|
SIGMA 11 (2015), 011, 24 pages arXiv:1407.6817
https://doi.org/10.3842/SIGMA.2015.011
Rank 2 Nichols Algebras of Diagonal Type over Fields of Positive Characteristic
Jing Wang and István Heckenberger
Philipps-Universität Marburg, FB Mathematik und Informatik, Hans-Meerwein-Straße, 35032 Marburg, Germany
Received August 01, 2014, in final form February 02, 2015; Published online February 07, 2015
Abstract
The paper introduces a new method to determine all rank two Nichols algebras of diagonal type over fields of positive characteristic.
Key words:
Nichols algebra; Cartan graph; Weyl groupoid; root system.
pdf (490 kb)
tex (30 kb)
References
-
Andruskiewitsch N., About finite dimensional Hopf algebras, in Quantum Symmetries in Theoretical Physics and Mathematics (Bariloche, 2000), Contemp. Math., Vol. 294, Amer. Math. Soc., Providence, RI, 2002, 1-57.
-
Andruskiewitsch N., Graña M., Braided Hopf algebras over non-abelian finite groups, Bol. Acad. Nac. Cienc. (Córdoba) 63 (1999), 45-78, math.QA/9802074.
-
Andruskiewitsch N., Heckenberger I., Schneider H.-J., The Nichols algebra of a semisimple Yetter-Drinfeld module, Amer. J. Math. 132 (2010), 1493-1547, arXiv:0803.2430.
-
Andruskiewitsch N., Schneider H.-J., Lifting of quantum linear spaces and pointed Hopf algebras of order p3, J. Algebra 209 (1998), 658-691, math.QA/9803058.
-
Andruskiewitsch N., Schneider H.-J., Finite quantum groups and Cartan matrices, Adv. Math. 154 (2000), 1-45.
-
Andruskiewitsch N., Schneider H.-J., Pointed Hopf algebras, in New Directions in Hopf Algebras, Math. Sci. Res. Inst. Publ., Vol. 43, Cambridge University Press, Cambridge, 2002, 1-68, math.QA/0110136.
-
Andruskiewitsch N., Schneider H.-J., On the classification of finite-dimensional pointed Hopf algebras, Ann. of Math. 171 (2010), 375-417, math.QA/0502157.
-
Cibils C., Lauve A., Witherspoon S., Hopf quivers and Nichols algebras in positive characteristic, Proc. Amer. Math. Soc. 137 (2009), 4029-4041, arXiv:0901.4408.
-
Cuntz M., Heckenberger I., Weyl groupoids of rank two and continued fractions, Algebra Number Theory 3 (2009), 317-340, arXiv:0807.0124.
-
Cuntz M., Heckenberger I., Weyl groupoids with at most three objects, J. Pure Appl. Algebra 213 (2009), 1112-1128, arXiv:0805.1810.
-
Cuntz M., Heckenberger I., Reflection groupoids of rank two and cluster algebras of type A, J. Combin. Theory Ser. A 118 (2011), 1350-1363, arXiv:0911.3051.
-
Heckenberger I., The Weyl groupoid of a Nichols algebra of diagonal type, Invent. Math. 164 (2006), 175-188.
-
Heckenberger I., Rank 2 Nichols algebras with finite arithmetic root system, Algebr. Represent. Theory 11 (2008), 115-132, math.QA/0412458.
-
Heckenberger I., Classification of arithmetic root systems, Adv. Math. 220 (2009), 59-124, math.QA/0605795.
-
Heckenberger I., Schneider H.-J., Nichols algebras over groups with finite root system of rank two I, J. Algebra 324 (2010), 3090-3114.
-
Heckenberger I., Schneider H.-J., Root systems and Weyl groupoids for Nichols algebras, Proc. Lond. Math. Soc. 101 (2010), 623-654, arXiv:0807.0691.
-
Heckenberger I., Schneider H.-J., Right coideal subalgebras of Nichols algebras and the Duflo order on the Weyl groupoid, Israel J. Math. 197 (2013), 139-187, arXiv:0909.0293.
-
Heckenberger I., Yamane H., A generalization of Coxeter groups, root systems, and Matsumoto's theorem, Math. Z. 259 (2008), 255-276, math.QA/0610823.
-
Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
-
Kharchenko V.K., A quantum analogue of the Poincaré-Birkhoff-Witt theorem, Algebra and Logic 38 (1999), 259-276, math.QA/0005101.
-
Lusztig G., Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010.
-
Nichols W.D., Bialgebras of type one, Comm. Algebra 6 (1978), 1521-1552.
-
Rosso M., Quantum groups and quantum shuffles, Invent. Math. 133 (1998), 399-416.
-
Schauenburg P., A characterization of the Borel-like subalgebras of quantum enveloping algebras, Comm. Algebra 24 (1996), 2811-2823.
-
Semikhatov A.M., Virasoro central charges for Nichols algebras, arXiv:1109.1767.
-
Semikhatov A.M., Tipunin I.Yu., The Nichols algebra of screenings, Commun. Contemp. Math. 14 (2012), 1250029, 66 pages, arXiv:1101.5810.
-
Semikhatov A.M., Tipunin I.Yu., Logarithmic ^sℓ(2) CFT models from Nichols algebras: I, J. Phys. A: Math. Theor. 46 (2013), 494011, 53 pages, arXiv:1301.2235.
-
Woronowicz S.L., Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613-665.
-
Woronowicz S.L., Differential calculus on compact matrix pseudogroups (quantum groups), Comm. Math. Phys. 122 (1989), 125-170.
|
|