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Abstract. In this paper analytic contractions have been established in the R → ∞ con-
traction limit for exactly solvable basis functions of the Helmholtz equation on the two-
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1 Introduction

In the recent series of papers [5, 6, 7, 9, 12, 13, 14, 15, 16] a special class of Inönu–Wigner
contractions was introduced, namely “analytic contractions”. For an analytic contraction the
contraction parameter R, which is the radius of an n-dimensional sphere or pseudosphere u2

0 +
ε~u2 = R2, (ε = ±1) figures in the separated coordinate systems, and in the eigenfunctions and
the eigenvalues for the Laplace–Beltrami operator (or Helmholtz equation). With the help of
analytic contractions we have established the connection between the procedure of separation
of variables for homogeneous spaces with constant (positive or negative) curvature and flat
spaces. For instance it has been indicated how the systems of coordinates on the sphere S2 and
hyperboloid H2 transform to four systems of coordinates on Euclidean space E2.

The goal of this note is to establish the contraction limit R → ∞ for eigenfunctions (or
basis functions) of the two-dimensional Helmholtz equation on the two-sheeted hyperboloid
H2 : u2

0 − u2
1 − u2

2 = R2,

∆LBΨ = −σ(σ + 1)

R2
Ψ, σ = −1/2 + iρ, (1)

where the Laplace–Beltrami operator in the curvilinear coordinates (ξ1, ξ2) has the form

∆LB =
1
√
g

∂

∂ξi
√
ggik

∂

∂ξk
, g = |det(gik)|, gikg

kµ = δµi ,

?This paper is a contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions”.
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with the following relation between local metric tensor gik(ξ), (i, k = 1, 2) and the ambient space
metric Gµν = diag(1,−1,−1),

gik(ξ) = Gµν
∂uµ

∂ξi
∂uν

∂ξk
, i, k = 1, 2, µ, ν = 0, 1, 2.

It is well known that the Helmholtz equation (1) on the two-sheeted hyperboloid admits sep-
aration of variables in nine orthogonal systems of coordinates [10, 18]. These nine systems of
coordinates can be separated into three classes. The first class includes three systems of coordi-
nates which are of subgroup type: viz. pseudo-spherical, equidistant and horicyclic coordinates,
the second class includes three non subgroup type of coordinates: semi circular parabolic, elliptic
parabolic and hyperbolic parabolic. The last two coordinate systems in the general case contain
the dimensionless parameter γ and in the limiting cases when γ → 0 or γ → ∞ transform to
horicyclic or equidistant systems of coordinates. These systems of coordinates have an important
property; the Helmholtz equation (1) admits the exact solution (which we call exactly solvable)
in terms of “classical” special functions, namely Bessel and Legendre functions or hypergeo-
metric one. The third class of coordinates consists of elliptic, hyperbolic and semi hyperbolic
coordinates each of which belong to the class of non subgroup type. Two of them, elliptic and
hyperbolic coordinates, also contain a dimensionless parameter which is included in the metric
tensor and Laplace–Beltrami operator. The Helmholtz equation (1) after the separation of vari-
ables in these coordinates leads to the two Heun type differential equations with a four singular
points (which we call non-exactly solvable equations) and whose solutions appear as Lame or
Lame–Wangerin functions [3, 4, 8]. In contrast to the classical special functions which can be
appear in terms of hypergeometric functions, the Lame or Lame–Wangerin functions are defined
in terms of infinite series where the expansion coefficients can not be written in explicit form
because they are the subject the third or higher order recurrence relations.

The contraction limit of a basis function is not a trivial task in the case of exactly or non-
exactly solvable equations. Some calculations come from the papers [5, 6, 7], but many of them
are not known till now.

In this paper we restrict ourselves to the contraction limit R→∞ for four kinds of orthogonal
basis functions: horocyclic, semi circular parabolic, elliptic parabolic and hyperbolic parabolic,
which is new. We shall present normalizable eigenfunctions but do not give their normalization
constants explicitly, except in the case of horocyclic coordinates which is particularly simple.
Here we have also included for completeness the contraction for pseudo spherical and equidistant
wave functions (see [7, 12]).

We hope that our results beside possible application to the theory of special functions will be
useful also in the investigation of super integrable systems which admit separation of variables
on the two-dimensional hyperboloid. We think that they can be generalized for the three and
higher dimensional hyperbolic space when these six systems of coordinates are the sub systems
of more complicated systems of coordinates and where the procedure of variable separation leads
to similar differential equations.

2 Contractions

2.1 Pseudo-spherical basis to polar

The first coordinate system is the pseudo-spherical system (τ > 0, ϕ ∈ [0, 2π))

u0 = R cosh τ, u1 = R sinh τ cosϕ, u2 = R sinh τ sinϕ,
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and the orthogonal basis functions of equation (1) are [7, 8, 12, 13]

ΨS
ρm(τ, ϕ) = P

|m|
iρ−1/2(cosh τ)eimϕ,

where Pµν (z) is the Legendre function.

In the contraction limit R→∞ we have

sinh τ ∼ τ ∼ r

R
, ϕ→ ϕ, ρ ∼ kR,

where (r, ϕ) are the polar coordinates in Euclidean plane. There is now the matter of how this
contraction affects the basic eigenfunctions that can be computed on the hyperboloid. Using the
well-known representations of the Legendre function in terms of the hypergeometric function [1],

P
|m|
iρ−1/2(cosh τ) =

Γ(1/2 + iρ+ |m|)
Γ(1/2 + iρ− |m|)

(
sinh

τ

2

)|m| (
cosh

τ

2

)|m| 1

|m|!

× 2F1

(
1/2 + iρ+ |m|, 1/2− iρ+ |m|; 1 + |m|;− sinh2 τ

2

)
,

asymptotic formulae for gamma-functions at large z [1],

Γ(z + α)

Γ(z + β)
≈ zα−β,

and taking into account that at R→∞

F

(
1

2
+ |m|+ iρ,

1

2
+ |m| − iρ; 1 + |m|;− sinh2 τ

2

)
≈ 0F1

(
1 + |m|;−k

2r2

4

)
=

(
2

kr

)|m|
|m|!J|m|(kr),

where Jν(z) is the Bessel function [2], we get

P
|m|
iρ−1/2(cosh τ) ≈ P |m|ikR−1/2

(
1 +

r2

2R2

)
≈ (−kR)|m|J|m|(kr).

Finally, the pseudo-spherical functions in the contraction limit R→∞ take the form

ΨS
ρm(τ, ϕ) ≈ (−kR)|m|J|m|(kr)e

imϕ,

i.e., the pseudo-spherical basis up to the constant factor contracts into polar one. The correct
correspondence to give limiting orthogonality relations in the polar coordinates r and ϕ can be
obtained using the contraction limit of the normalization constant (see [7]) and the results

sinh τdτdϕ→ 1

R2
rdrdϕ, δ(ρ− ρ′)→ 1

R
δ(k − k′),

and ∫ ∞
0

J|m|(kr)J|m|(k
′r)rdr =

1

k
δ(k − k′).
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2.2 Equidistant basis to Cartesian

The coordinate system is the following one (τ1, τ2 ∈ R)

u0 = R cosh τ1 cosh τ2, u1 = R cosh τ1 sinh τ2, u2 = R sinh τ1,

From the above definition we have that

sinh τ1 =
u2

R
, tanh τ2 =

u1

u0

and in the limit of R→∞ we get

sinh τ1 ∼ τ1 ∼
y

R
, sinh τ2 ∼ τ2 ∼

x

R
, (2)

where x and y are the Cartesian coordinates in the Euclidean plane arising from contraction
R→∞. The orthogonal wave function takes the form [7, 8, 12, 13]

ΨEQ
ρν (τ1, τ2) = (cosh τ1)−1/2P iρ−1/2+iν(−ε tanh τ1) exp(iντ2),

where ε = ±1.
To perform the contraction we use the formula [1]

Pµν (z) = 2µ
√
π
(
1− z2

)−µ/2[2F1

(
−1

2(µ+ ν), 1
2(1− µ+ ν); 1

2 ; z2
)

Γ
(

1
2(1− (µ+ ν)

)
Γ
(
1 + 1

2(ν − µ)
)

− 2z
2F1

(
1
2(1− µ− ν), 1 + 1

2(ν − µ); 3
2 ; z2

)
Γ
(

1
2(1 + ν − µ)

)
Γ
(
−1

2(ν + µ)
) ]

, (3)

and rewrite the Legendre function in terms of the hypergeometric function

P iρiν−1/2(−ε tanh τ1) =

√
π2iρ(cosh τ1)iρ

Γ
(

3
4 − a

)
Γ
(

3
4 − b

){2F1

(
1

4
− a, 1

4
− b; 1

2
; tanh2 τ1

)

+ 2ε tanh τ1
Γ
(

3
4 − a

)
Γ
(

3
4 − b

)
Γ
(

1
4 − a

)
Γ
(

1
4 − b

)2F1

(
3

4
− a, 3

4
− b; 3

2
; tanh2 τ1

)}
,

where a = i(ρ+ ν)/2, b = i(ρ− ν)/2. In the contraction limit R→∞ we put

ρ ∼ kR, ν ∼ k1R.

Then using also (2) we have the asymptotic formulae

lim
R→∞

2F1

(
1

4
− a, 1

4
− b; 1

2
; tanh2 τ1

)
= 0F1

(
1

2
;−y

2k2
2

4

)
= cos k2y, (4)

lim
R→∞

2F1

(
3

4
− a, 3

4
− b; 3

2
; tanh2 τ1

)
= 0F1

(
3

2
;−y

2k2
2

4

)
=

1

k2y
sin k2y, (5)

where k2
1 + k2

2 = k2 give us the contraction limit for P iρiν−1/2(−ε tanh τ1),

P iρiν−1/2(−ε tanh τ1) ≈ P ikRik1R−1/2

(
−ε y

R

)
≈

√
π2ikR exp(iεk2y)

Γ
(

3
4 −

iR(k+k1)
2

)
Γ
(

3
4 −

iR(k−k1)
2

) ,
and finally for ΨEQ

ρν

ΨEQ
ρν (τ1, τ2) ≈

√
π2ikR

Γ
(

3
4 −

iR(k+k1)
2

)
Γ
(

3
4 −

iR(k−k1)
2

) exp(ik1x+ iεk2y).

The last result up to the constant factor coincides with the contraction limit of equidistant wave
function to Cartesian one in Euclidean space.



Separation of Variables and Contractions on Two-Dimensional Hyperboloid 5

2.3 Horocyclic basis to Cartesian in E2

In the notation of the article mentioned horocyclic coordinates on the hyperboloid can be written
(x̄ ∈ R, ȳ > 0)

u0 = R
x̄2 + ȳ2 + 1

2ȳ
, u1 = R

x̄2 + ȳ2 − 1

2ȳ
, u2 = R

x̄

ȳ
.

From these relations we see that

x̄ =
u2

u0 − u1
, ȳ =

R

u0 − u1
.

In the limit as R→∞ we obtain

x̄→ y

R
, ȳ → 1 +

x

R
,

where x and y are the Cartesian coordinates in the Euclidean plane. The horicyclic basis
functions satisfying the orthonormality condition

R2

∫ ∞
−∞

dx̃

∫ ∞
0

Ψ∗HO
ρ′s′ (ỹ, x̃)ΨHO

ρs (ỹ, x̃)
dỹ

ỹ2
= δ(ρ− ρ′)δ(s− s′),

have the form

ΨHO
ρs (x̄, ȳ) =

√
ρ sinhπρ

2R2π3

√
ȳKiρ(|s|ȳ)eisx̄,

where Kν(x) is the Macdonald function [2].

To effect the correct contraction we further require that ρ → kR, and s → k2R where
k =

√
k2

1 + k2
2. Consequently we need the asymptotic formula for

KikR(k2(R+ x))

as R→∞. For this we use the asymptotic formula [2]

Kiν(x) ∼
√

2π

(ν2 − x2)1/4
exp

(
−πν

2

)
sin
(π

4
−
√
ν2 − x2 + ν cosh−1 ν

x

)
, (6)

valid if ν > x � 1 and both ν and x are large and positive. If we use this formula for the
Macdonald functions and take into account that

√
ρ sinhπρ ∼

√
kR

2
e
kπR
2 ,

then we finally get

ΨHO
ρs (ȳ, x̄) ∼ 1

Rπ

√
k

2k1
sin(k1x−M) exp(ik2y), M =

π

4
+R

[
k cosh−1 k

k2
− k1

]
.

The correct correspondence to give the limiting result in the Cartesian coordinates x and y can
be obtained using the delta-function contractions

δ(ρ− ρ′)δ(s− s′) ∼ k

k1R2
δ(k1 − k′1)δ(k2 − k′2).
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2.4 Semi circular parabolic to Cartesian coordinates

These coordinates are given by the formulae (η, ξ > 0)

u0 = R

(
ξ2 + η2

)2
+ 4

8ξη
, u1 = R

(
ξ2 + η2

)2 − 4

8ξη
, u2 = R

(
η2 − ξ2

)
2ξη

.

In terms of these coordinates we see that

η2 =

√
R2 + u2

2 + u2

u0 − u1
, ξ2 =

√
R2 + u2

2 − u2

u0 − u1
.

In the limit as R→∞ we have

η2 = 1 +
x+ y

R
, ξ2 = 1 +

x− y
R

.

We see that in the contraction limit the Cartesian variables x and y are mixed up. To have
a correct limit we can introduce the equivalent semi-circular parabolic system of coordinate
connected with previous one by the rotation about axis u0 through the angle π/4,

u0 = R

(
η2 + ξ2

)2
+ 4

8ξη
, u1 = R

√
2

2

(
η2 − ξ2

2ξη
+

(
η2 + ξ2

)2 − 4

8ξη

)
,

u2 = R

√
2

2

(
η2 − ξ2

2ξη
−
(
η2 + ξ2

)2 − 4

8ξη

)
.

In terms of a new coordinates we have that

η2 =

√
2R2 + (u2 − u1)2 − (u2 − u1)√

2u0 − (u2 + u1)
, ξ2 =

√
2R2 + (u2 − u1)2 + (u2 − u1)√

2u0 − (u2 + u1)
,

and in the contraction limit R→∞ we obtain

η2 → 1 +
√

2
x

R
, ξ2 → 1 +

√
2
y

R
.

The suitable set of basis functions are [4, 8]

ΨSCP
ρs (ξ, η) =

√
ξηJiρ

(√
sξ
)
Kiρ

(√
sη
)
,

for s > 0 and

ΨSCP
ρs (ξ, η) =

√
ξηKiρ

(√
−sξ

)
Jiρ
(√
−sη

)
,

for s < 0. The correct limit is then obtained by choosing s = R2(k2
2 − k2

1) and ρ = kR, where
k2

1 + k2
2 = k2. To find the contraction limit of the basis function let us use the asymptotic

relation for the Bessel function of pure imaginary index [17]

2πJip(z) ∼
√

2π

(p2 + z2)1/4
exp

(
i
√
p2 + z2 − ip sinh−1 p

z
− iπ

4

)
exp

(pπ
2

)
,

and for the MacDonald function the formula (6). Then

Jiρ
(√
sξ
)
∼ JikR

(
R
√
k2

2 − k2
1

√
1 +
√

2
y

R

)
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∼ e
π
2
kR

2
1
4
√

2πk2R
exp

(
ik2y + iR

[
√

2k2 − k sinh−1 k√
k2

2 − k2
1

]
− iπ

4

)

and

Kiρ(
√
sη) ∼ KikR

(
R
√
k2

2 − k2
1

√
1 +
√

2
x

R

)
∼ 2

1
4
√
πe−

π
2
kR

√
Rk1

sin

(
π

4
− xk1 +R

[
√

2k cosh−1 k√
k2

2 − k2
1

− k1

])
.

Using the last asymptotic formulae it is easily to get for a large R

ΨSCP
ρs (ξ, η) ∼ −1

R
√

2k1k2
exp

(
ik2y + iδ1 − i

π

4

)
sin
(
k1x−

π

4
+ δ2

)
,

where

δ1 + δ2 =
√

2R(k1 + k2)−Rk sinh−1

(
k2 + k1

k2 − k1

)
,

δ1 − δ2 =
√

2R(k2 − k1)−Rk sinh−1

(
k2 − k1

k2 + k1

)
.

These expressions are arrived at under the assumption that k2
2 > k2

1. In case of k2
2 < k2

1 we can
make the interchanges x with y, and k1 with k2.

2.5 Elliptic parabolic basis to parabolic

Elliptic parabolic basis contracts into a parabolic one on E2. In these coordinates the points on
the hyperbola are given by [θ ∈ (−π/2, π/2), a ≥ 0],

u0 = R
cosh2 a+ cos2 θ

2 cosh a cos θ
, u1 = R

sinh2 a− sin2 θ

2 cosh a cos θ
, u2 = R tanh a tan θ.

From these relations we see that

cos2 θ =
u0 −

√
u2

0 −R2

u0 − u1
, cosh2 a =

u0 +
√
u2

0 −R2

u0 − u1
.

In the limit as R→∞ we obtain

cos2 θ → 1− η2

R
, cosh2 a→ 1 +

ξ2

R
,

where the parabolic coordinates (ξ, η) are given by

x =
1

2

(
ξ2 − η2

)
, y = ξη, ξ, η > 0.

The elliptic parabolic wave functions on the hyperboloid have the form [4]

ΨEP
ρs (a, θ) =

√
cos θP iρis−1/2(sin θ)P isiρ−1/2(tanh a).

To effect the contraction we take s→ κR and ρ→ kR and

tanh a ∼ ξ√
R
, sin θ ∼ η√

R
.
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The separation equation(
d2

da2
+ s2 − ρ2 + 1/4

cosh2 a

)
F (a) = 0,

becomes(
d2

dξ2
+ λ+ k2ξ2

)
F (ξ) = 0,

where λ is now the parabolic separation constant and we impose the condition

λ = R
(
κ2 − k2

)
,

or

κ = k +
λ

2kR
+O

(
R−2

)
.

This requires taking the limit of a and θ the dependent part of the eigenfunctions P isiρ−1/2(tanh a)

and P iρis−1/2(sin θ). The limit can be established from the known representation of the Legendre

function (3). This results in the asymptotic formula

P
ikR+ iλ

2k

ikR− 1
2

(
ξ√
R

)
→ 2ikR+ 1

4
+ iλ

4k

Γ
(

3
4 −

iλ
4k − ikR

)D 1
2(iλk−1)

(√
−2ikξ

)
,

where Dν(z) is a parabolic cylinder function [1]

Dν(z) = 2ν/2
√
πe−

z2

4

[
1

Γ
(

1−ν
2

)1F1

(
−ν

2
;
1

2
;
z2

2

)
− z

√
2

Γ
(
−ν

2

)1F1

(
1− ν

2
;
3

2
;
z2

2

)]
.

If we look at the theta-dependent part of the eigenfunctions and the corresponding limit taking
sin θ = η√

R we then obtain the limit

P ikR
ikR+ iλ

2k
− 1

2

(
η√
R

)
→ 2ikR+ 1

4
+ iλ

4k

Γ
(

3
4 −

iλ
4k − ikR

)D− 1
2(iλk+1)

(√
−2ikη

)
,

and finally

ΨEP
ρs (a, θ) ∼ 22ikR+ 1

2
+ iλ

2k[
Γ
(

3
4 −

iλ
4k − ikR

)]2D− 1
2

(
iλ
k

+1
)(√−2ikη

)
D 1

2

(
iλ
k
−1
)(√−2ikξ

)
.

From these expressions we see that we do indeed obtain the correct asymptotic limit.

2.6 Hyperbolic parabolic to a Cartesian basis

Hyperbolic parabolic basis contracts into a Cartesian one on E2. In these coordinates the points
on the hyperbola are given by [θ ∈ (0, π), b > 0],

u0 = R
cosh2 b+ cos2 θ

2 sinh a sin θ
, u1 = R

sinh2 b− sin2 θ

2 sinh a sin θ
, u3 = R cot θ coth b.

From these relations we see that

cos2 θ =
u0 −

√
u2

1 +R2

u0 − u1
, cosh2 b =

u0 +
√
u2

1 +R2

u0 − u1
.
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In the limit as R→∞ we can choose

cos2 θ → y2

2R2
, cosh2 b→ 2

(
1 +

x

R

)
.

The hyperbolic parabolic basis function on hyperbolid can be chosen in the form [4]

ΨHP(b, θ) = (sinh b sin θ)1/2P iρis−1/2(cosh b)P iρis−1/2(cos θ). (7)

To proceed further with this limit we take ρ2 ∼ k2R2 and s2 ∼
(
k2

1 − k2
2

)
R2 (the case of s2 < 0,

or k2
1 < k2

2, corresponds to the discrete spectrum of constant s, and we do not consider this case
here) where k2

1 +k2
2 = k2, then using the relation between Legendre function and hypergeometric

functions (3) and formulae (4), and (5), we obtain for θ depending part of basis function

√
sin θP iρis−1/2(cos θ) ∼ P ikR

i
√
k21−k22R−1/2

(
y√
2R

)
∼ 2ikR

√
π exp(ik2y)

Γ
(

3
4 −

iR
2

(
k +

√
k2

1 − k2
2

))
Γ
(

3
4 −

iR
2

(
k −

√
k2

1 − k2
2

)) .
For the limit of the b dependent part of the eigenfunctions we must proceed differently. In fact
we need to calculate the limit of

P ikR
i
√
k21−k22R−1/2

(√
2
(

1 +
x

R

))
as R→∞. We know that the leading terms of this expansion have the form

A exp(ik1x) +B exp(−ik1x),

and we now make use of this fact. By this we mean that

lim
R→∞

P ikR
i
√
k21−k22R−1/2

(√
2
(

1 +
x

R

))
= A exp(ik1x) +B exp(−ik1x),

where the constants A and B depend on R. It remains to determine A and B. To do this let us
consider x = 0. We then need to determine the following limit

lim
R→∞

P ikR
− 1

2
+iR
√
k21−k22

(√
2
)

= A+B. (8)

From the integral representation formula [1]

Γ(−ν − µ)Γ(1 + ν − µ)

Γ(1/2− µ)

√
π

2
Pµν (z)

=
(
z2 − 1

)−µ/2 ∫ ∞
0

(z + cosh t)µ−1/2 cosh ([ν + 1/2] t) dt, (9)

the above limit requires us to calculate as R→∞∫ ∞
0

(√
2 + cosh t

)ikR−1/2
cos

([
R
√
k2

1 − k2
2

]
t

)
dt.

It can be done using the method of stationary phase [11]. We obtain

P ikR
− 1

2
+iR
√
k21−k22

(√
2
)
∼

2
− 5

4
+ iR

2

(√
k21−k22−k

)
Γ
(

1
2 − ikR

)
Γ
[

1
2 − iR

(√
k2

1 − k2
2 + k

)]
Γ
[

1
2 + iR

(√
k2

1 − k2
2 − k

)]
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×
(

i

Rk1

)1/2
(
k1 −

√
k2

1 − k2
2

k +
√
k2

1 − k2
2

)iR√k21−k22 (
k

k − k1

)ikR
. (10)

By considering the expression for the derivatives of the Legendre function (9) at x = 0, we derive
the expression

d

dx
Pµν (z)

∣∣∣∣
x=0

∼ −ik1P
ikR

− 1
2

+iR
√
k21−k22

(√
2
)
∼ ik1(A−B),

then

P ikR
− 1

2
+iR
√
k21−k22

(√
2
)
∼ −A+B.

Comparing the above relation with (8), we obtain that A = 0 and B is equal to (10), that is

P iρ
is− 1

2

(cosh b)→ Be−ixk1 .

Finally, solution (7) contracts as follows

Ψρs(b, θ) ∼
2ikR
√
πB

Γ

(
3
4 − iR

k+
√
k21−k22
2

)
Γ

(
3
4 − iR

k−
√
k21−k22
2

) exp(ik2y − ik1x).

3 Conclusion

In this note we have constructed the contraction limit R→∞ for the unnormalized wave func-
tions which are the solution of the Helmholtz equation on the two dimensional two sheeted
hyperboloid in four coordinates systems, namely, horocyclic, semi circular parabolic, elliptic
parabolic and hyperbolic parabolic. Of course the complete analysis of the contraction prob-
lem must include also the solutions of Helmholtz equation in the three additional systems of
coordinates as elliptic, hyperbolic and semi hyperbolic. We will study this in the near future.

We have not presented limits associated with nonsubgroup coordinates. The extension of
these ideas to problems in higher dimensions is natural and will be presented in subsequent
work.
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