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Abstract. We wish to show that the root lattice of Bäcklund transformations of the q-
analogue of the third and fourth Painlevé equations, which is of type (A2 +A1)(1), may be
expressed as a quotient of the lattice of connection preserving deformations. Furthermore,
we will show various directions in the lattice of connection preserving deformations present
equivalent evolution equations under suitable transformations. These transformations cor-
respond to the Dynkin diagram automorphisms.
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1 Introduction and outline

Discrete Painlevé equations are non-autonomous second order difference equations admitting
the Painlevé equations as continuum limits [25]. These equations arise as contiguity relations
for the Painlevé equations [10], from discrete systems arising in quantum gravity [9], reductions
of discretizations of classically integrable soliton equations [8] and various recurrence relations
for orthogonal polynomials [6]. There are many ways in which they may be considered integrable
such as the singularity confinement property [7], solvability via associated linear problems [24]
and algebraic entropy [2].

A fundamental result of Okamoto is that the group of Bäcklund transformations of the
Painlevé equations are of affine Weyl type [19, 20, 18, 21]. The work of the Kobe group has
remarkably shown the discrete Painlevé equations admit similar representations of affine Weyl
groups [17]. This understanding was enhanced by the pioneering result of Sakai [26], who
extended the work of Okamoto on the associated surface of initial conditions to the discrete
Painlevé equations [26]. A valuable insight of this work is that the Bäcklund transformations
and the discrete Painlevé equations should be considered to be elements of the same group.

It has been well established that the Painlevé equations admit Lax representations. The
underlying theory behind these Lax representations is the theory of isomonodromy [12, 10, 11].
The first evidence that the q-difference Painlevé equations admitted Lax representations can
be found in the work of Papageorgiou et al. [24] where it was shown that a q-discrete version of
the third Painlevé equation arises as the compatibility condition of two systems of q-difference
equations, written as two n× n matrix equations of the form

Y (qx) = A(x)Y (x), (1a)

Ỹ (x) = R(x)Y (x), (1b)

where A(x) is some n × n rational matrix in x and q ∈ C is a fixed constant such that |q| 6= 1
and the evolution denoted by tildes coincides with the evolution of the discrete Painlevé equa-
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tion. If (1a) and (1b) form a Lax representation of a Painlevé equation, then the compatibility
condition determines the evolution of that discrete Painlevé equation [24].

The q-difference analogue of the concept of an isomonodromic deformation was proposed
later on by Jimbo and Sakai [13]. The system admits two symbolic solutions,

Y0(x) = Ŷ0(x)D0(x),

Y∞(x) = Ŷ∞(x)D∞(x),

where Ŷ0 and Ŷ∞ are series expansions around 0 and ∞ respectively and D0 and D∞ are
composed of q-exponential functions [27]. Since Y0 and Y∞ are both fundamental solutions, they
should be expressible in terms of each other, which gives rise to the connection matrix, C(x),
specified by

Y0(x) = Y∞(x)C(x). (2)

For regular systems of linear q-difference equations, such as the linear problem in [13], the
solutions converge under more or less general conditions specified in [3]. However, in the irregular
case Y0(x) and Y∞(x) do not necessarily define holomorphic functions, hence, we take this
definition is taken to be symbolic here. For irregular systems of q-difference equations we have
that there exists at least one convergent solution, however, in general, to describe the solutions
one would be required to incorporate a q-analogue of the Stokes phenomena [28].

In this study, we take a connection preserving deformation to be characterized by a transfor-
mation of the form (1b). In fact, the original Lax representation proposed in [24] also defines
a connection preserving deformation in the sense of Jimbo and Sakai [13].

In previous studies, we considered a lattice of connection preserving deformations, which
is a lattice of shifts of the characteristic data which defines the connection matrix [23, 22].
However, we struggled to incorporate how the various Dynkin diagram automorphisms [17]
manifested themselves in the theory of the connection preserving deformations. We find that
many connection preserving deformations are copies of the same evolution equations. This
induces a natural automorphism on the level of the evolution equations. These automorphisms
correspond to Dynkin diagram automorphisms.

We demonstrate the role of the Dynkin diagram automorphisms in a study of the associated
linear problem for q-PIII and q-PVI, which possesses a group of Bäcklund transformations of

type W ((A2 + A1)
(1)), which is the case of P (A

(1)
5 ) in Sakai’s notation. This is an interesting

case as the symmetries have been nicely studied before [15] and that the two equations possess
the same surface of initial conditions [26] and the same associated linear problem where the
two systems are different directions on the lattice of connection preserving deformations [23].
This lattice of connection preserving deformations admits a natural group of automorphisms of
order six, corresponding naturally to the sub-group of Bäcklund transformations generated by
the Dynkin diagram automorphisms. This advances our understanding of the relation between
the associated linear problems for q-difference equations and their symmetries.

2 Birkhoff theory for irregular difference equations

Before specifying the form of the solutions, let us fix some notation required to specify the
solutions. We specify some of the building blocks used in the Galois theory approach to the
study of systems of linear q-difference equations [27, 29]. Let us consider the q-Pochhammer
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symbol, given by

(a; q)k =



k−1∏
n=0

(1− aqn) if 0 < k <∞,

1 if k = 0,
∞∏
n=0

(1− aqn) if k =∞,

where we will also use the notation

(a1, . . . , an; q)k =
n∏
i=1

(ai; q)k.

We specify the Jacobi theta function as

θq(x) =
∑
n∈Z

q(
n
2)xn,

which satisfies

xθq(qx) = θq(x).

It is also useful to define the q-character as

eq,c(x) =
θq(x)θq(c)

θq(xc)
,

which consequently satisfies the pair of equations

eq,c(qx) = ceq,c(x), eq,qc(x) = xeq,c(x).

Using the above building blocks, it is an elementary task to construct solutions to any first order
linear q-difference equation, hence, we may transform any system of q-difference equations of the
form (1a), where A(x) is rational, to a system of q-difference equations where A(x) is polynomial.
Hence, without loss of generality, we may let

A(x) = A0 +A1x+ · · ·+Amx
m.

We isolate the set of points in which A(x) is singular, i.e., where detA(x) = 0, by fixing the
determinant as

detA(x) = κxL(x− a1) · · · (x− ar).

We will call a problem of the form (1a) regular if A0 and Am are diagonalizable and invertible and
irregular if it is not regular. The formal expansion for regular problems may be computed under
certain non-resonance conditions specified by the work of Birkhoff [3]. However, to pass to the
irregular theory, we must refer to the work of Adams [1], which was subsequently rediscovered
by Birkhoff and Guenther [4].

Theorem 2.1. The linear problem (1a) admits two fundamental series solutions, Y0(x) and
Y∞(x), specified by the expansions

Y0(x) =
(
Y0 + Y1x+ Y2x

2 + · · ·
)

diag

(
eq,λi(x)

θ(x)li

)
, (3a)

Y∞(x) =

(
Y ′0 +

Y−1
x

+
Y−2
x2

+ · · ·
)

diag

(
eq,κi(x)

θ(x)ki

)
, (3b)

where κi, λi, li and ki must satisfy the condition that if li = lj (ki = kj) then λi 6= λjq
p

(κi 6= κjq
p) for any integer p 6= 0.
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In general, we are required to choose Y0 and Y ′0 to diagonalize A0 and Am respectively. More
details on the process of finding these solutions may be found in the work of Adams [1]. In this
irregular setting the solutions found do not necessarily define holomorphic functions [5]. Once
these solutions are defined, we may specify the connection matrix via (2). However, we are
required to take (2) to be a symbolic definition at this point.

To characterize the set of deformations considered, we introduce the characteristic data [23,
22]. The characteristic data consists of the variables defining the asymptotic behavior of the
solutions at x = 0 and x = ∞, defined by (3a) and (3b), and the roots and poles of A(x). We
denote this data by

M =

{
κ1, . . . , κn a1, . . . , ar
λ1, . . . , λn

}
.

However, while this study extends previous works [23, 22], a task remains to fully describe the
set of solutions by incorporating a q-analogue of the Stokes phenomenon [28]. That is, in order
to fully mirror the theory of monodromy, we are also required to include data that encodes the
Stokes phenomenon for systems of linear q-difference equations [28].

We now take a deformation of (1a) to be defined by (1b), where it is easy to see that Ỹ (x)
must satisfy

Ỹ (qx) =
[
R(qx)A(x)R(x)−1

]
Ỹ (x) = Ã(x)Ỹ (x), (4)

which defines Ã(x). We take this new linear problem to be associated with a new connection
matrix, C̃(x), and a new set of characteristic data, denoted M̃ . If the fundamental solutions
satisfy the conditions

Ỹ0(x) = R(x)Y0(x), (5a)

Ỹ∞(x) = R(x)Y∞(x), (5b)

then it is clear from (2) that (5a) and (5b) implies that C̃(x) = C(x). In the regular case,
a specific case of the converse implication was presented in the work Jimbo and Sakai’s work [13],
however, for the case of irregular systems of q-difference equations, where the fundamental
solutions are not necessarily holomorphic functions, the analogous converse implication is not
so clear.

If we do take R(x) to be rational, as reported in a previous work [23], we can say that M̃
has an altered set of characteristic constants. On the level of the series solutions of Adams [1],
Birkhoff and Guenther [4], a transformation of the form (1b) may

• change the asymptotic behavior of the fundamental solutions at x = ∞ by letting κi →
qnκi;

• change the asymptotic behavior of the fundamental solutions at x = 0 by letting λi → qnλi;

• change the position of a root of the determinant by letting ai → qnai.

We cannot deform these variables arbitrarily, as there is one constraint we must satisfy; if we
consider the determinant of the left and right hand side of (1a) for the solution Y = Y0 at x = 0,
it is easily shown that∏

κi
∏

(−ai) =
∏

λi. (6)

This must also hold true for M̃ . This is a constraint on how we may deform the characteristic
data.
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Conversely, let us suppose that λi and κi are changed by a multiplication by some power of q,
then D̃0D

−1
0 and D̃∞D

−1
∞ are both rational functions, meaning that the expansions

R(x) = Ỹ0(x)Y0(x)−1, R(x) = Ỹ∞(x)Y∞(x)−1, (7)

present two different expansions around x = 0 and x = ∞ respectively. Furthermore, taking
a determinant of (4) as it defines Ã(x) specifies that R(x) satisfies the equation

detR(qx)

detR(x)
=

det Ã(x)

detA(x)
.

An alternative characterization of (4) is given by the way in which we have two ways to calcu-
late Ỹ (qx):

Ỹ (qx) = Ã(x)R(x)Y (x), Ỹ (qx) = R(qx)A(x)Y (x),

leading to the compatibility condition

Ã(x)R(x) = R(qx)A(x).

This type of condition appears throughout the integrable literature [24, 13]. Given a deformation
of the characteristic constants, M̃ , the above constitutes enough information to determine R(x)
and also determine the transformation R(x) induces [23].

At this point, we wish to outline the idea of the symmetries of the associated linear problem
as one finds a host of deformations of the characteristic constants, which we call the lattice of
connection preserving deformations, presented in a previous work [23]. This is an idea distinct
from the work of Jimbo and Sakai [13] in that there is no one canonical deformation, but rather
a family of them. If one considers the set of all possible moves, one may endow this with a lattice
structure of dimension r + 2n − 1. In addition to the above translations one expects a certain
number of symmetries to be natural in this setting. One of the most natural groups that should
be allowed to act on the set of characteristic data should be the group of permutations on the r
roots [23].

We wish to examine an additional structure that may be obtained from the lattice. We
consider two systems to be equivalent if there exists a transformation that maps the evolution
of one system to the other and vice versa. A classical example would be P34 and PII, which are
related via a Miura transformation. We will find that the transformations induced by many of
the directions in the lattice of connection preserving deformations are equivalent, splitting the
group into classes of equivalent systems, related to each other by a transformation. Conceptually,
one may think of these transformations that permute the directions of the lattice as rotations
on the lattice, and that the fact that the lattice admits these rotations as being a property of
the lattice.

3 The associated linear problem

We will begin by specifying the properties of the linear system:

• The matrix A(x) is chosen so that

detA(x) = κ1κ2x(x− a1)(x− a2).

• The solution at x = 0 is given by

Y0(x) =
(
Y0 + Y1x+ Y2x

2 + · · ·
)(eq,λ1(x) 0

0 eq,λ2(x)/θq(x)

)
. (8)
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• The solution at x =∞ is given by

Y∞(x) =

(
I +

Y−1
x

+
Y−2
x2

+ · · ·
)(

eq,κ1(x)/θq(x)2 0
0 eq,κ2(x)/θq(x)

)
. (9)

The determinant and the various other asymptotics specify that

A(x) = A0 +A1x+A2x
2.

This would ordinarily leave us to define twelve variables, however, the normalization of the
solution at x = ∞, the determinantal constraint and the solutions at 0, in addition to the
relation

κ1κ2a1a2 = λ1λ2

leave three variables to be chosen. If one choose the variables arbitrarily, the evolution equations
are not guaranteed to be nice. So the question remains, how does one choose these variables
so that the resulting evolution equations appear in some sort of canonical manner? It is here
that the continuous case lends incredible insight: if one refers to the work of Jimbo, Miwa and
Ueno [12, 10, 11], it is apparent that the relevant variables, almost invariably are chosen so that
one variable is the zero of the upper right entry of the matrix, one variable encapsulates the gauge
freedom and one more variable is associated with the evaluation of the diagonal elements at the
root of the upper right entry. That is to say that if we define a notation for the individual entries
of A(x) as A(x) = (ai,j(x)), then a1,2(y) = 0. Furthermore, the gauge freedom is encapsulated
by letting

a1,2(x) ∝ w(x− y).

There remains one more variable to choose, and this is done so that

A(y) =

(
z1 0
∗ z2

)
,

where there is a determinantal constraint linking z1 to z2. In the continuous case, it is typical
that this constraint is that A(x) is traceless at x = y, giving z1 = −z2. In our case, we will
require that det(A(y)) = z1z2, which specifies one degree of freedom, chosen to be represented
by a variable, z. Remarkably, this choice seems to be canonical in that the resulting evolution
equations, after one performs the appropriate connection preserving deformations, appear to be
in a symplectic form.

This completely specifies a matrix parameterization of the form

A(x) =

(
κ1((x− y)(x− α) + z1 κ2w(x− y)

κ1
w

(γx+ δ) κ2(x− y + z2)

)
,

where α, γ and δ are functions of y and z specified by the constraints. As it is quite easily
derivable from the above constraints, and variants have appeared before [16, 23, 22], we simply
list the parameters as

α =
−z1κ1 + (y − z2)κ2 + λ1

yκ1
, γ = −2y − α+ a1 + a2 + z2,

δ =
(yα+ z1) (y − z2)

y
, z1 =

y (y − a1)
z

, z2 = z (y − a2) .
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Now that we have a parameterization for A(x), to find the relevant connection preserving de-
formations using (7), we require knowledge of the fundamental solutions. To do this, we simply
substitute (8) and (9) into (1a) and solve for Yi. It is sufficient to compute the first few terms
for computation of the connection preserving deformations specified later on. We will start with

the expansion around x = ∞. Let us first specify notation as Yk =
(
y
(k)
i,j

)
, then if we consider

0 = Y∞(qx)−A(x)Y∞, at order x−3 we have

0 =


xκ1
(
q(y + α)− (q − 1)y

(−1)
1,1

)
q

x
(
− wκ2 − κ1y(−1)1,2

)
xκ1
(
wy

(−1)
2,1 − qγ

)
qw

wκ2
(
qy − qz2 − (q − 1)y

(−1)
2,2

)
− qγκ1y(−1)1,2

qw


specifying Y−1 completely. We could go on to calculate Y−2 and Y−3, however, in the interest of
keeping this account elegant, we shall stop. However, it suffices to say that the series solution
may be found to any order.

To specify the solution around x = 0, we first need to define Y0. Of course, there is a non-
uniqueness in how we define Y0, as given any matrix that diagonalizes A0, multiplication on
the right by any invertible diagonal matrix results in another matrix that diagonalizes A0. We
choose a relatively simple matrix to simplify some of our calculations, namely we choose Y0 to
be

Y0 =

(
wy wyκ2

−zy + y + za2 (−zy + y + za2)κ2 + λ1

)
.

Although it is quite simple to compute Y1, Y2 and so on, the computations become increasingly
verbose, hence, we will only list the above terms.

4 The symmetries of the associated linear problem
and the Bäcklund transformations

Now that everything has been defined, we may study the lattice of connection preserving de-
formations. We have six variables in total that we may deform and one constraint, specified
by (6). This gives us a five basis elements to find. To reduce some of the workload, let us
consider the most basic of transformation: notice that if we multiply the fundamental solutions
by R(x) = xI, where I is simply the identity matrix, we may absorb this into the factors,
D0 and D∞, by letting the κi → κ̃i = qκi and λi → λ̃i = qλi. Since this does not change the
relative gauge freedom, this does not change the definition of y, hence, ỹ = y, z̃ = z and w̃ = w̃.
We find it convenient to introduce the notation

Tκ1,κ2,λ1,λ2 :

{
κ1 κ2 a1
λ1 λ2 a2

: w, y, z

}
→
{
qκ1 qκ2 a1
qλ1 qλ2 a2

: w̃, ỹ, z̃

}
,

where w̃ = w, ỹ = y and z̃ = z in accordance with the transformation. We need to choose four
separate generators.

To reduce workload once more, it is clear, in accordance with the parameterization, there is
a symmetry we may exploit. As mentioned above, we expect to be able to permute the roots in
a natural manner, if we appropriately define ỹ, z̃ and w̃. We note that Ã(x) = A(x) if we let

Sa1,a2 :

{
κ1 κ2 a1
λ1 λ2 a2

: w, y, z

}
→
{
κ1 κ2 a2
λ1 λ2 a1

: w, y, z
y − a2
y − a1

}
.
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We choose the following additional elements to represent the five dimensional lattice:

Ta1,λ1 :

{
κ1 κ2 a1
λ1 λ2 a2

: w, y, z

}
→
{

κ1 κ2 qa1
qλ1 λ2 a2

: w̃, ỹ, z̃

}
,

Ta2,λ1 :

{
κ1 κ2 a1
λ1 λ2 a2

: w, y, z

}
→
{

κ1 κ2 a1
qλ1 λ2 qa2

: w̃, ỹ, z̃

}
,

Tκ1,λ1 :

{
κ1 κ2 a1
λ1 λ2 a2

: w, y, z

}
→
{
qκ1 κ2 a1
qλ1 λ2 a2

: w̃, ỹ, z̃

}
,

Tκ2,λ2 :

{
κ1 κ2 a1
λ1 λ2 a2

: w, y, z

}
→
{
qκ1 κ2 a1
λ1 qλ2 a2

: w̃, ỹ, z̃

}
,

where w̃, ỹ and z̃ is to be determined in each case. These four elements and Tκ1,κ2,λ1,λ2 form
a basis for the lattice of connection preserving deformations.

Theorem 4.1. The transformations Ta1,λ1, Tκ1,λ1 and Tκ1,λ2 are induced by transformations of
the linear problem

Ỹ (x) = Ra1,λ1(x)Y (x), Ỹ (x) = Rκ1,λ1(x)Y (x), Ỹ (x) = Rκ1,λ2(x)Y (x),

respectively, where

Ra1,λ1 =


x+ qy − qa1 +

qy (y − a1)
z (a2 − y)

x− qa1
qwy (y − a1)

z (x− qa1) (y − a2)

−q (y(z − 1)− za2) (y(z − 1) + a1 − za2)
wz (x− qa1) (y − a2)

x+ qy
(

y−a1
yz−za2 − 1

)
x− qa1

 , (10a)

Rκ1,λ1(x) =

x+
(y(z − 1)− za2)κ2

yκ1

wκ2
κ1

y(z − 1)− za2
wy

1

 , (10b)

Rκ1,λ2(x) =

x+
(y(z − 1)− za2)κ2 − λ1

yκ1

wκ2
κ1

(y(z − 1)− za2)κ2 − λ1
wyκ2

1

 . (10c)

Proof. In considering Ra1,λ1 , since κ1 and κ2 are unchanged, we know that

Ỹ∞(x)Y∞(x)−1 = I +O

(
1

x

)
,

this, coupled with the determinantal relation specify that

detRa1,λ1 =
x

x− a1
,

hence, we seek a parameterization of the form

Ra1,λ1(x) =
xI +R0

x− qa1
.

We consider the compatibility in determining Ỹ (qx) to be given by R(qx)A(x) = Ã(x)R(x).
Taking the residue at x = a1 gives us R0 completely in terms of the untransformed variables,
namely, we obtain a representation of Ra1,λ1 given by (10a).
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To compute Rκ1,λ1(x), the difference in asymptotic behavior of Y∞(x) with Ỹ∞(x) is used as
we notice

Ỹ∞(x)Y∞(x)−1 =
˜̂
Y∞(x)D̃∞(x)D∞(x)−1Ŷ −1∞ =

˜̂
Y∞(x)

(
x 0
0 1

)
Ŷ −1∞ .

The leading terms of Ŷ∞(x) and
˜̂
Y∞(x) are both I, hence, Rκ1,λ1 is given by a formal expansion

of the form

Rκ1,λ1(x) = x

(
1 0
0 0

)
+R1 +O

(
1

x

)
,

where we use the fact detRκ1,λ1(x) = x to bound the order of the expansion. Where the
previous calculation allowed a simple derivation of the entries of Ra1,λ1(x) via the computation
of the residue, there is an added difficulty in computing Rκ1,λ1 . We are required to look at va-
rious combinations of the entries of the compatibility relation, Ã(x)Rκ1,λ1(x) = Rκ1,λ1(qx)A(x).
However, it is not a very difficult calculation. The result is given by (10b). The derivation
of Rκ1,λ2 follows the same pattern as the previous case. �

While we have mainly used the compatibility relation to define the entries of the R matrices,
it is also possible to expand the Ỹ∞(x)(Y∞(x))−1 to higher orders to find R. However, however
one may determine the entries, it becomes abundantly clear that we have many more relations
than we need to define the entries of R in each case. The remaining relations may be used to
express ỹ, z̃ and w̃ in terms of y, z and w.

Theorem 4.2. The effect of the transformations, Ta1,λ1, Tκ1,λ1 and Tκ1,λ2, are specified by the
relations

Ta1,λ1 : w̃ = w (1− z̃) , ỹy =
z̃ (z̃a2κ2 + qλ1)

q (z̃ − 1)κ1
, z̃z =

qy (y − a1)κ1
(y − a2)κ2

,

Tκ1,λ1 : w̃ =
w (z̃ − 1) (qyκ1 − zκ2)

zκ1
, ỹy =

z (z̃a2κ2 + qλ1)

q (z̃ − 1)κ1
, z̃ =

qya1κ1 + qzλ1
qy2κ1 − yzκ2

,

Tκ1,λ1 : w̃ = −w (z̃ − 1) , yỹ =
z̃ (z̃a2κ2 + qλ1)

q (z̃ − 1)κ1
,

z̃z = −qκ1 (za1a2κ2 + (a1 − y)λ1)

κ2 (a2 (κ2 − qyκ1) + λ1)
.

Note that inverses of all these transformations are easily computed in the form presented.
We now state that the lattice of connection preserving deformations as

L = 〈Tκ1,κ2,λ1,λ2 , Ta1,λ1 , Ta2,λ1 , Tκ1,λ1 , Tκ1,λ2〉 ∼= Z5,

the elements above commute and form a basis for this lattice.

5 The multiple correspondences to q-PIII and q-PIV

There are two problems we wish to address in this section that are not covered by previous
studies [23]. Firstly, the dimension of the lattice of connection preserving deformations is five,
whereas the root lattice of type (A2 + A1)

(1) is three. We also wish to look at how the various
correspondences between the two lattices gives rise to the Dynkin diagram automorphisms.

One expects that the set of translational Bäcklund transformations embed naturally in this
lattice of connection preserving deformations. We introduce a similar notation on the variables
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for the affine Weyl group of type (A2 +A1)
(1), as found in the work of Kajiwara et al. [14]. We

define one reflection, s1, and one rotation, σ0, which generates a group of type A
(1)
2 , given by

s0 :

{
b0 b1
b2

f0, f1, f2

}
→
{ 1

b0
b1b0

b2b0
f0, f1

(
b0 + f0
1 + b0f0

)
, f2

(
1 + b0f0
b0 + f0

)}
,

σ0 :

{
b1 b2
b0

f1, f2, f0

}
→
{
b0 b1
b2

f0, f1, f2

}
,

where the other reflections may be defined to be s1 = σ0 ◦ s0 ◦ σ20 and s2 = σ20 ◦ s0 ◦ σ0. We also
define some extra generators, σ1 and w0, to be

σ1 :

{
b0 b1
b2

f0, f1, f2

}
→
{
b0 b1
b2

1

f0
,

1

f1
,

1

f2

}
,

w0 :

{
b0 b1
b2

f0, f1, f2

}
→
{
b0 b1
b2

b0b1(b2b0 + b2f0 + f2f0)

f2(b0b1 + b0f1 + f0f1)
,

b1b2(b0b1 + b0f1 + f0f1)

f0(b1b2 + b1f2 + f1f2)
,
b1b2(b0b1 + b0f1 + f0f1)

f0(b1b2 + b1f2 + f1f2)

}
,

where we define one more operator, w1 = σ1 ◦ w0 ◦ σ1. It is a general result of [14] that the
generators of G = 〈s0, s1, s2, w0, w1, σ0, σ1〉 satisfy all the relations of the extended affine Weyl
group of type (A2 +A1)

(1).
Following [14], there are four translational components, T0, . . . , T3, where T0 ◦ T1 ◦ T2 = I,

which generates a three dimensional lattice. These are

T0 = σ0 ◦ s2 ◦ s1, T1 = σ0 ◦ T1 ◦ σ20, T2 = σ20 ◦ T1 ◦ σ0, T3 = σ1 ◦ w0.

We note that if we define1 qc2 = f0f1f2 and b0b1b2 =
√
q, then the subgroup, 〈s0, s1, s2, σ0〉

preserves c, while T3 maps c→ √qc.
The task remains to make a correspondence between the root lattice and the lattice of connec-

tion preserving deformations. However, given the theory established by previous authors [14],
T0, T1 and T2 present isomorphic evolutions, hence, we should be able to determine six corre-
spondences between the connection preserving deformations and the lattices. We seek to recover
these isomorphisms from the connection preserving deformation standpoint.

Let us list explicitly give the representation of T0:

T0 :

{
b0 b1
b2

f0, f1, f2

}
→

{ √
qb0

b1√
q

b2
f̃0, f̃1, f̃2

}
,

where

f̃0f0 =
qc2 (b1 + f1)

f1 (b1f1 + 1)
, f̃1f1 =

qc2
(
b0f̃0 +

√
q
)

f̃0
(
b0 +

√
qf0
) ,

and f̃2 is defined by f̃0f̃1f̃2 = qc2. With regards to T0, we can immediately make a correspon-
dence with T−1a1,λ1

as they are of similar forms. By letting

y = − a1
b0f0

, z = −f1
b1
, b20 =

a1
a2
, b21 = −a2κ2

λ1
, c2 =

a1a2κ1√
qλ1

, (11)

1This definition is trivially different to that of [14], this is to make a full correspondence between the connection
preserving deformation above and the translational components of the group of Bäcklund transformations.
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we obtain a correspondence between the evolution in y and z and f0 and f1. The correspondence
sought between Tκ1,λ1 and T0 may be specified by

y = −a1b0b1f0f1
c2q3/2

, z = −f0
b0
, b20 = −a2κ2

λ1
, b21 = − qλ1

a1κ2
, c2 =

a1a2κ1√
qλ1

, (12)

while the correspondence between T−1a2,λ1
and T0 is specified by

y = −a2b1
f1

, z =
qa1κ1

b0b1f0f1κ2
, b20 = − qλ1

a1κ2
, b21 =

a1
a2
, c2 =

a1a2κ1√
qλ1

. (13)

Lastly, there are secondary correspondences between the given lattices. Although (11) gives one
way of mapping the evolution of T−1a1,λ1

to T0, we also have that

y = −a2b0f0, z = − 1

b1f1
, b20 =

a1
a2
, b21 = −a2κ2

λ1
, c2 =

λ1
q
√
qa1a2κ1

(14)

gives another correspondence that inverts the value of c. We have similar correspondences that
invert c for T−1a2,λ1

and Tκ1,λ1 . The correspondences between the evolutions is summarized in
Table 1.

Table 1. We list the way in which the lattice of connection preserving deformations may align with the

root lattice. The first three fix c while the last three invert c.

T0 T1 T2 T3

T−1a1,λ1
Tκ1,λ1 T−1a2,λ1

Tκ1,λ2

Tκ1,λ1 T−1a2,λ1
T−1a1,λ1

Tκ1,λ2

T−1a2,λ1
T−1a1,λ1

Tκ1,λ1 Tκ1,λ2

T−1a1,λ1
Tκ1,λ1 T−1a2,λ1

T−1κ1,λ2

Tκ1,λ1 T−1a2,λ1
T−1a1,λ1

T−1κ1,λ2

T−1a2,λ1
T−1a1,λ1

Tκ1,λ1 T−1κ1,λ2

If we consider the element that changes correspondences between (11) and (12):

b̃20 =
a1
a2

=
q

b20b
2
1

= b22, b̃21 = −a2κ2
λ1

= b20, c̃2 = c2,

similarly

f̃0 =
a1

b̃0y
=

qc2

f0f1
= f2, f̃1 = −b̃1z = −b0z = f0,

hence, the action bi → b̃i and fi → f̃i is σ0. Similarly, if we consider the element that changes
correspondences between (11) and (14), we have that b̃i = bi and c̃ = 1/qc, or more precisely,
qc̃2 = 1/qc2. The transformations of the fi are given by

f̃0 =
a1

b̃0y
=

1

f0
, f̃1 = −b̃1z =

1

f1
.

The transformation, bi → b̃i and fi → f̃i is σ1. This adds additional structure to the lattices
found in previous studies [23, 22].

An interesting secondary consequence is that the above table also presents us with a way
in which we may reduce the dimension of the lattice. If there is to be a full correspondence
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between the connection preserving deformations and the root lattice of type (A2 + A1)
(1) then

the composition of the connection preserving deformations that represent T0 ◦ T1 ◦ T2 would be
a trivial transformation. Indeed we find that

T−1a1,λ1
◦ Tκ1,λ1 ◦ T

−1
a2,λ1

:

{
κ1 κ2 a1
λ1 λ2 a2

: w, y, z

}
→
{
κ1 κ2 a1
λ1 λ2 a2

:
κ2w

κ1
,
y

q
, z

}
,

which corresponds to the identity element in each of the cases presented in Table 1. Hence, we
may write

〈T0, T1, T2, T3〉 ∼= L /〈Tκ1,κ2,λ1,λ2 , T
−1
a1,λ1

◦ Tκ1,λ1 ◦ T
−1
a2,λ1
〉.

This quotient could be removed by appropriately fixing or removing two redundant variables,
which may allow a more explicit correspondence between the variables associated with the linear
problem and the fi’s and bi’s.

Using (11), we find that the symmetry, Sa1,a2 is equivalent to the symmetry

s1 :

{
b0 b1
b2

f0, f1, f2

}
→
{
b0b1

1
b1

b2b1
f0
b1f1 + 1

b1 + f1
, f̃1

}
,

while using (12) we find s0 and by using (13) we find s2.

6 Conclusion

We have that there is additional structure in the lattice of connection preserving deformations
as various directions on the lattice present the same evolution equations. By considering the
fact that several of the translations on the lattice of connection preserving deformations present
equivalent evolution equations, we recover an automorphism group that permutes various direc-
tions on the lattice, which corresponds to the group of Dynkin diagram automorphisms. These
automorphisms could be incorporated into all the lattices found in the previous study [23].
Using these automorphisms, and the one known symmetry, we also recover the symmetries, gi-
ving the full set of Bäcklund transformations from the standpoint of the connection preserving
deformations.
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[14] Kajiwara K., Kimura K., On a q-difference Painlevé III equation. I. Derivation, symmetry and Riccati type
solutions, J. Nonlinear Math. Phys. 10 (2003), 86–102, nlin.SI/0205019.

[15] Kajiwara K., Noumi M., Yamada Y., A study on the fourth q-Painlevé equation, J. Phys. A: Math. Gen.
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[16] Murata M., Lax forms of the q-Painlevé equations, J. Phys. A: Math. Theor. 42 (2009), 115201, 17 pages,
arXiv:0810.0058.

[17] Noumi M., Yamada Y., Affine Weyl groups, discrete dynamical systems and Painlevé equations, Comm.
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(1987), 305–332.

[22] Ormerod C., A study of the associated linear problem for q-PV, J. Phys. A: Math. Theor. 44 (2011), 025201,
26 pages, arXiv:0911.5552.

[23] Ormerod C.M., The lattice structure of connection preserving deformations for q-Painlevé equations I,
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