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Abstract. We give a geometric interpretation of weighted homogeneous solutions to the
associativity equation in terms of the web theory and construct a massive Frobenius 3-fold
germ via a singular 3-web germ satisfying the following conditions: 1) the web germ admits
at least one infinitesimal symmetry, 2) the Chern connection form is holomorphic, 3) the
curvature form vanishes identically.
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1 Introduction

The theory of Frobenius manifolds, having its origin in theoretical physics, has deep interrelations
with apparently very different areas of mathematics: Gromov–Witten invariants and quantum
cohomology, integrable systems, singularity, deformation of flat connections etc. We discuss
a new aspect of this fruitful and fast developing theory: its relations with the classical chapter
of differential geometry, namely the web theory.

The notion of Frobenius manifold, introduced by B. Dubrovin (see [8] and [12]), is a geometric
translation of the theory of WDVV-equations that arise originally in the physical context of two-
dimensional topological field theory.

Definition 1. A Frobenius manifold is a complex analytic manifold M equipped with the
following analytic objects:

1) a commutative and associative multiplication on TpM ,

2) an invariant non-degenerate flat inner product: 〈u · v, w〉 = 〈u, v · w〉,

3) a constant unity vector field e: ∇e = 0, e · v = v ∀ v ∈ TM ,

4) a linear Euler vector field E: ∇(∇E) = 0,

satisfying the following conditions:

• the flow of E re-scales the multiplication and the inner product,

• 4-tensor (∇zc)(u, v, w) is symmetric in u, v, w, z, where

c(u, v, w) := 〈u · v, w〉.

In this definition, the symbol ∇ stands for the Levi-Civita connection of the inner product 〈 , 〉.
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The following geometric construction of 3-web via Frobenius 3-fold was proposed in [1].
Consider a massive Frobenius 3-fold M , which means that the algebra TpM is semi-simple for
each p ∈ U for some open set U ⊂ M . Then TpM is the direct product of one-dimensional
algebras spanned by idempotents

TpM = C{e1} ⊗ C{e2} ⊗ C{e3}, ei · ej = δijei. (1)

In this setting, the unity vector field is

e = e1 + e2 + e3.

Let S be a surface transverse to the unit vector field e, then 3 planes spanned by {e, ei} cut 3
directions on TpS (see Fig. 1 on the left). The integral curves of these direction fields build a flat
(or hexagonal) 3-web, i.e., at the points with pairwise distinct web directions, this web is locally
biholomorphic to 3 families of parallel lines in the plane. Due to the existence of canonical
Dubrovin coordinates (see [9]), the distributions {e, ei} are integrable, integral surfaces of each
of the distributions being formed by the integral curves of the unity vector field e. Thus for each
point in M there are 3 integral surfaces intersecting along such a curve. These surfaces cut S
along the constructed web. This justifies the following definition (see also Fig. 1 on the right).

e

e
i

TpS

S

Figure 1. Construction of a booklet 3-webs from Frobenius 3-folds.

Definition 2. The constructed web is called a booklet 3-web.

The web directions of a booklet 3-web are well-defined everywhere (see [1]), maybe with
multiplicity. We call a point regular or non-singular if the web directions at this point are
pairwise distinct. The locus of singular points is called the discriminant curve. By definition,
a hexagonal 3-web does not have any local invariants at regular points. Its “personality” is
encoded in the behavior at singular points, where at least 2 web directions coincide.

A booklet 3-web enjoys the following properties [1]:

• it has at least one infinitesimal symmetry at each singular point,

• its Chern connection form is closed, i.e., the web is flat,

• its Chern connection form is holomorphic at singular points (in a suitable normalization),

• it is biholomorphic to the characteristic 3-web of the corresponding solution of associativity
equation,

• its Chern connection is induced by the connection on TM compatible with the algebraic
structure of M .
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Note that the existence of a symmetry at a singular point is not a trivial condition for a flat
3-web: even though a flat 3-web has 3-dimensional symmetry algebra at regular points (see [7]),
not all symmetries survive at singular ones (see the discussion in [3]). For a booklet 3-web the
symmetry is generated by the flow of the Euler field E.

The analyticity condition of the Chern connection at singular points is also rather restrictive:
a flat 3-web can have closed but not holomorphic connection form. Generically it has a pole on
the discriminant curve (see [3] for examples).

For studying our webs we use implicit ODEs; this approach has proved its efficiency in
both non-singular (see for instance [11]) and singular cases [3, 4]. Let us consider singular
3-webs having the first three of the above properties, and suppose that the web directions are
well defined (probably, with multiplicities). Then these directions [dx : dy] satisfy a binary
differential equation

K3(x, y)dy3 +K2(x, y)dy2dx+K1(x, y)dydx2 +K0(x, y)dx3 = 0, (2)

where the coefficients Ki do not vanish simultaneously. Dividing by dx3 or dy3 one can write
it down as an implicit cubic ODE with at least one non-vanishing coefficient. It turns out that
such ODEs can be classified. Moreover, the normal form can be effectively computed, whenever
the infinitesimal symmetry is known. (See Section 2, where we present the classification results
obtained in [3].)

In this paper, we address a natural question: whether it is possible to recover a Frobenius
3-fold germ starting from a singular 3-web with the properties mentioned above. Namely we
give a construction of a Frobenius 3-fold germ for each of the normal forms.

The key observation that permitted the classification is that the infinitesimal symmetry
operator, vanishing at the base point (0, 0) of the web-germ, is a dilatation in suitable coordinates

X = w1x∂x + w2y∂y.

This gives us two weights [w1 : w2] of the Euler vector field, since, for booklet 3-webs, the
operator X is the projection of the Euler vector field along the unity e to the surface S (see [1]).

Consider the map πe : M → S that assigns to each p ∈ M the intersection of its trajectory
under the flow of e with S. Then the vector fields ei and vi := dπe(ei(p)) are π-related:
dπe(ei(p)) = vi(πe(p)). Therefore [vi, vj ] = 0.

If we have a flat 3-web, then the natural candidates for vi are the commuting web direction
vector fields. We recover idempotents in the form ei = vi + αi∂t, where t is a third local
coordinate on a Frobenius 3-fold germ to be constructed. The functions αi are subjected to the
following conditions:

1)
∑
ei = ∂t,

2) ei commute: [ei, ej ] = 0,

3) there is a non-degenerate flat metric g with g(ei, ej) = 0, i 6= j,

4) the flow of X + w3t∂t re-scales the metric for a suitable weight w3.

(By metric we understand a non-degenerate inner product.) It turns out that these conditions
can be satisfied, the analyticity of the Chern connection form being crucial for the existence of
the metric g. We define the multiplication by formula (1). The obtained structure is that of
Frobenius 3-fold since the above conditions on αi are equivalent to the associativity equation
with dilatation symmetry.

Thus weighted homogeneous solutions to the associativity equation, i.e. invariant with respect
to a dilatation symmetry, can be interpreted geometrically also in terms of the web theory.
Namely they describe 4-webs W4 of curves in (C3, 0) with the following properties:



4 S.I. Agafonov

• W4 is flat,

• one of the web foliations defines a non-vanishing vector field e,

• W4 has a 2-dimensional symmetry algebra {e, E}, where

[e, E] ∧ e = 0 and e ∧ E 6≡ 0,

• the Chern connection form of the symmetry reduction of W4 by e remains holomorphic at
singular points.

By the symmetry reduction we understand the construction similar to the construction of booklet
3-web via W4 formed by the trajectories of ei.

The webs W4 are recovered with some parametric arbitrariness for particular normal forms.
This indicates the need for a better understanding of the webs W4.

2 Singularities of booklet webs

In this section we present the classification obtained in [3]. To distinguish between the normal
forms, we need invariants, i.e. objects, preserved by local biholomorphisms.

Obviously, root multiplicity and projectivised weights [w1 : w2] are invariant. There is a sub-
tler invariant. Consider the cross-ratio of the three web directions and the direction defined by
the infinitesimal symmetry. This function is well-defined on the complement of the discrimi-
nant curve and is constant along the trajectories of the symmetry flow. Thus it is a function
of a first integral of the symmetry operator. The limit value of this cross-ratio is our third
invariant. As the cross-ratio is dependent on the order of its arguments, we use the follo-
wing symmetrized form: multiply cubic form (2) with a 1-form vanishing on the trajectories
of the symmetry group (for normal forms it is wxxdy − wyydx), write the resulting quartic
form a4dy

4 + 4a3dy
3dx+ 6a2dy

2dx2 + 4a1dydx
3 + a0dx

4, compute i := a0a4 − 4a1a3 + 3a2
2 and

j := a4a2a0 +2a1a2a3−a3
2−a4a

2
1−a0a

2
3. Then the invariant is [i3 : j2]. The polynomials i, j are

well-known in the classical invariant theory, being invariants of the weights 4 and 6 respectively.

Theorem 1 ([3]). Suppose ODE (2) admits an infinitesimal symmetry X vanishing at the point
(0, 0) on the discriminant curve and the germ of the Chern connection form is exact γ = d(f),
where f is some function germ. Then the equation and the symmetry are equivalent to one of
the following normal forms:

1) ym0p3 − p = 0, X = (2 +m0)x∂x + 2y∂y,

2) p3 + 2xp+ y = 0, X = 2x∂x + 3y∂y,

3)

(
p− 2

3
x

)(
p2 +

2

3
xp+ y − 2

9
x2

)
= 0, X = x∂x + 2y∂y,

4) p3 + 4x

(
y − 4

9
x3

)
p+ y2 +

64

81
x6 − 32

9
yx3 = 0, X = x∂x + 3y∂y,

5) p3 + xy2p+
2√
27

x
3
2 y3

tan
(

4√
3
x

3
2

) = 0, X = y∂y,

6) p3 + y2p =
2√
27
y3 tan

(
2
√

3x+ L
)
, X = y∂y,

7) p3 + y3+m0p+ y
9+3m0

2 U
(

[(m0 + 1)]xy
1+m0

2

)
= 0, X = (1 +m0)x∂x − 2y∂y,

8) p3 + xy3+m0p− x
3
2 y

9+3m0
2

V
([

2
3(m0 + 1)

]
x

3
2 y

1+m0
2

) = 0, X = (1 +m0)x∂x − 3y∂y.
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The function U(T ) is defined, with L = −2(m0+3)
(m0+1) and suitable constants C1, C2, by the relations

T

3
√

3L
=
f ′
(
− arctan

(
3
√

3
2 U

))
f
(
− arctan

(
3
√

3
2 U

)) , f(z) = cos−µ(z)
[
C1P

µ
ν (sin z) + C2Q

µ
ν (sin z)

]
,

f

(
− arctan

(
3
√

3

2
U(0)

))
6= 0, f ′

(
− arctan

(
3
√

3

2
U(0)

))
= 0.

The initial value of U vanishes U(0) = 0 if the number m0 is even. If U(0) 6= 0 one can choose
0 ≤ arg(U(0)) < π.

The function V (T ) is defined, with L = − 5m0+17
3(m0+1) , by the relations

1

3
√

3L
T =

f ′
(
− arctan

(
2

3
√

3
V
))

f
(
− arctan

(
2

3
√

3
V
)) , f(z) = sinµ(z)Pµν (cos z).

In the above formulas, Pµν (z), Qµν (z) are Legendre’s functions for µ = 1
2

(
1− 1

3L

)
, ν = 1

2

(
1
L − 1

)
,

m0 is non-negative integer, for the form 6) with L 6= 0 one can choose 0 ≤ arg(L) < π.
The weights [w1 : w2], the root multiplicity and the invariant

[
i3 : j2

]
uniquely determine the

normal form.

Remark 1. The invariant
[
i3 : j2

]
assumes the value [0 : 1] for the form 5), the value

[
1 : tan2(L)

−27

]
for the form 6), and the values

[
1 : U

2(0)
−4

]
, [0 : 1] for the forms 7), 8) respectively.

3 Metric in flat coordinates

In this section we present forms of invariant metrics for our Frobenius 3-folds in flat coordinates.
For the case when all the weights of the Euler vector fields are distinct, they were obtained for
arbitrary n = 3 in [8]. Here we consider a bit weaker hypothesis that the weights of x and y are
not equal. We are looking for a constant matrix

g =

gtt gtx gty
gtx gxx gxy
gty gxy gyy

 ,

where gtt = 〈e, e〉 = 〈∂t, ∂t〉, gtx = 〈∂t, ∂x〉, . . . , gyy = 〈∂y, ∂y〉, satisfying LE(g) = const · g. (The
local flow exp(Ea) re-scales the metric.) One has LE(g)tt = −2wtgtt, LE(g)tx = (−wt−wx)gtx,
. . . , LE(g)yy = −2wygyy. Therefore the non-vanishing entries in g must be of the same weight.
Observe also that for each 3-web in the classification list the inequality wx 6= wy holds true.
• Metric with 〈e, e〉 = 0. As wtx 6= wty and the metric g is non-degenerate exactly one of

the the entries gtx, gty is non-vanishing. Suppose that gty = 1. Now gxx 6= 0 since g is non-
degenerate. This implies gxy = 0, gyy = 0 and 2wx = wt + wy. If gty = 0 then, similarly, one
normalizes gtx = 1 and obtains gyy 6= 0, gxx = gxy = 0.

Suppose gxx = δ 6= 0 then 〈e1, e2〉 = 〈e1, e3〉 = 0 implies that the weights of pi are zero. This
is not possible for our singular webs. Therefore gxx must vanish and the form of the matrix g is

g =

0 1 0
1 0 0
0 0 δ

 , (3)

where δ 6= 0.
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• Metric with 〈e, e〉 6= 0. At least one of the entries gtx, gty vanishes. Let gty = 0. Now
exactly one of the the entries gxy, gyy is non-vanishing. The entry gxy can not vanish; otherwise
gyy 6= 0, gxx = 0, wt = wy and because of the non-degeneracy of g we have gtx 6= 0, which implies
wt = wx and, finally, one obtains a contradiction wx = wy. Thus we have gxy 6= 0, gyy = 0,
which implies gxx = 0. If gtx 6= 0 then wt = wx. And again we get the contradiction wx = wy.
Hence one can suppose that the form of the metric is

g =

δ 0 0
0 0 1
0 1 0

 .

4 Idempotents

In this section we determine idempotents ei using the following 2 facts:

1) the metric, being invariant, is diagonal in the basis {e1, e2, e3},
2) the idempotents commute.

Suppose that the following implicit cubic ODE defines our 3-web:

p3 + S(x, y)p2 +A(x, y)p+B(x, y) = 0. (4)

Let p1, p2, p3 be the roots of (4) at a point (x, y) outside the discriminant curve. The following
1-forms vanish on the solutions

σ1 = (p2 − p3)(dy − p1dx),

σ2 = (p3 − p1)(dy − p2dx),

σ3 = (p1 − p2)(dy − p3dx) (5)

and satisfy

σ1 + σ2 + σ3 = 0.

Let us introduce an “area” form by

Ω = σ1 ∧ σ2 = σ2 ∧ σ3 = σ3 ∧ σ1 = (p1 − p2)(p2 − p3)(p3 − p1)dy ∧ dx.

The Chern connection form is defined as (see [6])

γ := h2σ1 − h1σ2 = h3σ2 − h2σ3 = h1σ3 − h3σ1,

where hi verify the relations

dσi = hiΩ.

The web is flat iff the connection form is closed: d(γ) = 0. This implies dσi = γ ∧ σi and gives
an integrating factor k of the forms σi as a solution to the following equation

dk = −γk.

Computing the Chern connection form in terms of roots pi and using the Viete formulas one
gets

γ =
γ1dx+ γ2dy

−D
,
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where

γ1 =
(
4BS2 − 3AB − SA2

)
Sx +B(SA− 9B)Sy + (2A2 − 6SB)Ax

+ 2B(3A− S2)Ay + (9B − SA)Bx +
(
AS2 − 4A2 + 3SB

)
By,

γ2 =
(
6SB − 2A2

)
Sx − 2B

(
3A− S2

)
Sy + (SA− 9B)Ax

+
(
4A2 −AS2 − 3SB

)
Ay +

(
6A− 2S2

)
Bx +

(
2S3 + 18B − 8SA

)
By,

and D is the discriminant of (4) with respect to p

D = 18SAB + S2A2 − 4A3 − 27B2 − 4BS3.

We also need to know how the connection form in the normalization (5) is transformed when
we change the local coordinates

ȳ = f(x, y), x̄ = g(x, y).

One finds without difficulty that the forms σ̄i in the new coordinates are related to the forms
in old ones by

σ̄i =
(fygx − fxgy)2σi

g3
x − Sg2

xgy +Agxg2
y −Bg3

y

.

Therefore (see [6])

γ̄ = γ + d ln

(
(fygx − fxgy)2

g3
x − Sg2

xgy +Agxg2
y −Bg3

y

)
. (6)

Let vi = ξi∂x + ηi∂y be commuting multi-valued vector fields, whose trajectories are the web
leaves. They may have singularities at singular points: with K satisfying dK

K = γ we have

v1 =
K(∂x + p1∂y)

(p3 − p1)(p1 − p2)
, v2 =

K(∂x + p2∂y)

(p1 − p2)(p2 − p3)
, v3 =

K(∂x + p3∂y)

(p2 − p3)(p3 − p1)
.

Here x, y are restrictions on S of flat coordinates in M , in which the Euler vector field has the
form E = wtt∂t +wxx∂x +wyy∂y. A subtle point is that flat coordinates are not necessarily the
coordinates used for the normal forms: they are related to them by some coordinate transform
preserving X.

The idempotents are

e1 = α∂t + v1, e2 = β∂t + v2, e1 = (1− α− β)∂t + v3, (7)

where the components α, β are to be defined by the orthogonality condition

〈e1, e2〉 = 〈e2, e3〉 = 〈e3, e1〉 = 0. (8)

• Metric with 〈e, e〉 = 0. Equations (8) give

δ = −1/K. (9)

Adjusting the integration constant so that K = −1 we have δ = 1 and

α =
p2p3 − p1(p2 + p3)

2(p1 − p2)(p1 − p3)
, β =

p1p3 − p2(p1 + p3)

2(p2 − p1)(p2 − p3)
. (10)

Since dK = 0, we see that γ1 = γ2 = 0. The equation [e1, e2] = 0 reads as v1(β) = v2(α) and
obviously implies [e1, e3] = [e2, e3] = 0. The above 3 equations γ1 = γ2 = v1(β)− v2(α) = 0 can
be resolved with respect to Sx, Ax, Bx to give the following system of hydrodynamic type

Sx =
1

2
Ay, Ax = 2By, Bx = SBy +BSy −

1

2
AAy. (11)
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Lemma 1. Suppose that the solution web of ODE (4) satisfies the following conditions:

1) it admits an infinitesimal symmetry X = wxx∂x + wyy∂y with wx 6= wy,

2) the coefficients S, A, B satisfy the system of PDEs (11).

Then there is a Frobenius 3-fold germ with 〈e, e〉 = 0 whose booklet web is the solution web
of (4).

Proof. Equations (11) ensures the local existence of a function f(x, y) satisfying fyyy = S,
fyyx = 1

2A, fyxx = B, fxxx = BS − 1
4A

2. Thus we obtain the associativity equation

fxxx = fyyyfyxx − f2
yyx. (12)

(See [13] where the equivalence of (11) and (12) was established and [2] where equations of
these types were studied.) Since the web admits an infinitesimal symmetry X, the function f
is weighted homogeneous and defines a germ of Frobenius 3-fold with 〈e, e〉 = 0 (see [8]). Equa-
tion (4) defines the corresponding characteristic web of the above associativity equation. Hence
the web is the booklet web of the constructed Frobenius 3-fold germ (see [1]). �

The value of the lemma is that it makes unnecessary the checking the potentiality condition for
the 4-tensor (∇zc)(u, v, w) in Definition 1.

Theorem 2. Suppose that the solution web of ODE (4) satisfies the following conditions:

1) it admits an infinitesimal symmetry X = wxx∂x + wyy∂y with wx 6= wy,

2) its Chern connection form vanishes identically γ = 0,

3) the vector fields e1, e2 commute, where α, β are as in (10).

Then there is a Frobenius 3-fold germ with 〈e, e〉 = 0 whose booklet web is the solution web
of (4).

Proof. Define a metric by (3) with δ = 1, the multiplication as the direct sum of one-
dimensional algebras with unities (7), and the Euler vector field by E = wtt∂t + X with
wt = 2wy−wx. Then Lemma 1 ensures that the defined structure is that of Frobenius 3-fold. �

• Metric with 〈e, e〉 6= 0. Equations (8) give

α =
(p1 + p2)(p1 + p3)

(p1 − p2)(p1 − p3)
, β =

(p2 + p1)(p2 + p3)

(p2 − p1)(p2 − p3)
, (13)

and

δ =
−K2

(p1 + p2)(p2 + p3)(p3 + p1)
.

Vieta formulas result in

δ =
K2

SA−B
. (14)

Adjusting the integration constant so that K = −1 we have δ = 1, provided the condition
2dKK = d(SA−B)

SA−B is satisfied. Substituting dK
K = γ we obtain

2γ =
d(SA−B)

SA−B
. (15)



Frobenius 3-Folds via Singular Flat 3-Webs 9

Together with the commutativity condition v1(β) = v2(α), where α, β are given now by (13),
equation (15) gives the following system of hydrodynamic type

Sx =
(A2 −AS2 + 2SB)Sy + (S3 −AS + 2B)Ay − (A+ S2)By

2AS − 2B
,

Ax =
−ASy + SAy +By

2
,

Bx =
(A3 + 4B2 − 3ASB)Sy + (2AB − SA2 +BS2)Ay + (2AS2 − 3SB −A2)By

2AS − 2B
. (16)

Lemma 2. Suppose that the solution web of ODE (4) satisfies the following conditions:

1) it admits an infinitesimal symmetry X = wxx∂x + wyy∂y with wx 6= wy,

2) the coefficients S, A, B of (4) satisfy the system of PDEs (16).

Then there is a Frobenius 3-fold germ with 〈e, e〉 = 1 whose booklet web is the solution web
of (4).

Proof. It repeats that of Lemma 1. System (16) again is reducible (see [2]) and therefore is

equivalent to the local existence of a function f(x, y) satisfying
fyyx
fyyy

= S, −fyxx
fyyy

= A, −fxxx
fyyy

= B,
and the associativity equation

fxxxfyyy − fxxyfxyy = 1, (17)

which corresponds to the case 〈e, e〉 = 1 (see [8]). �

Theorem 3. Suppose that the solution web of ODE (4) satisfies the following conditions:

1) it admits an infinitesimal symmetry X = wxx∂x + wyy∂y with wx 6= wy,

2) its Chern connection form verifies (15),

3) the vector fields e1, e2 commute, where α, β are as in (13).

Then there is a Frobenius 3-fold germ with 〈e, e〉 = 1 whose booklet web is the solution web
of (4).

Proof. The proof is similar to that of Theorem 2. The only difference is that the weight wt
now is wt = (wx + wy)/2. �

Remark 2. Equations (9) and (14) imply that the Chern connection form of the booklet web
remains holomorphic at singular points: this is straightforward for equation (9), for (14) one
has to take into account the associativity equation (17) and, if equation (2) is not monic, the
formula (6). Thus, a geometrical interpretation of the analyticity of the connection is the
existence of non-degenerate invariant flat metric.

5 Webs with one elliptic symmetry operator

We call a symmetry operator X = wxx∂x +wyy∂y elliptic if the weight ratio wx/wy is positive.
In this section we study the Frobenius 3-fold germs corresponding to the normal forms 2), 3)
and 4) in Theorem 1. The connection form γ vanishes identically for each of these equations.
The coordinate transformations, preserving the symmetry generator X, are non-trivial only for
the forms 3) and 4). Up to an unessential scaling, they read as

x̄ = x, ȳ = y + rx2, r = const, (18)
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and

x̄ = x, ȳ = y + rx3, r = const, (19)

respectively.

Proposition 1. The booklet 3-web of a massive Frobenius 3-fold with 〈e, e〉 = 1 cannot have
singularities of types 2), 3), 4) in Theorem 1.

Proof. The coefficients S̄, Ā, B̄ of the transformed ODEs vanish at singular points. The
condition γ ≡ 0 is also preserved by transformations (18) and (19). This yields a contradiction:
1
δ = S̄Ā−B̄

K2 = 0. �

Definition 3 ([8]). Two Frobenius manifolds M and M̃ are equivalent if there exists a diffeo-
morphism

ϕ : M → M̃

being a linear conformal transformation of the corresponding invariant metrics

ϕ∗g̃ = c2g

(c is a non-zero constant) with the differential acting as an isomorphism on the tangent algebras

dϕ : TpM → Tϕ(p)M̃.

Proposition 2. Each of the 3-web germs of type 2), 3), 4) in Theorem 1 is a booklet 3-web for
some Frobenius 3-fold germ with 〈e, e〉 = 0. Moreover, this germ is unique up to the equivalence
of Frobenius 3-folds.

Proof. We use Lemma 1. The coefficients of ODE 2) satisfy conditions (11). Now let us apply
transformation (18) to ODE 3) and transformation (19) to ODE 4). Then the first equation
of (11) gives r = − 1

12 for 3) and r = −1
9 for 4), the second and the third equations (11) being

satisfied for the found values of r. The constructed germ is obviously unique up to an unessential
scaling, i.e., up to the equivalence. �

Remark 3. The Frobenius 3-folds in the above Proposition are those corresponding to the
polynomial solutions of WDVV equation (12) (see [8]), which, of course, is not surprising. The
above Frobenius 3-fold germ can be also recovered directly via Theorem 2.

6 Web with a parabolic symmetry operator

We call a symmetry operator X = wxx∂x+wyy∂y parabolic if one of the weights wx, wy vanishes.
In this section we study the Frobenius 3-fold germs corresponding to the normal forms 5) and 6)
of Theorem 1. Coordinate transformations, preserving the symmetry generator X, are of the
form

ȳ = yF (x), x̄ = G(x),

where

F (0) 6= 0, G′(0) 6= 0, G(0) = 0.

Proposition 3. The booklet 3-web of a massive Frobenius 3-fold with 〈e, e〉 = 1 cannot have
singularities of type 5) or 6) of Theorem 1.
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Proof. The orthogonality condition (8) yields the contradiction

1

δ
= −BF

3 + 2yAF 2F ′ + 8y3(F ′)3

K2F 4G′

∣∣∣∣
(0,0)

= 0. �

Proposition 4. There is a one-parameter family of inequivalent Frobenius 3-fold germs with
〈e, e〉 = 0, whose booklet web germs are diffeomorphic to 3-web germ 5) or 6) of Theorem 1.

Proof. Consider the following cubic ODE

p3 + ys(x)p2 + y2a(x)p+ y3b(x) = 0.

Equations (11) read as

s′ = a, a′ = 6b, b′ = 4ab− a2.

The invariant [i3 : j2] is equal to
[
108(s2 − 3a)3 : (9as − 2s3 − 27b)2

]
. Adjusting the initial

conditions s(0), a(0), b(0) to verify

(9as− 2s3 − 27b)2

(3a− s2)3

∣∣∣∣
x=0

= 4 tan2(L)

and applying Lemma 1 one gets 2-parameter family Frobenius 3-fold germs with the booklet
web 6). For the form 5) one chooses s2 − 3a

∣∣
x=0

= 0 and 9as− 2s3 − 27b
∣∣
x=0
6= 0. Now the

symmetry y∂y reduces the number of parameters in the family of inequivalent Frobenius 3-fold
germs to one. �

Remark 4. Frobenius 3-fold germ can be also constructed directly via Theorem 2. Consider,
for instance, the case 6). The connection form here is γ = 2√

3
tan(2

√
3x + L)dx, therefore

K = 1
3
√

cos(2
√

3x+L)
. The orthogonality conditions (8) give

δ = − G′

KF 2
, (20)

and the following expressions for the idempotent components

α =
(p2p3 − p1p2 − p1p3)F 2 − 2yp1FF

′ − y2(F ′)2

2F 2(p1 − p2)(p1 − p3)
,

β =
(p1p3 − p2p1 − p2p3)F 2 − 2yp2FF

′ − y2(F ′)2

2F 2(p2 − p1)(p2 − p3)
.

Now the commutativity condition [e1, e2] = 0 amounts to the following equation for F

3FF ′′ − 6(F ′)2 − 2
√

3 tan
(
2
√

3x+ L
)
FF ′ + F 2 = 0. (21)

Due to Theorem 2, each solution G, F of equations (20) and (21) defines a Frobenius 3-fold
germ.

Remark 5. Substitution F ′

F = u reduces equation (21) to some Riccati equation. Hence (21) is
linearizable.
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7 Web with a hyperbolic symmetry operator

We call a symmetry operator X = wxx∂x + wyy∂y hyperbolic if the weight ratio wx/wy is
negative. In this section we study the Frobenius 3-fold germs corresponding to the normal
forms 7) and 8) of Theorem 1. The connection form here is holomorphic, i.e., the factor K does
not vanish. Coordinate transformations, preserving the symmetry generator X, are of the form

ȳ = yQ(s), x̄ = xR(s), (22)

where Q(0) 6= 0, R(0) 6= 0, s = xyr, r = 1+m0
2 , and the functions Q, R are even for even m0.

Proposition 5. The booklet 3-webs of a massive Frobenius 3-fold with 〈e, e〉 = 1 cannot have
singularities of types 7) or 8) of Theorem 1.

Proof. Since the Jacobian matrix of transformation (22) is diagonal at (0, 0), we infer that the
transformed cubic ODE remains monic with coefficients S̄, Ā, B̄ vanishing at (0, 0). Further,
the factor K̄ remains analytic and finite due to (6). Now the condition (14) gives a contradiction

1

δ
=
S̄Ā− B̄
K̄2

= 0. �

To prove that each singularity of types 7) and 8) can be realized by some booklet web, we
need some properties of the coefficients S̄, Ā, B̄. One easily finds by direct calculation the
following formulae for them

S̄ =
y

x
σ(s), Ā =

y2

x2
α(s), B̄ =

y3

x3
β(s), (23)

where

σ(s) = − s

∆

[
3s2
(
1 + r2s2 + r3Fs3

)
Q′(R′)2 + rs3(2 + 3rFs)Q(R′)2

+ 2s
(
3 + r2s2

)
RQ′R′ + 2rs2RQR′ + 3R2Q′

]
,

α(s) =
s2

∆

[
RQ2 +

(
3 + r2s2

)
R(Q′)2 + 3s

(
1 + r2s2 + r3Fs3

)
(Q′)2R′

+ 2rs2(2 + 3rFs)QQ′R′ + s(1 + 3rFs)Q2R′ + 2rsRQQ′
]
,

β(s) = −s
3

∆

[
rs(2 + 3rFs)Q(Q′)2 +

(
1 + r2s2 + r3Fs3

)
(Q′)3 + (1 + 3rFs)Q2Q′ + FQ3

]
,

∆ = R3 + 3sR2R′ + s2
(
3 + r2s2

)
R(R′)2 + s3

(
1 + r2s2 + r3Fs3

)
(R′)3. (24)

Proposition 6. For each 3-web germ singularity of type 7) with odd m0 or type 8) of Theorem 1
there is a one-parameter family of inequivalent Frobenius 3-fold germs with 〈e, e〉 = 0, whose
booklet web germs are diffeomorphic to this web. For each 3-web germ singularity of type 7) with
even m0 there is, up to equivalence, unique Frobenius 3-fold germ with 〈e, e〉 = 0.

Proof. Theorem 2 is not of much use here: calculations become very involved. We prove the
existence using Lemma 1. Coefficients S, A, B of equation (4) have the form (23). Then
equations (24) imply

σ(s) = sσ̃(s), α(s) = s2α̃(s), β(s) = s3β̃(s).

Now the system (11) gives

σ̃′ =
(k + 1)α̃− k(k + 1)s(σ̃α̃− 3β̃) + k2(k + 1)s2σ̃β̃

1− ksσ̃ + k2s2α̃− k3s3β̃
,
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α̃′ =
6(k + 1)β̃ − 2k(k + 1)s(α̃2 − σ̃β̃) + 2k2(k + 1)s2α̃β̃

1− ksσ̃ + k2s2α̃− k3s3β̃
,

β̃′ =
−(k + 1)(α̃2 − 4σ̃β̃)− 2k(k + 1)sα̃β̃ + 3k2(k + 1)s2β̃2

1− ksσ̃ + k2s2α̃− k3s3β̃
. (25)

This system has solutions for each choice of initial conditions σ̃(0), α̃(0), β̃(0). In terms of σ̃(0),
α̃(0), β̃(0) the invariant [i3 : j2] reads as[

108
{
σ̃2(0)− 3α̃(0)

}3
:
{

2σ̃3(0)− 9α̃(0)σ̃(0) + 27β̃(0)
}2
]
.

For the form 8) we set α̃(0) = σ̃2(0)/3, and choose σ̃(0), β̃(0) to satisfy σ̃3(0) 6= 27β̃2(0). The
symmetry generated by the Euler vector field reduces the number of free parameters by one,
therefore we get one-parameter family of inequivalent 3-fold germs.

For the form 7) consider first the case of odd m0. Adjusting the initial conditions so that
the value of the invariant coincides with the corresponding value of the normal form, and taking
into account the symmetry, we obtain again one-parameter family of inequivalent 3-fold germs.

Now suppose that m0 is even. System (25) is symmetric with respect to the following in-
volution: s → −s, σ̃ → −σ̃, α̃ → α̃, β̃ → −β̃. Uniqueness of the solution of Cauchy problem
with initial conditions σ̃(0) = 0, α̃(0) = a0, β̃(0) = 0 ensures that the function σ̃ and β̃ are odd,
while α̃ is even. Therefore the coefficients

S =
y

x
sσ̃(s), A =

y2

x2
s2α̃(s), B =

y3

x3
s3β̃(s)

of ODE (4) are holomorphic and satisfy (11). Here the structure of Frobenius 3-fold is unique
up to the equivalence generated by the Euler vector field. �

8 Web with 2-dimensional symmetry algebra

In this section we consider the form 1). Here the symmetry algebra is 2-dimensional: note that
the equation 1) is invariant with respect to the translation operator ∂x. For a Frobenius 3-fold
to be constructed we have an alternative: either the Euler vector field vanishes at (0, 0) or it
does not vanish.

Proposition 7. The booklet 3-web germ of a massive Frobenius 3-fold cannot have singularities
of type 1) of Theorem 1, if the projection of the Euler vector field to the surface S along the
unity vector e vanishes.

Proof. The symmetry operator giving rise to the Euler vector field is

(1 +m0/2)x∂x + y∂y.

Then the flat coordinates are, up to an unessential scaling

x̄ = x+ cy1+m0/2, ȳ = y.

The orthogonality condition (8) yields: δ = 0 for 〈e, e〉 = 0 and 1
δ = 0 for 〈e, e〉 6= 0. �

Unfortunately, because of computational difficulties, the author is not able to provide a com-
plete analysis for the case when the projection of E to S does not vanish.

Proposition 8. For each 3-web germ singularity of type 1) there is parametric family of in-
equivalent Frobenius 3-fold germs with 〈e, e〉 = 0, whose booklet web germs are diffeomorphic to
this web.
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Proof. The proof is somewhat of an “experimental” nature: the author used the symbolic
computational system Maple.

Let us choose the symmetry operator as X = (1 + (l + 1)x)∂x + y∂y and 1 + (l + 1)x as
a new coordinate z. Now the base point of the 3-fold germ is (1, 0). We are looking for the flat
coordinates in the form

x̄ = zαR(t), ȳ = zβQ(t), t = yz
− 1

1+m0/2

with analytic R and Q subjected to αRQ′ − βQR′|0 6= 0.
The orthogonality condition (8) implies that necessarily α = 2β − 1 for 〈e, e〉 = 0. The

analysis of ODEs for R and S, arising from the hypotheses of Theorem 2, shows that they have
at least local solutions at t = 0 for any β 6= 1

2 . Therefore one can construct at least 1-parametric
family of inequivalent Frobenius 3-fold germs. �

Remark 6. The symmetry operator in the flat coordinates is (2β − 1)z∂z + βy∂y. Observe
that β is not necessarily rational, unlike the case of triple root.

9 Concluding remarks

1. The 4-web of curves W4 discussed in Introduction is formed by the trajectories of the
unity vector field e and of the vector fields of idempotents ei. The generalization to Frobenius
manifolds of higher dimensions is straightforward. We hope that the study of this object, namely,
(n+1)-web of curves Wn+1 in n-dimensional Frobenius manifold Mn will provide a better insight
into the singular set (or “discriminant”) of the Frobenius manifold. Note that for the 3-webs
with parabolic and hyperbolic symmetries the 4-web W4 are recovered with some parametric
arbitrariness. We hope to interpret these parameters in terms of W4.

It seems that the web of curves, with the exception of webs in the plane, was not a very
popular object to study in differential geometry (see surveys [10] and [5]).

2. The reduction of Wn+1 by the symmetry generated by the unity vector field e can also be
generalized to higher dimensions. As a result we obtain, for n-dimensional Frobenius manifold,
a flat n-web germ of curves in (Cn−1, 0) admitting a “linear” symmetry.

3. It is interesting that Frobenius 3-folds with 〈e, e〉 6= 0 does not produce singular booklet
3-webs with triple root and vanishing symmetry. The author does not know if one can get
a singular booklet 3-webs with non-vanishing symmetry at this situation. An approach based

on Lemma 2 gives singular ODEs for the coefficients S = y
x σ̃(s), A = y2

x2
α̃(s), and B = y3

x3
β̃(s),

if one imposes initial conditions corresponding to the desired singularity.
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