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Abstract. Supersymmetric quantum mechanics is a powerful tool for generating exactly
solvable potentials departing from a given initial one. If applied to the harmonic oscillator,
a family of Hamiltonians ruled by polynomial Heisenberg algebras is obtained. In this paper
it will be shown that the SUSY partner Hamiltonians of the harmonic oscillator can produce
evolution loops. The corresponding geometric phases will be as well studied.
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1 Introduction

In the last decades there has been a growing interest in studying evolution loops (EL), which
are circular dynamical processes such that the evolution operator of the system becomes the
identity at a certain time [30, 33, 37, 39, 40, 44, 45, 48, 50, 51, 53, 54]. They represent a natural
generalization to what happens for the harmonic oscillator. Their importance rests on the fact
that the EL are quite sensitive to external perturbations, so they are a good starting point to
implement the dynamical manipulation for approximating an arbitrary unitary operator [48] (see
also [29]).

On the other hand, the polynomial Heisenberg algebras (PHA) are deformations of the
Heisenberg–Weyl algebra in which the commutators of the Hamiltonian H with the annihi-
lation L− and creation L+ operators are standard but the commutator between the last two
turns out to be a polynomial in H [1, 3, 6, 9, 13, 14, 17, 18, 27, 35, 38, 46, 47, 49, 60]. In order
to characterize the spectrum of H, Sp(H), one needs to determine the eigenstates of H which
are extremal (annihilated by L−) and have physical interpretation: thus, Sp(H) is composed of
several independent ladders (either of finite or infinite lengths) departing from those extremal
states (for alternative deformations of the Heisenberg–Weyl algebra see e.g. [23, 25, 42, 57]).

In addition, nowadays it is widely accepted that supersymmetric quantum mechanics (SUSY
QM) is the simplest technique for generating new Hamiltonians Hk departing from a given
initial one H0 (for recent books and review articles see [5, 10, 12, 21, 26, 31, 34, 41, 55, 59]).
After applying the method, it turns out that Sp(Hk) differs little from Sp(H0) (the differences
rely in a finite number of levels). Moreover, the algebraic structure of Hk can be obtained
straightforwardly of the corresponding algebra of H0. In particular, the SUSY partners of the
harmonic oscillator Hamiltonian turn out to be ruled by polynomial Heisenberg algebras [35, 49]:
this is the simplest way for realizing in a non-trivial way such non-linear algebras.
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Figure 1. A system which performs an evolution loop at t = τ when perturbed, in general, will deviate

from this cyclic dynamical process.

In this paper I would like to explore in detail the possibility that the SUSY partners Hamil-
tonians of the harmonic oscillator can have EL, as it happens for the initial system. If the
answer becomes positive, it is natural to evaluate then the geometric phase, associated to an
arbitrary initial state which is cyclic [2, 4, 15, 16, 19, 30, 39, 40, 44, 45, 56, 58]. It is worth
to notice that some partial results along this way have been derived previously [30]. However,
they were found just for the Abraham–Moses family of potentials isospectral to the harmonic
oscillator [49]. Here, we are going to generalize these results for a SUSY transformation of order
k ≥ 1 so that H0 and Hk are not necessarily isospectral [35].

The paper has been organized as follows. In the next section we shall introduce briefly
the evolution loops, with a discussion about the geometric phases which naturally will arise
for systems satisfying such operator identity. In Section 3 the polynomial Heisenberg algebras
will be presented in general, while in Section 4 the same shall be done for supersymmetric
quantum mechanics. The SUSY partners of the harmonic oscillator will be derived at Section 5,
including the analysis of their connections with polynomial Heisenberg algebras, evolution loops
and associated geometric phases. Our conclusions shall be presented at Section 6.

2 Evolution loops

At operator level, the dynamics of a quantum system is determined by its evolution opera-
tor U(t), which satisfies:

dU(t)

dt
= −iH(t)U(t), U(0) = I,

where H(t) is the system Hamiltonian, I is the identity operator, U(t) is unitary. As it was
pointed out previously, we are interested in studying system having evolution loops, i.e., circular
dynamical processes such that U(t) becomes the identity (up to a phase factor) at a certain time,

U(τ) = eiϕI, (1)

with τ > 0 being the loop period, ϕ ∈ R [30, 48, 51]. The simplest system with an evolution
loop of period τ = 2π is the harmonic oscillator since

U(t) =

∞∑
n=0

e−iHt|ψn〉〈ψn| = e−it/2
∞∑
n=0

e−int|ψn〉〈ψn| ⇒

U(τ) = e−iπ
∞∑
n=0

|ψn〉〈ψn| = −I,
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Figure 2. Representation of the cyclic state |ψ(t)〉 ∈ H induced by Schrödinger equation, its closed

shadow π(t) ∈ P and the corresponding horizontal lifting |ψ̃(t)〉 ∈ H. The holonomy of this lifting is the

geometric phase factor eiβ .

where we have employed that H|ψn〉 = En|ψn〉 with En = n + 1/2, n = 0, 1, . . . (we are using
natural units such that ~ = m = ω = 1). The EL are important since they can be used as
a starting point to implement the dynamical manipulation in order to approximate any unitary
operator [48, 50, 51]. In fact, there is a prescription for implementing this kind of manipulation,
which was introduced some years ago [48]: first of all the system has to be placed in an EL,
i.e., U0(τ) ≡ I; by perturbing then the EL, the small deviations of this dynamical process such
that U(τ) 6= I will eventually approximate an arbitrary unitary operator (see an illustration in
Fig. 1).

It is worth to notice that the EL have been mainly studied for systems ruled by time-
dependent Hamiltonians, either in one or several dimensions [37, 45, 48, 50, 51, 53, 54] or
for purely spin systems [39, 40, 44]. However, there are several works where the evolution loops
are produced by time-independent Hamiltonians [30, 33]. In particular, an interesting physical
system of such a type consists of a charged particle inside an ideal Penning trap [33].

Since it is an operator relationship (compare with [28]), the requirement of equation (1) is
quite strong: it implies that for a system having an EL any |ψ〉 ∈ H, taken as an initial condition,
becomes cyclic with period τ :

|ψ(τ)〉 = U(τ)|ψ〉 = eiϕ|ψ〉. (2)

Thus, it is natural to ask if the global phase ϕ has a geometric component. As it was noticed
by Aharonov and Anandan [2], it turns out that a geometric phase β can be associated to any
cyclic evolution |ψ(t)〉 satisfying equation (2):

β = ϕ+

∫ τ

0
〈ψ(t)|H(t)|ψ(t)〉dt.

In particular, if the system is ruled by a time-independent Hamiltonian H(t) = H the previous
expression becomes simpler [30]:

β = ϕ+ τ〈ψ|H|ψ〉. (3)

Let us note that β describes a global “curvature effect” arising on the space of physical states
of the system, which is the projective space P formed by the rays or the density operators |ψ〉〈ψ|
instead of the Hilbert space H [2, 16, 30, 39, 40]. Due to this curvature, the horizontal lifting
(parallel transport) of the closed trajectory π(t) = |ψ(t)〉〈ψ(t)| ∈ P leads to a trajectory |ψ̃(t)〉
which is, in general, open onH. The holonomy of this lifting is the Aharonov–Anandan geometric
phase factor eiβ (see Fig. 2).
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Figure 3. Spectrum of the Hamiltonians ruled by polynomial Heisenberg algebras: (a) it is composed

of s infinite ladders starting from Ej , j = 1, . . . , s; (b) the j-th ladder becomes finite since equation (7)

is satisfied.

3 Polynomial Heisenberg algebras

The polynomial Heisenberg algebras are deformations of the Heisenberg–Weyl algebra of kind
[17, 35]:

[H,L±] = ±L±, (4)

[L−, L+] ≡ Qm+1(H + 1)−Qm+1(H) = Pm(H), (5)

where

Qm+1(H) = L+L− =
m+1∏
i=1

(H − Ei) (6)

is a (m+ 1)-th order polynomial in H which implies that Pm(H) is a polynomial of order m-th
in H. A simple way of realizing the algebra of equations (4)–(6) is to suppose that H has the
standard Schrödinger form,

H = −1

2

d2

dx2
+ V (x),

while L± are (m+ 1)-th order differential operators.

Note that Sp(H) depends on the number of eigenstates of H belonging to the kernel of L−

which have physical meaning. If s of them are physically acceptable and satisfy

L−ψEi = 0, HψEi = EiψEi , i = 1, . . . , s,

thus, Sp(H) turns out to be composed of s independent infinite ladders, each one of them
starting from ψEi , i = 1, . . . , s (see Fig. 3a).

On the other hand, for the j-th ladder which starts from ψEj it could happen that

(L+)l−1ψEj 6= 0, (L+)lψEj = 0, (7)

for some integer l. In this case it turns out that [35]

En = Ej + l, n ∈ {s+ 1, . . . , k},

which means that the j-th ladder starts from the eigenvalue Ej and ends at Ej + l− 1, i.e., it is
a finite ladder of length l, with l steps (see Fig. 3b).
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4 Supersymmetric quantum mechanics

Let us consider now the following chain of intertwining relationships:

HiA
+
i = A+

i Hi−1, (8)

A±i =
1√
2

[
∓ d

dx
+ αi(x, εi)

]
, i = 1, . . . , k, (9)

where

Hi = −1

2

d2

dx2
+ Vi(x), i = 0, . . . , k. (10)

By plugging the expressions (9), (10) into equation (8), it turns out that the following must be
satisfied:

α′i(x, εi) + α2
i (x, εi) = 2[Vi−1(x)− εi], (11)

Vi(x) = Vi−1(x)− α′i(x, εi). (12)

Suppose now that Vi−1(x) is known; then Vi(x) becomes determined (see equation (12)) if the
solution αi(x, εi) of the i-th Riccati equation (11) associated to εi can be found. The key point
in this treatment is to realize that there is a simple finite difference formula allowing to find
algebraically αi(x, εi) in terms of two solutions of the (i− 1)-th Riccati equation, associated to
the factorization energies εi−1, εi [36, 52]:

αi(x, εi) = −αi−1(x, εi−1)−
2(εi−1 − εi)

αi−1(x, εi−1)− αi−1(x, εi)
.

By iterating down this equation it turns out that, at the end, αi(x, εi) can be expressed in terms
of the i solutions

α′1(x, εj) + α2
1(x, εj) = 2[V0(x)− εj ], j = 1, . . . , i,

of the initial Riccati equation, or in terms of the corresponding solutions of the Schrödinger
equation,

−1

2
u′′j + V0(x)uj = εjuj , j = 1, . . . , i, (13)

where α1(x, εj) = u′j/uj .
In order to connect the previous technique and supersymmetric quantum mechanics, let us

realize now the standard SUSY algebra with two generators

[Qi,Hss] = 0, {Qi,Qj} = δijHss, i, j = 1, 2,

in the following way [8, 7, 11, 20, 22, 31, 32, 34, 43, 55]

Q =

(
0 B+

k

0 0

)
, Q+ =

(
0 0
Bk 0

)
,

Q1 =
Q+ + Q√

2
, Q2 =

Q+ − Q

i
√

2
, Hss =

(
B+
k Bk 0
0 BkB

+
k

)
,

where

B+
k Bk = (Hk − ε1) · · · (Hk − εk), BkB

+
k = (H0 − ε1) · · · (H0 − εk), (14)
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H0 and Hk being the initial and final Hamiltonians, intertwined by k-th order differential
intertwining operators, namely,

HkB
+
k = B+

k H0, H0Bk = BkHk, B+
k = A+

k · · ·A
+
1 , Bk = A−1 · · ·A

−
k . (15)

The initial and final potentials V0, Vk, are interrelated by:

Vk(x) = V0(x)−
k∑
i=1

α′i(x, εi) = V0(x)− {ln[W (u1, . . . , uk)]}′′,

where W (u1, . . . , uk) is the Wronskian of the k Schrödinger seed solutions u1, . . . , uk. Let us note
a certain resemblance of the k-th order SUSY QM presented here with the method of fractional
supersymmetry discussed elsewhere [24].

The previous technique has been employed successfully to generate new solvable poten-
tials Vk(x) departing from a given initial one V0(x) for several interesting physical systems
[10, 21, 31, 55]. Of our particular interest is the case of the harmonic oscillator [13, 17, 34, 35,
36, 38], which is worth of an explicit discussion.

5 Harmonic oscillator SUSY partners

In order to implement the SUSY technique, we need to find first the general solution of the
stationary Schrödinger equation (13) for V0(x) = x2/2 and an arbitrary ε, which turns out to
be:

u = e−
x2

2

[
1F1

(
1− 2ε

4
,
1

2
;x2
)

+ 2xν
Γ(3−2ε4 )

Γ(1−2ε4 )
1F1

(
3− 2ε

4
,
3

2
;x2
)]

, (16)

where 1F1(a, b; y) is the (Kummer) confluent hypergeometric function. Let us perform now
a non-singular k-th order SUSY transformation which creates precisely k new levels, by simplicity
placed below the ground state energy E0 = 1/2 of the oscillator [35]. If the factorization energies
are ordered as εk < εk−1 < · · · < ε1 < 1/2, then the non-singular SUSY transformations arise
for |ν1| < 1, |ν2| > 1, |ν3| < 1, . . . The spectrum of the corresponding Hamiltonian reads:

Sp(Hk) = {εk, . . . , ε1, En = n+ 1/2, n = 0, 1, . . . }. (17)

An illustration of a second-order SUSY partner potential of the oscillator for (ε1, ε2) = (−1,−6
5)

and (ν1, ν2) = (0, 2) is shown in Fig. 4.

Let us note that, for the Hamiltonian Hk, there exists a natural pair of ladder operators:

L−k = B+
k aBk, L+

k = B+
k a

+Bk, (18)

which are differential operators of order (2k + 1)-th satisfying [17, 35, 49]:

[Hk, L
±
k ] = ±L±k . (19)

By making use of the intertwining relationships (15) and the factorizations of equations (14), it
is straightforward to show that:

Q2k+1(Hk) = L+
k L
−
k =

(
Hk −

1

2

) k∏
i=1

(Hk − εi − 1) (Hk − εi) .
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Figure 4. Second-order SUSY partner (black curve) of the oscillator potential (gray curve) generated

by taking two Schrödinger solutions of the form given in equation (16) with (ε1, ε2) =
(
−1,− 6

5

)
and

(ν1, ν2) = (0, 2).

Figure 5. Diagram representing the spectrum and the action of the ladder operators L±
k for the SUSY

partner Hk of the harmonic oscillator Hamiltonian H0. They are built up from the intertwining opera-

tors Bk, B+
k and the harmonic oscillator annihilation and creation operators a, a+ (see equation (18)).

This implies that the operators {Hk, L
−
k , L

+
k } generate a polynomial Heisenberg algebra of order

(2k)-th, which is characterized by equation (19) and the deformed commutator:

[L−k , L
+
k ] = P2k(Hk).

From the analysis of the roots involved in Q2k+1(Hk), it turns out that the Sp(Hk) given in
equation (17) can be seen as containing k + 1 ladders: k of them are one-step ladders, starting
and ending at εj , j = 1, . . . , k; in addition, there is an infinite one starting from 1

2 [17, 35].
A representation of Sp(Hk) and the actions of the ladder operators L±k are given in Fig. 5.

We have already all the elements for answering the main question we would like to pose in
this paper: since the harmonic oscillator Hamiltonian has an evolution loop, it is natural to ask
if its SUSY partners show as well such a kind of closed dynamical processes. First of all let us
write down the evolution operator U(t) = e−iHkt associated to Hk:

U(t) =

k∑
j=1

e−iεjt|ψkεj 〉〈ψ
k
εj |+

∞∑
n=0

e−i(n+
1
2
)t|ψkn〉〈ψkn|.
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If the k factorization energies εj , j = 1, . . . , k are arbitrary, it turns out that a partial evolution
loop is produced for τ = 2π since:

U(2π) =
k∑
j=1

e−i2πεj |ψkεj 〉〈ψ
k
εj |+ e−iπ

∞∑
n=0

|ψkn〉〈ψkn|.

This means that any state belonging to the subspace generated by {|ψkn〉, n = 0, 1, . . . },

|ψ(0)〉 =
∞∑
n=0

cn|ψkn〉,
∞∑
n=0

|cn|2 = 1,

becomes cyclic with period τ = 2π:

|ψ(τ)〉 = e−iπ|ψ(0)〉.

A straightforward calculation leads now to the associated geometric phase (see equation (3)):

β = −π + 2π〈ψ(0)|Hk|ψ(0)〉 = 2π
∞∑
n=1

n|cn|2. (20)

In particular, if cn = δn,m it turns out that

β = 0 [mod(2π)].

It is interesting as well to evaluate the geometric phases associated to the coherent states which
are eigenstates of the annihilation operator of equation (18) [35], namely,

L−k |z〉 = z|z〉, z ∈ C.

By expressing |z〉 in terms of the eigenstates of Hk,

|z〉 =

k∑
j=1

bj |ψkεj 〉+

∞∑
n=0

cn|ψkn〉,

it turns out that

bj = 0, cn =
z√

n
k∏
i=1

(n− εi − 1
2)(n− εi + 1

2)

cn−1.

By iterating down the recurrence relationship for cn, it turns out that it becomes expressed in
terms of c0. The last coefficient is fixed from the normalization condition, leading to:

|z〉 = N(r)

∞∑
n=0

zn|ψkn〉√
n!

k∏
i=1

Γ(n+ 1
2 − εi)Γ(n+ 3

2 − εi)

,

N(r) =

√√√√√√
k∏
i=1

Γ(12 − εi)Γ(32 − εi)

0F2k(
1
2 − ε1, . . . ,

1
2 − εk,

3
2 − ε1, . . . ,

3
2 − εk; r2)

,
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Figure 6. Plot of the geometric phase β of equation (22) as a function of r (black curve). The geometric

phase associated to the standard coherent states β = 2πr2 is as well plotted (gray curve).

where r = |z|. By using equation (20), the associated geometric phase becomes now:

β =
2πr2

k∏
i=1

(12 − εi)(
3
2 − εi)

0F2k(
3
2 − ε1, . . . ,

3
2 − εk,

5
2 − ε1, . . . ,

5
2 − εk; r

2)

0F2k(
1
2 − ε1, . . . ,

1
2 − εk,

3
2 − ε1, . . . ,

3
2 − εk; r2)

. (21)

Let us note that, for k = 1 and ε1 = −1/2, the expression of equation (21) reduces (mod (2π))
to the expression of equation (27) of [30] since

βGCS − 2π = 2π

[
0F2(1, 1; r2)

0F2(1, 2; r2)
− 1

]
= πr2

0F2(2, 3; r2)

0F2(1, 2; r2)
.

On the other hand, for (ε1, ε2) = (−1,−6
5) it turns out that

β =
160πr2

1377

0F4(
5
2 ,

7
2 ,

27
10 ,

37
10 ; r2)

0F4(
3
2 ,

5
2 ,

17
10 ,

27
10 ; r2)

. (22)

A plot of this geometric phase as a function of r is shown in Fig. 6 (black curve). The geometric
phase acquired by the standard coherent states, which turns out to be β = 2πr2, is as well drawn
(gray curve).

Coming back to our general subject, if the factorization energies are such that

εj =
1

2
− lj
mj

∀ j = 1, . . . , k,

where lj , mj are coprime, then a global evolution loop of period τ = 2Mπ is obtained, namely,

U(2Mπ) = e−iMπ

 k∑
j=1

e
i2πlj

M
mj |ψkεj 〉〈ψ

k
εj |+

∞∑
n=0

e−i2πMn|ψkn〉〈ψkn|


= e−iMπ

 k∑
j=1

|ψkεj 〉〈ψ
k
εj |+

∞∑
n=0

|ψkn〉〈ψkn|

 = e−iMπI,

with M being the least common multiple of {mj , j = 1, . . . , k}. In this case any arbitrary initial
state

|ψ(0)〉 =

k∑
j=1

bj |ψkεj 〉+

∞∑
n=0

cn|ψkn〉,
k∑
j=1

|bj |2 +

∞∑
n=0

|cn|2 = 1,



10 D.J. Fernández

is cyclic with period τ = 2Mπ:

|ψ(τ)〉 = e−iMπ|ψ(0)〉.

The associated geometric phase becomes finally:

β = −Mπ + 2Mπ

 k∑
j=1

εj |bj |2 +

∞∑
n=0

(
n+

1

2

)
|cn|2

 = 2Mπ

 ∞∑
n=1

n|cn|2 −
k∑
j=1

lj
mj
|bj |2

 .

6 Conclusions

In this paper it has been shown that the SUSY partners of the harmonic oscillator Hamiltonian
realize straightforwardly the polynomial Heisenberg algebras of order 2k. As a consequence, if
the SUSY transformation creates k new levels for Hk, the corresponding spectrum can be seen
as composed of k+ 1 independent ladders, k of them being one-step ladders and an infinite one
starting from E0 = 1/2. It has been proven also that the corresponding Hamiltonians present
in general the so-called partial evolution loops, which induce cyclic evolutions in the subspace
generated by the eigenstates associated to En and, consequently, have associated geometric
phases. This applies, in particular, to the coherent states which are eigenstates of the natural
annihilation operator of the system, for which a general formula for the associated geometric
phase has been derived in this paper. In particular, from this general result we have recovered
the expression for the geometric phase which was found previously [30] for the Abraham–Moses
family of potentials isospectral to the harmonic oscillator. Finally, we have shown that it is
possible to produce global evolution loops by imposing restrictions on the involved factorization
energies. The associated geometric phases induced by the last operator identity have been as
well evaluated.
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meters, Phys. Lett. A 375 (2011), 2974–2978, arXiv:1104.3599.
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[34] Fernández D.J., Fernández-Garćıa N., Higher-order supersymmetric quantum mechanics, AIP Conf. Proc.
744 (2005), 236–273, quant-ph/0502098.

[35] Fernández D.J., Hussin V., Higher-order SUSY, linearized nonlinear Heisenberg algebras and coherent states,
J. Phys. A: Math. Gen. 32 (1999), 3603–3619.

http://dx.doi.org/10.1088/0305-4470/32/33/101
http://dx.doi.org/10.1134/1.953045
http://dx.doi.org/10.1088/0305-4470/37/43/014
http://dx.doi.org/10.1088/0305-4470/37/43/014
http://dx.doi.org/10.1016/j.physleta.2011.06.042
http://arxiv.org/abs/1104.3599
http://dx.doi.org/10.3842/SIGMA.2011.025
http://arxiv.org/abs/1012.0290
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1103/PhysRevA.43.1206
http://dx.doi.org/10.1088/0305-4470/37/43/022
http://dx.doi.org/10.1088/0305-4470/37/43/022
http://dx.doi.org/10.1088/1742-6596/87/1/012007
http://dx.doi.org/10.1007/978-0-8176-8176-0
http://dx.doi.org/10.1007/978-0-8176-8176-0
http://dx.doi.org/10.1088/1751-8113/41/47/475303
http://arxiv.org/abs/0809.2760
http://dx.doi.org/10.1142/9789812386502
http://dx.doi.org/10.1142/9789812386502
http://dx.doi.org/10.1103/PhysRevLett.101.030403
http://arxiv.org/abs/0801.1671
http://dx.doi.org/10.1088/1751-8113/45/24/244036
http://arxiv.org/abs/1110.4799
http://dx.doi.org/10.1063/1.2401711
http://dx.doi.org/10.1063/1.2401711
http://arxiv.org/abs/quant-ph/0609017
http://dx.doi.org/10.1088/1751-8113/43/11/115303
http://arxiv.org/abs/1002.0955
http://dx.doi.org/10.1103/PhysRevLett.85.1626
http://dx.doi.org/10.1007/BF00675169
http://arxiv.org/abs/hep-th/9410213
http://dx.doi.org/10.1063/1.3507423
http://arxiv.org/abs/0910.0192
http://dx.doi.org/10.1142/S0217751X97000232
http://arxiv.org/abs/quant-ph/9609009
http://dx.doi.org/10.1007/BF02899290
http://dx.doi.org/10.1063/1.1853203
http://arxiv.org/abs/quant-ph/0502098
http://dx.doi.org/10.1088/0305-4470/32/19/311


12 D.J. Fernández

[36] Fernández D.J., Hussin V., Mielnik B., A simple generation of exactly solvable anharmonic oscillators, Phys.
Lett. A 244 (1998), 309–316.

[37] Fernández D.J., Mielnik B., Controlling quantum motion, J. Math. Phys. 35 (1994), 2083–2104.

[38] Fernández D.J., Negro J., Nieto L.M., Elementary systems with partial finite ladder spectra, Phys. Lett. A
324 (2004), 139–144.

[39] Fernández D.J., Nieto L.M., del Olmo M.A., Santander M., Aharonov–Anandan geometric phase for spin- 1
2

periodic Hamiltonians, J. Phys. A: Math. Gen. 25 (1992), 5151–5163.

[40] Fernández D.J., Rosas-Ortiz O., Inverse techniques and evolution of spin-1/2 systems, Phys. Lett. A 236
(1997), 275–279.

[41] Gangopadhyaya A., Mallow J.V., Rasinariu C., Supersymmetric quantum mechanics, World Scientific, Sin-
gapore, 2011.
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