
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 8 (2012), 079, 13 pages

Rational Calogero–Moser Model: Explicit Form

and r-Matrix of the Second Poisson Structure

Jean AVAN † and Eric RAGOUCY ‡

† Laboratoire de Physique Théorique et Modélisation,
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9 chemin de Bellevue, BP 110, F-74941 Annecy-le-Vieux Cedex, France

E-mail: ragoucy@lapp.in2p3.fr

Received July 24, 2012, in final form October 17, 2012; Published online October 26, 2012

http://dx.doi.org/10.3842/SIGMA.2012.079

Abstract. We compute the full expression of the second Poisson bracket structure for
N = 2 and N = 3 site rational classical Calogero–Moser model. We propose an r-matrix
formulation for N = 2. It is identified with the classical limit of the second dynamical
boundary algebra previously built by the authors.

Key words: classical integrable systems; hierarchy of Poisson structures; dynamical reflection
equation

2010 Mathematics Subject Classification: 81R12; 16T15; 16T25

1 Introduction

1.1 Dynamical r-matrices

The Calogero–Moser model [13, 14, 23] provided [7] a textbook example of a classical dynam-
ical r-matrix structure for a Lax representation [19] of a classical Liouville integrable system.
Remember that Liouville integrability for a N -dimensional Hamiltonian system is characterized
(see [8] and references therein) by the existence of N independent Poisson-commuting quanti-
ties H(i), i = 1, . . . , N including the original Hamiltonian. The system admits a Lax represen-
tation when the equations of motion can be represented as a spectrum-preserving evolution of
a n× n matrix L encapsulating the 2N dynamical variables {pi, qi}, i = 1, . . . , N ,

dL

dt
= [L,M ]. (1)

The quantities TrLk, k = 1, . . . , n may then provide the Liouville Hamiltonians if they
Poisson-commute and they are in sufficient number (e.g. if n ≥ N or there exists a spectral-
parameter dependance). They build in this case a so-called Hamiltonian hierarchy of mutually
compatible equations of motion. This Poisson-commuting property is equivalent [9] to rewriting
the Poisson brackets of the Lax matrix coefficients in a specific algebraic form involving a mat-
rix r, living in the tensor product Mn(C)⊗Mn(C), Mn(C) being self-explanatorily the algebra
of complex n× n matrices

{L1, L2} = [r12, L1]− [r21, L2]. (2)
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Expression (2) is the so-called linear form of r-matrix structure. Associativity of the Poisson
bracket form (2) is guaranteed by the consistency equation

[r12, r13] + [r12, r23] + [r32, r13] + {r12, L3} − {r13, L2} = 0 (3)

generically known as “dynamical Yang–Baxter equation” (dYB), see e.g. [22]. If r does not
depend on the dynamical variables (3) becomes a purely algebraic “classical Yang–Baxter equa-
tion”. If not the issue arises of an available algebraic reexpression of the dynamical contribution
{r12, L3}−{r13, L2}. At least two such forms are available in the literature. The first one occurs
in the Lax formulation of the Calogero–Moser model, where one identifies

{r12, L3} =
n∑

s=1

h(3)s

d

dqs
r12, (4)

where hs, s = 1, . . . , n is a representation of a Cartan subalgebra1.
Note that the second one occurs in the Lax formulation of the Ruijsenaars–Schneider model [28]

and is very much related to the first one as

{r12, L3} =
n∑

s=1

h(3)s L3
d

dqs
r12.

Equation (4) now allows to identify the generic dYB equation (3) with a specific equation
known as the classical Gervais–Neveu–Felder equation [10, 16, 18]. The problem of realizing an
explicit algebraic form for the dynamical terms remains however open in many interesting cases.

It is crucial to underline here that in the Lax representation (1) there exists a one-to-one
algebraic correspondence, parametrized by the linear r matrix, between the Hamiltonian H(L)
triggering a specific time evolution, and the associated M matrix. Namely [29] the M matrix is
given by

M = Tr1
(
r12dH(L)2

)
.

The Lax matrix L however is characteristic of the whole Hamiltonian hierarchy and remains
therefore unique.

1.2 Hierarchy of Poisson brackets: Magri construction

A dual formulation of Liouville integrability was proposed by Magri [21] where the hierarchy of
Hamiltonians H(k) = TrLk, k = 1, . . . , n acting simultaneously on the dynamical variables pi, qj
through a single Poisson bracket structure (e.g. the canonical one {pi, qj} = δij), is substituted
by a hierarchy of mutually compatible Poisson brackets { }(i), where i = 1 corresponds to the
above canonical “first” bracket. The duality between the two formulations is summarized by
the identity{

H(k), X(p, q)
}
(l)

=
{
H(k′), X(p, q)

}
(l′)

for k + l = k′ + l′.

The explicit construction of the higher (l ≥ 2) Poisson brackets uses the so-called “recursion
operator” (see, e.g., [25]).

It then follows that the Lax matrix for a given classically Liouville integrable system exhibits
a corresponding hierarchy of r-matrix structures associated to each Poisson bracket in the Magri
hierarchy. Such structures are explicitly known when the r-matrix for the first (canonical)

1In a more general, abstract context the Abelian property is dropped and one is lead to consider “non-Abelian
dynamical algebras” [32].
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bracket is non-dynamical. For instance the second Poisson bracket is the famous quadratic
Sklyanin bracket [20, 22, 30]:

{L1, L2} = [a12, L1L2] + L1s12L2 − L2s12L1, (5)

where a and s are respectively the skew-symmetric, a12 = 1
2(r12 − r21), and symmetric, s12 =

1
2(r12 + r21), part of the r-matrix. The Sklyanin bracket, properly said, corresponds to the case
s = 0.

Note that a quadratic Poisson bracket (5) takes in any case the general linear form (2) with
a linear r matrix defined as

r12 ≡
1

2
(a12L2 + L2a12)− L2s12. (6)

The third bracket has a more complicated form, cubic in terms of L, derived explicitly in [20].

1.3 The problem of r-matrix construction

Our purpose here is to give an explicit r-matrix structure for the second Poisson bracket of the
rational N -site Calogero–Moser Lax matrix. This second Poisson structure was recently derived
explicitly [11, 21] which makes it possible in principle to define an associated r-matrix structure.
Our aim here is therefore to provide what we believe to be the first example of r matrix structure
for a second Poisson structure when the first Poisson structure is parametrized by a dynamical r-
matrix [7] in a linear formulation (2). Indeed no explicit Sklyanin or Li–Parmentier formulation
exists in such a case and we would thus provide or disprove the existence of such a formulation
in this generic case.

The Poisson bracket hierarchy however is only formulated in terms of the adjoint invariants
of the Lax matrix Ik = TrLk and mixed Lax-position matrix Jk = TrLkQ where Q is the
diagonal position matrix Diag(q1, . . . , qN ). Inverting this form to rexpress the Poisson brackets
of the original first-bracket canonical variables (in which the Lax matrix elements have simple
expressions) is our first aim, partially achieved in Section 3.

General remarks on r-matrix formulations are required here before we get into more details
on our specific approach. It has been established [9] that given any finite-dimensional Lax
matrix L together with a Poisson structure guaranteeing Poisson commutation of the invariant
traces or equivalently the eigenvalues, one may construct a linear r-matrix formulation (2) for
the Poisson brackets of the components of L. This r-matrix is inherently non-skew symmet-
ric and dynamical [29]. It is clear from example (6) and, more subtly, from the example of
the Ruijsenaars–Schneider Lax matrix [31], that the linear r-matrix formulation à la Babelon–
Viallet [9] has a priori no reason to be the most relevant or the most adapted formulation of
a given Lax r-matrix structure, given in particular the algebro-geometric context of its construc-
tion. There is actually no general rule to indicate whether a linear, quadratic or even higher-level
r-matrix formulation is required, although the above mentioned algebro-geometric context may
be helpful in this respect.

Getting back to our specific issue, it appears here that although, as indicated above, one may
not a priori expect an exact Li–Parmentier procedure, we should nevertheless assume a quadratic
form such as (5) with arbitrary structure coefficients a, b, c, d. In view of the formal resemblance
between the second Poisson structure on the unreduced phase space yielding the Calogero–Moser
model [11] and the first Poisson structure on the unreduced phase space G × g yielding the
rational Ruijsenaars Schneider model (see, e.g., discussion in [1]), this assumption seems all the
more justified. It immediately eliminates a direct derivation à la Babelon–Viallet which would
only yield a cumbersome linear r-matrix structure from which one would have to disentangle
the L dependance to get the quadratic coefficients a, b, c, d.
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Another way to derive r-matrix structures when the dynamical system is obtained by either
a Hamiltonian reduction (first Poisson structure of Calogero–Moser, see [26]) or more generally
(our problem here, see [11]) a projection on reduced symplectic leaves, is to follow algebraically
the reduction of the r-matrix structure along the fibers of the symplectic reduction. It is
certainly in principle the most significant and illuminating way to understand the “lower” r-
matrix structure once derived, and has been achieved on a number of examples [4, 15, 27].
It is however a long and delicate procedure which may not be the best way for a small-sized
Lax matrix. We have therefore decided to use a direct resolution of the consistency equations
obtained by inserting the explicit Poisson brackets on the l.h.s. of (5).

1.4 Outline of the derivation

To obtain the Poisson brackets between physical variables p, q we first of all (Section 2) derive
some general Poisson bracket identities valid for all values of N , which allows us to reobtain
the full N = 2 second Poisson bracket structure derived in [11, 21] and construct explicitly the
N = 3 Poisson brackets (Section 3). Formulae for N = 3 are considerably more complicated
and do not suggest at this time an obvious generalization to any value of N ≥ 4.

We then (Section 4) propose a completely explicit form for second Poisson bracket of the
N = 2 site Lax matrix. This structure is defined as an explicit quadratic Sklyanin form (5) in
terms of the Lax matrix L. It is identified with a representation of the classical limit of the
second dynamical boundary algebra, recently built in [6]. It therefore does not match with the
r-matrix formulation of the first Poisson structure of Calogero–Moser Lax matrix, which is in
fact given by a representation of another dynamical boundary algebra, viz. the semi-dynamical
boundary algebra of [3]. A direct Li–Parmentier type procedure for dynamical r-matrices is
therefore invalidated by this example.

The case N = 3 seems at this time too complex and not clearly enough understood to allow
for a reasonable attempt at building an r-matrix structure. We conclude with some remarks
and proposals.

2 General properties of N -Calogero

The Lax matrix and position matrix for the rational An Calogero–Moser model are defined as

L =


p1

1
q12

. . . 1
q1N

−1
q12

p2
. . .

...
...

. . .
. . . 1

qN−1,N
−1
q1N

. . . −1
qN−1,N

pN

 and Q =


q1 0 . . . 0

0 q2
. . .

...
...

. . .
. . . 0

0 . . . 0 qN

 ,

where qij = qi − qj .
The second Poisson structure is expressed [11] in the basis

In =
1

n
TrLn and Jn+1 = Tr

(
QLn

)
.

It reads

{In, Im} = 0, {Jn, Im} = (m+ n− 1)Im+n−1, {Jn, Jm} = (n−m)Jm+n−1. (7)

We call this Poisson bracket algebra AN . Remark that the first generators I1 and J1 correspond
to the center of mass position and momentum,

p0 = I1 =

N∑
j=1

pj and q0 = J1 =

N∑
j=1

qj ,
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while I2 is the Calogero Hamiltonian

H =
N∑
j=1

p2j − 2
N∑
j 6=i

1

(qi − qj)2
.

2.1 Decoupling of the center of mass position

We extract consistently the centre-of-mass variable q0 ≡ J1 by setting

Q̃ = Q− Tr(Q)

N
I = Q− q0

N
I and J̃n+1 = Tr(Q̃In) = Jn+1 −

n

N
q0In

with the convention lim
n→0

(nIn) = N .

Proposition 1. The algebra AN is the semi-direct sum of the subalgebra ÃN , generated by In
and J̃n and the (PB-)commutative algebra {q0}

{In, Im} = 0,
{
J̃n+1, Im

}
= (m+ n)Im+n −

mn

N
ImIn,{

J̃n+1, J̃m+1

}
= (n−m)J̃m+n+1 +

mn

N

(
J̃m+1In − J̃n+1Im

)
,

{q0, Im} = mIm,
{
q0, J̃n+1

}
= nJ̃n+1.

The structure of the algebra ÃN is entirely determined by the PBs of the pi’s and the qij’s
and does not depend on the PBs of q0.

Proof. The PBs are obtained by direct calculation. It follows that, since Q̃ and L do not
depend on q0, the PBs of q0 with I and J variables are not relevant in the calculation of the L
Poisson brackets and the associated r-matrix structure. They shall be considered separately. �

2.2 PBs of the center of mass momentum

Proposition 2. The Poisson brackets of p0 are given by

{p0, qj} = −pj and {p0, pj} = −2
∑
n6=j

q−3jn . (8)

Proof. Let

K =


a1 q−212 . . . q−21N

q−212 a2
. . .

...
...

. . .
. . . q−2N−1,N

q−21N . . . q−2N−1,N aN

 with aj = −
∑
n6=j

q−2nj ,

then (8) is equivalent to

{p0, L} = [L,K] and {p0, Q} = [Q,K]− L.

This matricial form of the PBs implies

{p0, In} =
n∑

m=0

TrLm[L,K]Ln−m−1 = Tr
(
Ln−1K −KLn−1) = 0
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and

{p0, Jn+1} = Tr
(
[Q,K]− L

)
Ln +

n+1∑
m=0

TrQLm[L,K]Ln−m

= Tr
(
KQLn −QLnK

)
− TrLn+1 = −(n+ 1)In+1.

Hence, (8) reproduce the PBs of p0 with all the generators of AN . Since the correspondence
between I, J and p, q variables is one-to-one [11], the PB’s of p0 with qi, pj are univocally
determined by the PB’s of p0 with Ii, Jj establishing that (8) is correct. �

It is interesting to remark that this matrix K (used above) is such that the sum of elements on
every line or every column yields 0. It implies that K commutes with the matrix µ ≡

∑
i 6=j

eij

which is the moment map used to define the Calogero–Moser model by Hamiltonian reduction of
a free motion on the cotangent bundle of the Lie algebra Mn(C) [26]. However the corresponding
Poisson structure is the first, not second one and the meaning of this property of K is therefore
not clear.

Corollary 1. For any function of ~q and ~p, we have

{p0, f(~q, ~p )} = Df(~q, ~p ) with D =

N∑
n=1

pn ∂

∂qn
− 2

∑
j 6=n

q−3jn

∂

∂qj

 .

Proof. Direct calculation using (8). �

3 Second Calogero–Poisson brackets

3.1 N = 2 Poisson brackets

These second PBs have been already calculated in [11]. We recall them for the sake of complete-
ness and show on a simple case the method we use for N = 3.

From the calculation of Section 2.2, one deduces that

{p1, p2} = − 1

q312
and {pj , qk} = −δjkpj + zjk with z1j + z2j = 0 ∀ j,

which leaves us with three unknowns, z11, z22 and the PB {q1, q2}.
Plugging this partial result into the PBs given in (7), one deduce the final form, parametrized

as

z11 = −z22 = −z21 = z12 =
(p1 − p2)
(q1 − q2)2

1
4

(q1−q2)2 − (p1 − p2)2
,

{q1, q2} =
1

(q1 − q2)
1

4
(q1−q2)2 − (p1 − p2)2

. (9)

As already mentioned, these expressions were calculated in [11], directly from the PBs of the
In’s and Jm’s. However, a direct calculation becomes highly complicated for larger values of N ,
and one needs to use the results obtained in Sections 2.1 and 2.2. This defines the strategy we
will adopt in the next subsection.
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3.2 N = 3 Calogero

We set the following forms for the {p, p} and {p, q} brackets

{pi, pj} = − 2

q3ij
+ xij and {pi, qjk} = (δik − δji)pi + zi;jk,

with xij = −xji and zi;jk = −zi;kj .

A careful study of Jacobi identity for the triplet p0, p1, p2 finally yields

x12 = x23 = x31 ≡ x0.

Consistency conditions on the z coefficients read

z1;jk + z2;jk + z3;jk = 0 ∀ j 6= k, zi;12 + zi;23 + zi;31 = 0 ∀ i.

Explicit resolution of the Poisson bracket structure can then be achieved and yields

zi;jk = −
(

qjk
qii2qii3

)3 ni;jk
d

with (i, i2, i3) = circ.perm.(1, 2, 3).

Two forms of n coefficients are defined depending on which independent indices are present.
One gets

ni;jk = −qijqik
{
q2ijq

2
ik

(
−q3ijp2j + q3ikp

2
k

)
+ pi(pj − pk)q2ijq

2
ik

(
qij +

1

2
qik

)
q2

− pjpkq2ijq2ikqjk
(
q2jk + 3qikqij

)
+

1

2
q2qjk

(
qij + qik

)2}
x0 − q2(qij + qik)2,

ni;ij =

{
−(qijqjkqki)

3(pj − pi)(pj − pk) +
1

2
q2qijqikqjk(qij + qik)(qik + qjk)

}
x0

+ 4q3ik − 2qijqjk
(
q2ik + qijqjk

)
.

Here it is understood that (i, j, k) is any permutation of the three indices 1, 2, 3. In addition
one defines

d = −q2
(
p1(q12 + q13) + p2(q23 + q21) + p3(q31 + q32)

)
, q2 = q212 + q223 + q213.

Finally the single, pure qij bracket reads

{q12, q23} = −n12n23
2d

,

n12n23 = q12q13q23x0
{

(q12q13q23)
2(p1p2(p1 − p2) + p2p3(p2 − p3) + p1p3(p1 − p3))

+ q223(q12 − q31)p1 − q213(q23 − q12)p2 − q212(q13 + q23)p3
}

+ q2
{
p1q23(q12 + q13) + p2q13(q12 + q32)− p3q12(q13 + q23)

}
.

The quantity x0 is explicitly obtained as a very complicated rational function of all dynamical
variables p and qi − qj . It can be characterized however as the single solution of the differential
equation (D being defined in Corollary 1)

Dx0 =
x0

q12q23q31d

{
q23
(
q412 + q413

)
p21 + q31

(
q421 + q423

)
p22 + q12

(
q431 + q431

)
p23

+ p2p3q23
(
2q423 + 3q12q

2
23q13 − q212q213

)
+ p1p2q12

(
2q412 + 3q23q

2
12q13 − q223q213

)
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+ p1p3q31
(
2q413 − 3q23q

2
13q12 − q223q212

)
+

(q2)3

4q12q23q31

}
+

2
(
q613 + q612 + q623

)
− 6q223q

2
12q

2
13

(q12q23q31)3d
,

with the particular value at q12 = q23

x0
∣∣
q12=q23

= −18
81− 3q212(p3 + p1 − 2p2)

2 − 4q412(p2 − p1)(p1 − p3)2(p3 − p2)
q13q212g(q12)g(−q12)

with

g(q12) = 27 + 27q12(p3 − p1) + 4q212(2p3 − p2 − p1)(p2 + p3 − 2p1)

+ 4q312(p2 − p1)(p3 − p1)(p3 − p2).

Note also that

x0 ∼
−2

q23q13q12
for q12 → 0

for q23 finite.

3.3 Particular cases

We present here some particular cases where the PBs simplify drastically. They correspond
to particular positions of the particles. Remark that in some cases, this choice of particular
positions make the Lax formalism ill-defined, but the PBs are themselves well-defined.

3.3.1 Three free particles

If we consider q12 = q23 →∞, the three particles are far away one from each other, so that they
can be considered as decoupled. Indeed, in that case, the PBs simplify to

{qi, qj} = 0, {pi, qj} = −δijpi, {pi, pj} = − 2

q3ij
.

One recognizes the second PB structure of free particles.
Let us note that in order to take properly the limit, one has to explicitly use the behavior

x0 ∼
9

4(p2 − p1)(p2 − p3)q512
when q23 = q12 →∞.

3.3.2 One free particle

If we now consider that only one particle, say particle 1, is far from the two others, one has
to take the limit q12 → ∞ keeping q23 finite. The first particle (associated to the index 1)
decouples while the particles 2 and 3 still interact. Indeed, in this case, the PBs simplify to

{q1, qj} = 0, {pj , q1} = −δ1jp1, {p1, qj} = −δ1jp1, {p1, pj} = − 2

q31j
∀ j,

{q2, q3} =
−2 q23

q223(p2 − p3)2 − 4
, {p2, p3} = − 2

q323
,

{pj , qk} = −δkjpj + zkj , j, k = 2, 3,

z2;12 = − p2 − p3
q223(p2 − p3)2 − 4

, z1;12 = 0, z1;23 = 0,
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{q12, q23} = − 2q23
q223(p2 − p3)2 − 4

.

One recovers indeed zjk such as computed in (9). Again, one needs to know that for q12 →∞,

x0 ∼
2

q223(p
2
1 − p1(p3 − p2) + p2p3) + 1

(
−1/q23

(q23 + q12)q12
+

(p3 − p2)(2p1 − p3 − p2)q223
(q223(p3 − p2)2 − 4)(q23 + q12)q212

)
to get a correct answer.

4 Dynamical r-matrix algebra for N = 2 Calogero

4.1 The quadratic algebra

Let us now formulate the Poisson bracket structure (9) in terms of an r-matrix structure. We
postulate that a quadratic formulation mimicking (5) will be adequate for this second Poisson
bracket, although both a and s matrices will be expected to be dynamical. We recall that given
a classical Lax matrix `, the most general quadratic form for the associated Poisson structure is

{`1, `2} = a12`1`2 + `1b12`2 − `2c12`1 − `1`2d12, (10)

where consistency conditions imply that a12 = −a21, d12 = −d21, b12 = c21. Note that (10)
implies that the functions {tr `m, m ∈ Z+} Poisson-commute if a + b = c + d. A more general
trace formula, tr(γ−1`)m, occurs whenever a scalar matrix γ exists such that

a12γ1γ2 + γ1b12γ2 − γ2c12γ1 − γ1γ2d12 = 0,

see [17].
Dynamical dependence of abcd now is assumed to be solely on coordinates qi, i = 1, . . . , n,

on a dual h∗ of the Cartan subalgebra h in sl(n,C).
In the 2 sites case we get

` =

 p1
1

q12
−1

q12
p2

 .

The PB deduced from (9) reads

{`1, `2} =
1

q12



0
p1
q12

− p1
q12

0

− p1
q12

− 2

(q12)2
0

p2
q12

p1
q12

0
2

(q12)2
− p2
q12

0 − p2
q12

p2
q12

0


. (11)

As in the linear case (3), (4), associativity for the PB structure (10) is implied by algebraic
consistency conditions (Yang–Baxter classical equations) for a, b, c, d, provided the a priori
undetermined bracket {r12, `3}, r = a, b, c, d, be of an algebraic form. We postulate here the
following form for this PB

{r12, `3} = εR(h3∂r12)`3 + εL`3h3∂r12, (12)
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h∂ =
n∑

i=1

µeii ⊗
∂

∂qi
, (13)

where eii ∈ h, εR, εL are c-numbers to be determined. Notice the difference in homogeneity
factors in l with respect to the linear case (4).

We will see below that this postulate is consistent and the correct choice of parameters ε is

εL = εR =
1

2
.

A solution to express the PB (11) as a quadratic form is given by

a12 = d12 =


0 0 0 0

0
−w1

2q12

1

2q12
0

0
−1

2q12

w1

2q12
0

0 0 0 0

 , b12 = c21 = c12 =


−w1

2q12
0 0

1

2q12
0 0 0 0
0 0 0 0
−1

2q12
0 0

w1

2q12

 ,

where w1 is a free parameter.

Jacobi identity for the quadratic PB is then ensured, given (12) by the following classical
dynamical Yang–Baxter equations

[a12, a13] + [a12, a23] + [a32, a13] +
1

2

(
h3∂a12 + h1∂a23 + h2∂a31

)
= 0, (14)

[d12, d13] + [d12, d23] + [d32, d13] +
1

2

(
h3∂d12 + h1∂d23 + h2∂d31

)
= 0, (15)

[a12, c13 + c23] + [c13, c23] +
1

2

(
−h3∂a12 + h1∂c23 − h2∂c13

)
= 0, (16)

[d12, b13 + b23] + [b13, b23] +
1

2

(
−h3∂d12 + h1∂b23 − h2∂b13

)
= 0. (17)

In the absence of dynamical term, one would recover the usual classical quadratic algebra [17].

A connection between the classical DYB equations associated with quadratic and linear Pois-
son brackets is established as follows: In the simplest case of Poisson commutation of traces
when a + b = c + d in (10) the matrix r ≡ a + b obeys the linear dynamical Yang–Baxter
equation obtained from (3), (4), that is, with two derivative terms provided that a, b, c, d obey
(14)–(17), coupled DYB with three derivative terms.

This result however does not imply that (3) and (10) are identified as consistent first and
second Poisson structure for l since the algebraic forms (14)–(17) require in addition respectively
the identification of the Poisson brackets of l with r or a, b, c, d as (4) or (12) which is not implied
in any way by the form of PB’s (3) and (10). In other words, contrary to the non-dynamical case
(Sklyanin bracket) one cannot establish that the quadratic form (10) be a consistent Poisson
structure solely from the fact that (3) be one such structure even if (14)–(17) hold. One then
immediately observes that (14)–(17) is a classical limit (~ → 0) of a set of 4 dynamical Yang–
Baxter equations first formulated in [6]

A12(q)A13

(
q − εRh(2)

)
A23(q) = A23

(
q − εRh(1)

)
A13(q)A12

(
q − εRh(3)

)
, (18)

D12

(
q + εLh

(3)
)
D13(q)D23

(
q + εLh

(1)
)

= D23(q)D13

(
q + εLh

(2)
)
D12(q), (19)

A12(q)C13

(
q − εRh(2)

)
C23(q) = C23

(
q − εRh(1)

)
C13(q)A12

(
q + εLh

(3)
)
, (20)

D12

(
q − εRh(3)

)
B13(q)B23

(
q + εLh

(1)
)

= B23(q)B13

(
q + εLh

(2)
)
D12(q), (21)
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with the particular choice of “weight parameters” εL = εR = 1
2 . The classical limit is defined

by setting

R(q) = I + ~r(q) + o
(
~2
)
, R = A,B,C,D and r = a, b, c, d,

h(i) = ~hi + o
(
~3
)
,

and keeping the order ~2 in (18)–(21), orders 1 and ~ being trivial.

These 4 equations are in turn characterized as sufficient conditions for associativity of a quan-
tum quadratic dynamical exchange algebra defined generically in [6]

A12(q)K1

(
q − εRh(2)

)
B12(q)K2

(
q + εLh

(1)
)

= K2

(
q − εRh(1)

)
C12(q)K1

(
q + εLh

(2)
)
D12(q)

assuming a set of zero-weight conditions

εR
[
h(1) + h(2), A12

]
= εL

[
h(1) + h(2), D12

]
= 0,[

εRh
(1) − εLh(2), C12

]
=
[
εLh

(1) − εRh(2), B12

]
= 0,

and unitary hypothesis

A12A21 = D12D21 = I⊗ I, C12 = B21.

Altogether, these relations ensure associativity of the product in the dynamical algebra.

Note that the free parameter w1 is the signature in this classical limit of one particular
gauge covariance of the dynamical Yang–Baxter equation for A, pointed out, e.g., in [5] under
which diagonal coordinates dij of R-matrix on basis elements eij ⊗ eji in Mn(C) ⊗ Mn(C)
contain constant parameters gij ≡ fi − fj and fi are arbitrary non-dynamical c-numbers. Here
~w1 ≡ f1 − f2.

4.2 Comparison with the first Poisson bracket r-matrix

We recall that the first Poisson bracket of rational Calogero–Moser model is expressed linearly
in terms of the Lax matrix L following the formulation (2). The r-matrix takes the form

r =
∑
i 6=j

1

qi − qj
eij ⊗ eji +

∑
k 6=j

1

qk − qj
ekk ⊗ ekj .

It is interpreted [2, 3, 24, 31] as a combination r12 = d12 + c12 of two matrices realizing
with b12 ≡ c21 and a = d + c − b a classical semi-dynamical reflection algebra corresponding
to the choice εL = 0, εR = 1 in (18)–(21). In particular the symmetric part of r is now a sum
1
2(b + c) of two matrices with respective weights (0, 1) and (1, 0) under adjoint action of h ⊕ h.
It is therefore not related with the abcd quadruplet realizing the second Poisson structure of
the rational CM Lax matrix, although the d matrices themselves are identical. The second CM
bracket is therefore not realized as a Li–Parmentier-type quadratization of the first CM bracket.
This counterexample arising in the simplest available situation for dynamical r-matrices thus
eliminates any possibility of extending directly the Sklyanin–Li–Parmentier procedure for higher
Poisson brackets to the case of dynamical r-matrices.

Curiously enough a quadratic Poisson bracket involving the components a, b, c, d deduced
from the r-matrix of the first CM bracket does exist: it arises in the formulation of the first PB
of the Ruijsenaars–Schneider rational Lax matrix [28, 31].
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5 Open questions

The formulation of a simple algebraic relation à la Sklyanin between first and second Poisson
bracket structure in the context of Lax matrices where dynamical r-matrices arise in the linear
expression of their first PB seems thus, if not altogether excluded, at least unreachable at the
moment. Other issues remain open at this time:

• Define the crossed r-matrix formulation for L and Q, and the r-matrix structure for Q
when N = 2. In this way a complete understanding of the second PB structure including
the {I, J} and {J, J} brackets, will be achieved.

• Define the r-matrix formulation describing the second PB structure forN = 2 Ruijsenaars–
Schneider model (starting with the rational case). In fact a form for this second PB
structure has been conjectured [1] but not explicitly built in terms of Lax matrix (only in
terms of trace invariants extending naturally the variables I and J). One conjectures here
that some cubic-l dependent form will be relevant.

• Define the r-matrix formulation for N = 3. The complexity of the expressions for the coor-
dinate Poisson brackets seems to present a difficult technical challenge here. This technical
complexity indicates in any case that the r-matrix quadruplet in a postulated quadratic
form will exhibit a dependence on both p and q variables, suggesting that the dynamical
dependance here goes beyond the Gervais–Neveu–Felder formulation (4). A similar issue
arose some time ago [12] for N ≥ 4 elliptic Calogero–Moser Lax formulation without spec-
tral parameter, and has not been satisfactorily solved since. The issue of p, q dependant
r-matrices is in any case a yet mostly unexplored one which we hope to come back to in
a near future.

Acknowledgements

This work was sponsored by CNRS, Université de Cergy-Pontoise, Université de Savoie and
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