrödinger dynamics while G is fixed and then

Ha
b = Gac̄Hc̄b

is the usual Hamilton operator. If we properly choose the constants α1 and α5, then we obtain
precisely the Schrödinger equation. The dynamics of the scalar product G is described by the
terms linear and quadratic in the time derivative of G. In the above formulae ψā = ψa denotes
the usual complex conjugation and αi, i = 1, 9, and κ are some constants.

Then applying the variational procedure we obtain the equations of motion as follows

δL

δψā
= α2Gābψ̈

b +
(
α2Ġāb − 2α1iGāb

)
ψ̇b − 2α8Ġābψ

bĠc̄dψ
c̄ψd

− 2α9

(
α6ĠādĠc̄b + α7ĠābĠc̄d

)
ψb
(
Gdc̄ + α9ψ

c̄ψd
)

+
[(

2κGc̄dψc̄ψd − α4

)
Gāb − α5Hāb −

[
α3α9 + α1i

]
Ġāb
]
ψb = 0



4 V. Kovalchuk and J.J. S lawianowski

and

δL

δGāb
= 2Ω[ψ,G]bādc̄G̈c̄d + 2Ω̇[ψ,G]bādc̄Ġc̄d +

(
2κGc̄dψc̄ψd − α4

)
ψāψb

+ 2Gdā
[
α6G

bē
(
Gfc̄ + α9ψ

c̄ψf
)

+ α7G
bc̄
(
Gfē + α9ψ

ēψf
)]
Ġc̄dĠēf

− α2ψ̇
āψ̇b +

[
α3α9 + α1i

]
ψ̇āψb +

[
α3α9 − α1i

]
ψāψ̇b = 0, (2)

where

Ω̇[ψ,G]bādc̄ = α8

(
ψ̇āψbψc̄ψd + ψāψ̇bψc̄ψd + ψāψbψ̇c̄ψd + ψāψbψc̄ψ̇d

)
+ α6α9

([
ψ̇āψd + ψāψ̇d

][
Gbc̄ + α9ψ

c̄ψb
]

+
[
ψ̇c̄ψb + ψc̄ψ̇b

][
Gdā + α9ψ

āψd
])

+ α7α9

([
ψ̇āψb + ψāψ̇b

][
Gdc̄ + α9ψ

c̄ψd
]

+
[
ψ̇c̄ψd + ψc̄ψ̇d

][
Gbā + α9ψ

āψb
])

− α6

[
GdēGfā

(
Gbc̄ + α9ψ

c̄ψb
)

+GbēGfc̄
(
Gdā + α9ψ

āψd
)]
Ġēf

− α7

[
GbēGfā

(
Gdc̄ + α9ψ

c̄ψd
)

+GdēGfc̄
(
Gbā + α9ψ

āψb
)]
Ġēf .

3 Towards the canonical formalism

The Legendre transformations leads us to the following canonical variables

πb =
∂L

∂ψ̇b
= α2Gābψ̇

ā + α1iGābψ
ā, πā =

∂L

∂ψ̇ā
= α2Gābψ̇

b − α1iGābψ
b, (3)

πāb =
∂L

∂Ġāb
= α3

[
Gbā + α9ψ

āψb
]

+ 2Ω[ψ,G]bādc̄Ġc̄d. (4)

The energy of our n-level Hamiltonian system is as follows

E = ψ̇ā
∂L

∂ψ̇ā
+ ψ̇b

∂L

∂ψ̇b
+ Ġāb

∂L

∂Ġāb
− L

= α2Gābψ̇
āψ̇b − (α4Gāb + α5Hāb)ψāψb + Ω[ψ,G]ābc̄dĠābĠc̄d + κ

(
Gābψ

āψb
)2
.

Inverting the expressions (3), (4) we obtain that

ψ̇ā =
1
α2
Gbāπb −

α1

α2
iψā, ψ̇b =

1
α2
Gbāπā +

α1

α2
iψb,

Ġāb =
1
2

Ω[ψ,G]−1
ābc̄d

(
πc̄d − α3

[
Gdc̄ + α9ψ

c̄ψd
])
,

where

Ω[ψ,G]−1
ābc̄d = Λ[ψ,G]−1

ābc̄d −
α8

1 + α8θ2[ψ,G]
Λ[ψ,G]−1

ābēfψ
ēψfΛ[ψ,G]−1

c̄dḡhψ
ḡψh,

Λ[ψ,G]−1
ābc̄d =

1
α6
λ[ψ,G]−1

ād λ[ψ,G]−1
c̄b −

α7

α6 (α6 + nα7)
λ[ψ,G]−1

āb λ[ψ,G]−1
c̄d ,

λ[ψ,G]−1
āb = Gāb −

α9

1 + α9θ1[ψ,G]
GādGc̄bψ

c̄ψd,

θ2[ψ,G] = Λ[ψ,G]−1
ābc̄dψ

āψbψc̄ψd =
α6 + (n− 1)α7

α6 (α6 + nα7)

(
θ1[ψ,G]

1 + α9θ1[ψ,G]

)2

,

θ1[ψ,G] = Gābψ
āψb,
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and then the Hamiltonian has the following form

H =
1
α2
Gbāπāπb +

α1

α2
i
(
ψbπψb − ψāπā

)
−
[(
α4 −

α2
1

α2

)
Gāb + α5Hāb

]
ψāψb

+
1
4

Ω[ψ,G]−1
ābc̄dπ

ābπc̄d − α3

2
Ω[ψ,G]−1

ābc̄d

[
Gbā + α9ψ

āψb
]
πc̄d

+
α2

3

4
Ω[ψ,G]−1

ābc̄d

[
Gbā + α9ψ

āψb
][
Gdc̄ + α9ψ

c̄ψd
]

+ κ
(
Gābψ

āψb
)2
.

4 Special cases

4.1 Pure dynamics for G

First of all, if we consider the pure dynamics of scalar product G while the wave function ψ is
fixed, then from (2) we obtain the following equations of motion

Ω[ψ,G]bādc̄G̈c̄d =
(α4

2
− κθ1[ψ,G]

)
ψāψb + α7θ3[ψ,G]

(
Gbā + α9ψ

āψb
)

+ α6Ġc̄dĠēf
(
γ[ψ,G]bēf c̄dā + γ[ψ,G]fādēbc̄ − γ[ψ,G]bēdāf c̄

)
, (5)

where

θ3[ψ,G] = GdēGfc̄Ġc̄dĠēf , γ[ψ,G]fēdc̄bā = GfēGdc̄
(
Gbā + α9ψ

āψb
)
.

If we additionally suppose that α4 = α8 = α9 = κ = 0, then (5) simplifies significantly(
α6G

bc̄Gdā + α7G
bāGdc̄

)(
G̈c̄d − Ġc̄fG

fēĠēd
)

= 0.

Hence, the pure dynamics of the scalar product is described by the following equations

G̈āb − ĠādG
dc̄Ġc̄b = 0. (6)

Let us now demand that ĠG−1 is equal to some constant value E, i.e., Ġ = EG, then

G̈ = EĠ = E2G

and

ĠG−1Ġ = EGG−1EG = E2G,

therefore our equations of motion (6) are fulfilled automatically and the solution is as follows

G(t)āb = (exp(Et))c̄ āG0c̄b.

Similarly if we demand that G−1Ġ is equal to some other constant E′, i.e., Ġ = GE′,

G̈ = ĠE′2 = GE′2,

ĠG−1Ġ = GE′G−1GE′ = GE′2,

then the equations of motion are also fulfilled and the solution is as follows

G(t)āb = G0ād

(
exp(E′t)

)d
b.

The connection between these two different constants E and E′ is written below

Ġ(0) = Ġ0 = G0E
′ = EG0.
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4.2 Usual and first-order modified Schrödinger equations

The second interesting special case is obtained when we suppose that the scalar product G is
fixed, i.e., the equations of motion are as follows

α2ψ̈
a − 2α1iψ̇

a + (2κθ1 [ψ,G]− α4)ψa − α5H
a
bψ

b = 0. (7)

Then if we also take all constants of model to be equal to 0 except of the following ones

α1 =
~
2
, α5 = −1,

we end up with the well-known usual Schrödinger equation

i~ψ̇a = Ha
bψ

b.

Its first-order modified version is obtained when we suppose that G is a dynamical variable
and α2 is equal to 0, i.e.,

i~ψ̇a = Ha
bψ

b −
[
i~
2

+ α3α9

]
Gac̄Ġc̄bψ

b + (2κθ1 [ψ,G]− α4)ψa

− 2α8G
ac̄Ġc̄bψ

bĠēdψ
ēψd − 2α9G

ac̄
(
α6Ġc̄dĠēb + α7Ġc̄bĠēd

)
ψb
(
Gdē + α9ψ

ēψd
)
, (8)

2Ω[ψ,G]bādc̄G̈c̄d =
[
i~
2
− α3α9

]
ψāψ̇b −

[
i~
2

+ α3α9

]
ψ̇āψb

− 2Gdā
[
α6G

bē
(
Gfc̄ + α9ψ

c̄ψf
)

+ α7G
bc̄
(
Gfē + α9ψ

ēψf
)]
Ġc̄dĠēf

− (2κθ1 [ψ,G]− α4)ψāψb − 2Ω̇[ψ,G]bādc̄Ġc̄d.

We can rewrite (8) in the following form

i~ψ̇a = Heff
a
bψ

b,

where the effective Hamilton operator is given as follows:

Heff
a
b = Ha

b −
[
i~
2

+ α3α9

]
Gac̄Ġc̄b + (2κθ1 [ψ,G]− α4) δab − 2α8G

ac̄Ġc̄bĠēdψ
ēψd

− 2α9G
ac̄
(
α6Ġc̄dĠēb + α7Ġc̄bĠēd

)(
Gdē + α9ψ

ēψd
)
.

4.3 Second-order modified Schrödinger equation

The idea of introducing the second time derivative of the wave function into the usual Schrödinger
equation as a correction term is not completely new and has been already discussed in the
literature. The similar problems were studied a long time ago by A. Barut and more recently
have been re-investigated by V.V. Dvoeglazov, S. Kruglov, J.P. Vigier and others (see, e.g., [4, 10]
and references therein; the authors of this article are grateful to one of the referee for pointing
them to above-mentioned references). Among others there is also an interesting article where
the authors used the analogy between the Schrödinger and Fourier equations [11].

The quantum Fourier equation which describes the heat (mass) diffusion on the atomic level
has the following form

∂T

∂t
=

~
m
∇2T.
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If we make the substitutions t → it/2 and T → ψ, then we end up with the free Schrödinger
equation

i~
∂ψ

∂t
= − ~2

2m
∇2ψ.

The complete Schrödinger equation with the potential term V after the reverse substitutions
t→ −2it and ψ → T gives us the parabolic quantum Fokker–Planck equation, which describes
the quantum heat transport for 4t > τ , where τ = ~/mα2c2 ∼ 10−17 sec and cτ ∼ 1 nm, i.e.,

∂T

∂t
=

~
m
∇2T − 2V

~
T.

For ultrashort time processes when 4t < τ one obtains the generalized quantum hyperbolic
heat transport equation

τ
∂2T

∂t2
+
∂T

∂t
=

~
m
∇2T − 2V

~
T

(its structure and solutions for ultrashort thermal processes were investigated in [9]) which leads
us to the second-order modified Schrödinger equation

2τ~
∂2ψ

∂t2
+ i~

∂ψ

∂t
= − ~2

2m
∇2ψ + V ψ (9)

in which the additional term describes the interaction of electrons with surrounding space-time
filled with virtual positron-electron pairs. It is easy to see that (9) is analogous to (7) if we
suppose that

α1 =
~
2
, α2 = −2τ~, α4 = 0, α5 = −1, κ = 0.

5 Conservation laws and GL(n, C)-invariance

So, if we investigate the invariance of our general Lagrangian (1) under the group GL(n,C) and
consider some one-parameter group of transformations

{exp (Aτ) : τ ∈ R} , A ∈ L(n,C),

then the infinitesimal transformations rules for ψ and G are as follows

ψa 7→ Labψ
b, Gac̄ 7→ LabL

c̄
ēG

bē, Gāb 7→ Gc̄dL−1c̄
āL

−1d
b,

where

Lab = δab + εAab, L−1a
b ≈ δab − εAab, ε ≈ 0.

So leaving only the first-order terms with respect to ε we obtain that the variations of ψ and G
are as follows

δψa = εAabψ
b, δψā = εAāc̄ψ

c̄,

δGac̄ = ε
(
AabG

bc̄ +Ac̄ēG
aē
)
, δGāb = −ε

(
Gc̄bA

c̄
ā +GādA

d
b

)
,

then

1
ε

(
∂L

∂ψ̇ā
δψā +

∂L

∂ψ̇b
δψb

)
= Gāb

(
α2ψ̇

ā + α1iψ
ā
)
Abdψ

d +Gāb
(
α2ψ̇

b − α1iψ
b
)
Aāc̄ψ

c̄ (10)
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and

1
ε

∂L

∂Ġāb
δGāb = −

[
α3

(
δbf + α9Gāfψ

āψb
)

+ 2Ω[ψ,G]bādc̄Gāf Ġc̄d
]
Af b

−
[
α3

(
δāē + α9Gēbψ

āψb
)

+ 2Ω[ψ,G]bādc̄GēbĠc̄d
]
Aēā. (11)

If we consider some fixed scalar product G0 and take the G0-hermitian A’s, then

Aab = G0
ac̄Ãc̄b, A

ā
c̄ = Ãc̄bG

bā
0 , Ã† = Ã,

and therefore the expressions (10) and (11) are written together in the matrix form as follows

J (A) = Tr
(
V Ã
)
,

where the hermitian tensor V describing the system of conserved physical quantities is given as
follows

V = α2

(
ψψ̇†GG−1

0 +G−1
0 Gψ̇ψ†

)
+
(
α1i− α3α9

)
ψψ†GG−1

0

−
(
α1i+ α3α9

)
G−1

0 Gψψ† − 2α3G
−1
0 − 2

(
G−1

0 Gω[ψ,G] + ω[ψ,G]GG−1
0

)
,

where

ω [ψ,G]bā = Ω [ψ,G]bādc̄ Ġc̄d.

Similarly for the G0-antihermitian A’s, i.e., when Ã† = −Ã, we obtain another hermitian ten-
sor W as a conserved value

J (A) = Tr
(
iWÃ

)
,

where

iW = α2

(
ψψ̇†GG−1

0 −G−1
0 Gψ̇ψ†

)
+ (α1i− α3α9)ψψ†GG−1

0

+ (α1i+ α3α9)G−1
0 Gψψ† + 2

(
G−1

0 Gω[ψ,G]− ω[ψ,G]GG−1
0

)
.

6 Final remarks

This is a very preliminary, simplified finite-level model. It is still not clear whether it is consistent
with the usual statistical interpretation of quantum mechanics. This model is thought on as
a step towards discussing the wave equations obtained by combining the first and second time
derivatives. There are some indications that such a combination might be reasonable. Within
a rather different context (motivated by the idea of conformal invariance) we studied such
a problem in [8, 12] where the wave equations with the superposition of Dirac and d’Alembert
operators were considered.
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