Loading [MathJax]/jax/output/HTML-CSS/jax.js

Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 11 (2015), 011, 24 pages      arXiv:1407.6817      https://doi.org/10.3842/SIGMA.2015.011

Rank 2 Nichols Algebras of Diagonal Type over Fields of Positive Characteristic

Jing Wang and István Heckenberger
Philipps-Universität Marburg, FB Mathematik und Informatik, Hans-Meerwein-Straße, 35032 Marburg, Germany

Received August 01, 2014, in final form February 02, 2015; Published online February 07, 2015

Abstract
The paper introduces a new method to determine all rank two Nichols algebras of diagonal type over fields of positive characteristic.

Key words: Nichols algebra; Cartan graph; Weyl groupoid; root system.

pdf (490 kb)   tex (30 kb)

References

  1. Andruskiewitsch N., About finite dimensional Hopf algebras, in Quantum Symmetries in Theoretical Physics and Mathematics (Bariloche, 2000), Contemp. Math., Vol. 294, Amer. Math. Soc., Providence, RI, 2002, 1-57.
  2. Andruskiewitsch N., Graña M., Braided Hopf algebras over non-abelian finite groups, Bol. Acad. Nac. Cienc. (Córdoba) 63 (1999), 45-78, math.QA/9802074.
  3. Andruskiewitsch N., Heckenberger I., Schneider H.-J., The Nichols algebra of a semisimple Yetter-Drinfeld module, Amer. J. Math. 132 (2010), 1493-1547, arXiv:0803.2430.
  4. Andruskiewitsch N., Schneider H.-J., Lifting of quantum linear spaces and pointed Hopf algebras of order p3, J. Algebra 209 (1998), 658-691, math.QA/9803058.
  5. Andruskiewitsch N., Schneider H.-J., Finite quantum groups and Cartan matrices, Adv. Math. 154 (2000), 1-45.
  6. Andruskiewitsch N., Schneider H.-J., Pointed Hopf algebras, in New Directions in Hopf Algebras, Math. Sci. Res. Inst. Publ., Vol. 43, Cambridge University Press, Cambridge, 2002, 1-68, math.QA/0110136.
  7. Andruskiewitsch N., Schneider H.-J., On the classification of finite-dimensional pointed Hopf algebras, Ann. of Math. 171 (2010), 375-417, math.QA/0502157.
  8. Cibils C., Lauve A., Witherspoon S., Hopf quivers and Nichols algebras in positive characteristic, Proc. Amer. Math. Soc. 137 (2009), 4029-4041, arXiv:0901.4408.
  9. Cuntz M., Heckenberger I., Weyl groupoids of rank two and continued fractions, Algebra Number Theory 3 (2009), 317-340, arXiv:0807.0124.
  10. Cuntz M., Heckenberger I., Weyl groupoids with at most three objects, J. Pure Appl. Algebra 213 (2009), 1112-1128, arXiv:0805.1810.
  11. Cuntz M., Heckenberger I., Reflection groupoids of rank two and cluster algebras of type A, J. Combin. Theory Ser. A 118 (2011), 1350-1363, arXiv:0911.3051.
  12. Heckenberger I., The Weyl groupoid of a Nichols algebra of diagonal type, Invent. Math. 164 (2006), 175-188.
  13. Heckenberger I., Rank 2 Nichols algebras with finite arithmetic root system, Algebr. Represent. Theory 11 (2008), 115-132, math.QA/0412458.
  14. Heckenberger I., Classification of arithmetic root systems, Adv. Math. 220 (2009), 59-124, math.QA/0605795.
  15. Heckenberger I., Schneider H.-J., Nichols algebras over groups with finite root system of rank two I, J. Algebra 324 (2010), 3090-3114.
  16. Heckenberger I., Schneider H.-J., Root systems and Weyl groupoids for Nichols algebras, Proc. Lond. Math. Soc. 101 (2010), 623-654, arXiv:0807.0691.
  17. Heckenberger I., Schneider H.-J., Right coideal subalgebras of Nichols algebras and the Duflo order on the Weyl groupoid, Israel J. Math. 197 (2013), 139-187, arXiv:0909.0293.
  18. Heckenberger I., Yamane H., A generalization of Coxeter groups, root systems, and Matsumoto's theorem, Math. Z. 259 (2008), 255-276, math.QA/0610823.
  19. Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
  20. Kharchenko V.K., A quantum analogue of the Poincaré-Birkhoff-Witt theorem, Algebra and Logic 38 (1999), 259-276, math.QA/0005101.
  21. Lusztig G., Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010.
  22. Nichols W.D., Bialgebras of type one, Comm. Algebra 6 (1978), 1521-1552.
  23. Rosso M., Quantum groups and quantum shuffles, Invent. Math. 133 (1998), 399-416.
  24. Schauenburg P., A characterization of the Borel-like subalgebras of quantum enveloping algebras, Comm. Algebra 24 (1996), 2811-2823.
  25. Semikhatov A.M., Virasoro central charges for Nichols algebras, arXiv:1109.1767.
  26. Semikhatov A.M., Tipunin I.Yu., The Nichols algebra of screenings, Commun. Contemp. Math. 14 (2012), 1250029, 66 pages, arXiv:1101.5810.
  27. Semikhatov A.M., Tipunin I.Yu., Logarithmic ^s(2) CFT models from Nichols algebras: I, J. Phys. A: Math. Theor. 46 (2013), 494011, 53 pages, arXiv:1301.2235.
  28. Woronowicz S.L., Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613-665.
  29. Woronowicz S.L., Differential calculus on compact matrix pseudogroups (quantum groups), Comm. Math. Phys. 122 (1989), 125-170.

Previous article  Next article   Contents of Volume 11 (2015)