| 
 SIGMA 11 (2015), 035, 11 pages       arXiv:1504.07063     
https://doi.org/10.3842/SIGMA.2015.035 
Contribution to the Special Issue on Algebraic Methods in Dynamical Systems 
On a Quantization of the Classical $\theta$-Functions
Yurii V. Brezhnev
 Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia
 
 
Received January 31, 2015, in final form April 17, 2015; Published online April 28, 2015 
Abstract
 
The Jacobi theta-functions admit a definition through the autonomous differential equations (dynamical system); not only through the famous Fourier theta-series. We study this system in the framework of Hamiltonian dynamics and find corresponding Poisson brackets. Availability of these ingredients allows us to state the problem of a canonical quantization to these equations and disclose some important problems. In a particular case the problem is completely solvable in the sense that spectrum of the Hamiltonian can be found. The spectrum is continuous, has a band structure with infinite number of lacunae, and is determined by the Mathieu equation: the Schrödinger equation with a periodic cos-type potential.
  
 Key words:
Jacobi theta-functions; dynamical systems; Poisson brackets; quantization; spectrum of Hamiltonian. 
pdf (579 kb)  
tex (74 kb)
 
 
References
 
- 
Abramowitz M., Stegun I.A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, Vol. 55, U.S. Government Printing Office, Washington, D.C., 1964.
 
- 
Baker H.F., Abelian functions. Abel's theorem and the allied theory of theta functions,, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995.
 
- 
Bostan A., Chèze G., Cluzeau T., Weil J.-A., Efficient algorithms for computing rational first integrals and Darboux polynomials of planar polynomial vector fields, arXiv:1310.2778.
 
- 
Brezhnev Yu.V., What does integrability of finite-gap or soliton potentials mean?, Philos. Trans. R. Soc. Lond. Ser. A 366 (2008), 923-945, nlin.SI/0505003.
 
- 
Brezhnev Yu.V., Non-canonical extension of $\theta$-functions and modular integrability of $\vartheta$-constants, Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), 689-738, arXiv:1011.1643.
 
- 
Brezhnev Yu.V., Lyakhovich S.L., Sharapov A.A., Dynamical systems defining Jacobi's $\vartheta$-constants, J. Math. Phys. 52 (2011), 112704, 21 pages, arXiv:1012.1429.
 
- 
Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, Vol. III, McGraw-Hill Book Company, Inc., New York - Toronto - London, 1955.
 
- 
Ince E.L., Researches into the characteristic numbers of the Mathieu equation, Proc. Roy. Soc. Edinburgh 46 (1927), 20-29.
 
- 
Landau L.D., Lifshitz E.M., Mechanics, Pergamon Press, Oxford - London - New York - Paris, 1960.
 
- 
Landau L.D., Lifshitz E.M., Quantum mechanics: non-relativistic theory, Pergamon Press, London, 1981.
 
- 
Lawden D.F., Elliptic functions and applications, Applied Mathematical Sciences, Vol. 80, Springer-Verlag, New York, 1989.
 
- 
McLachlan N.W., Theory and application of Mathieu functions, Clarendon Press, Oxford, 1947.
 
- 
Nayfeh A.H., Introduction to perturbation techniques, A Wiley-Interscience Publication, John Wiley & Sons, New York, 1981.
 
- 
Olver P.J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, Vol. 107, Springer-Verlag, New York, 1986.
 
- 
Smirnov F.A., What are we quantizing in integrable field theory?, St. Petersburg Math. J. 6 (1995), 417-428, hep-th/9307097.
 
- 
Tannery J., Molk J., Éléments de la théorie des fonctions elliptiques, Vol. IV, Gauthier-Villars, Paris, 1902.
 
- 
Vanhaecke P., Algebraic integrability: a survey, Philos. Trans. R. Soc. Lond. Ser. A 366 (2008), 1203-1224.
 
- 
Whittaker E.T., Watson G.N., A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996.
 
- 
Yakubovich V.A., Starzhinskij V.M., Linear differential equations with periodic coefficients, Vols. 1, 2, John Wiley & Sons, New York - Toronto, 1975.
 
 
 | 
 |