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Abstract. In this paper we consider a reducible degeneration of a hyperelliptic curve of
genus g. Using the Sato Grassmannian we show that the limits of hyperelliptic solutions
of the KP-hierarchy exist and become soliton solutions of various types. We recover some
results of Abenda who studied regular soliton solutions corresponding to a reducible rational
curve obtained as a degeneration of a hyperelliptic curve. We study singular soliton solutions
as well and clarify how the singularity structure of solutions is reflected in the matrices which
determine soliton solutions.
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1 Introduction

By the study of [6, 7, 12, 13] soliton solutions of the KP equation acquire a new aspect. Namely
it is discovered that the shapes of soliton solutions are more various than what is known before
and those shapes are classified by points of totally positive Grassmannians. This study relates
soliton solutions to other areas of mathematics such as cluster algebras.

Then it is natural to ask what happens for quasi-periodic solutions. From this point of view
it is important to study the connection of quasi-periodic solutions and soliton solutions, in other
words, the degenerations of quasi-periodic solutions to soliton solutions. In papers [1, 2, 3, 4, 5]
Abenda and Grinevich studied this problem. They constructed a singular rational curve and
some divisor on it to each regular soliton solution studied in [6, 7, 12, 13]. It is noteworthy
that their rational curves are reducible in general. It means that we need to consider reducible
degenerations of algebraic curves in order to obtain a variety of soliton solutions.

In [1] Abenda studied a reducible rational curve which is obtained as a degeneration of
a hyperelliptic curve and the corresponding soliton solutions as a concrete example of their
theory. It should be noticed that in papers [1, 2, 3, 4, 5] soliton solutions and rational curves
are directly related and that the limits of quasi-periodic solutions are not actually computed.

We began the study of degenerations of quasi-periodic solutions of the KP-hierarchy by the
method of the Sato Grassmannian in [18]. In this approach it is possible to calculate the limits
of quasi-periodic solutions without knowing the limits of periods of a Riemann surface.

In this paper we continue this study. We compute the limit of the τ -function of the KP-
hierarchy corresponding to a hyperelliptic curve when it degenerates to a reducible rational
curve. From the view point of taking a limit of a solution there is no reason to restrict ourselves
to regular solutions. So we consider singular solutions as well. We can see how the singularity
structure of the solution is reflected in the matrix A = (ai,j) (see Section 3) which determines
a soliton solution.
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Consider the hyperelliptic curve X of genus g = n− 1 given by

y2 =
2n∏
j=1

(x− λj).

We assume that λi’s are real and ordered as

λ1 < · · · < λn.

There are two points over x =∞ on X which are denoted by ∞±. The solution corresponding
to X is well known. It is constructed by the method of Baker–Akhiezer function of Krichever [14].
To construct the Baker–Akhiezer function we need to specify a base point p∞, a local coordinate z
around p∞ and a general divisor of degree g. We take p∞ =∞+, z = x−1. For each 0 ≤ m0 ≤ g
we consider a general divisor of the form

Dg = p1 + · · ·+ pm0 + (g −m0)∞+, pj 6=∞+ ∀ j.

The number m0 specifies the partition of the Schur function which appears as the first term in
the Schur function expansion of the τ -function corresponding to Dg.

Let k be an integer such that 0 ≤ k ≤ m0. We assume that p1, . . . , pk is in a small neiborhood
of ∞− and the remaining points are in a small neighborhood of ∞+. The number k specifies
the type of soliton solutions in the limit.

We consider the degeneration of X to the reducible curve given by

y2 =
n∏
j=1

(x− λj)2.

To take the limit of the corresponding solution of the KP-hierarchy we use the Sato Grassman-
nian. Using the Sato Grassmannian it is possible to write down the solution corresponding to X
as a series with the coefficients in the polynomials of {λj}. Therefore the limit of the solution
exists. By making an appropriate gauge transformation we identify this limit with a soliton
solution. For regular solutions m0 must be n − 1. In this case the soliton solutions obtained
here coincide with those in [1].

The paper is organized as follows. In Section 2 we review the correspondence between solu-
tions (τ -functions) of the KP-hierarchy and points of the Sato Grassmannian. We recall (n, k)
solitons and the corresponding points of the Sato Grassmannian in Section 3. In Section 4 we
review how the data of algebraic curves are embedded in the Sato Grassmannian. In order to
embed the data of X to the Sato Grassmannian we need an explicit description of meromor-
phic functions on X with a pole only at ∞+. It is given in Section 5. We also compute the
gap sequence at ∞+ of the holomorphic line bundle of degree 0 corresponding to the divisor
Dg − g∞+. The top term of the Schur function expansion of the solution is determined by using
it. In Section 6 we recall the description of the tau function corresponding to Dg in terms of
Riemann’s theta function. The limit of the frame of the Sato Grassmannian corresponding to Dg

is determined in Section 7. We show that it is gauge equivalent to the frame of an (n, k + 1)
soliton. Finally we give the explicit formula of the limits of the tau function and the adjoint
wave function (dual Baker–Akhiezer function) in Section 8.

2 Sato Grassmannian

2.1 KP-hierarchy

We set

[w] =
t(
w,
w2

2
,
w3

3
, . . .

)
.
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In this paper the KP-hierarchy signifies the following equation [8] for the function τ(x) of
x = t(x1, x2, x3, . . . ):∮

e
−2

∞∑
j=1

yjλ
j

τ
(
x− y −

[
λ−1

])
τ
(
x+ y +

[
λ−1

]) dλ

2πi
= 0, (2.1)

where y = t(y1, y2, y3, . . . ) and the integral means taking the coefficient of λ−1 in the series
expansion of the integrand in λ.

If we set u = 2∂2
x1 log τ(x), it satisfies the KP equation

3ux2x2 + (−4ux3 + 6uux1 + ux1x1x1)x1 = 0. (2.2)

2.2 Sato Grassmanian

The set of formal power series solutions of the KP-hierarchy is parametrized by the Sato Grass-
mannian which we denote by UGM [20, 21] (see also [11, 15]). Let us briefly recall the definition
and the fundamental properties of UGM.

Let V = C((z)) be the vector space of formal Laurent series in the variable z and Vφ = C
[
z−1
]
,

V0 = zC[[z]] subspaces of V . Then we have

V = Vφ ⊕ V0, V/V0 ' Vφ.

Let π : V → Vφ be the projection map. Then UGM is the set of subspaces U of V which satisfy

dim Ker(π|U ) = dim Coker(π|U ) <∞.

A basis of U is called a frame of U . We express a frame of U by an infinite matrix as follows.
Set

ei = zi+1, i ∈ Z,

and write an element f of V as

f =
∑
i∈Z

ξiei.

We associate the infinite column vector (ξi)i∈Z to f . Then a frame of U is given by a matrix
ξ = (ξi,j)i∈Z,j∈N which is written as

ξ =



...
...

· · · ξ−2,2 ξ−2,1

· · · ξ−1,2 ξ−1,1

−−− −−− −−−
· · · ξ0,2 ξ0,1

· · · ξ1,2 ξ1,1
...

...


.

For a point U of UGM there exists a frame ξ = (ξi,j)i∈Z,j∈N satisfying the following conditions:
there exists a non-negative integer l such that

ξi,j =

{
1 if j > l and i = −j,
0 if (j > l and i < −j) or (j ≤ l and i < −l).

(2.3)
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It means that X is of the form

ξ =


. . . O
· · · 1
· · · ∗ 1
· · · ∗ ∗ B

 ,
where B is an∞× l matrix of rank l and its first row is placed at the −lth row of ξ. Conversely
a matrix of this form becomes a frame of a point of UGM. In the following a frame of a point
of UGM is always assumed to satisfy the condition (2.3) unless otherwise stated.

Here we introduce the notion of Maya diagram. A Maya diagram of charge p is a sequence
of integers M = (m1,m2, . . . ) such that m1 > m2 > · · · and, for some l, mi = −i + p, i ≥ l
holds. In this paper we consider only a Maya diagram of charge 0 and call them simply a Maya
diagram.

With each Maya diagram M we can associate the partition λ by

λ = (m1 + 1,m2 + 2, . . . ).

This gives a one to one correspondence between the set of Maya diagrams and the set of parti-
tions.

Let λ = (λ1, . . . , λl) be an arbitrary partition and M = (m1,m2,m3, . . . ) the corresponding
Maya diagram. The Plücker coordinate ξλ or ξM of a frame ξ is defined by

ξλ = ξM = det(ξmi,j)i,j∈N.

We introduce the Schur function sλ(x) of the variable x = t(x1, x2, . . . ) by

sλ(x) = det(pλi−i+j(x))1≤i,j≤l, exp

( ∞∑
i=1

xiλ
i

)
=
∞∑
i=0

pi(x)λi.

Then we define the tau function corresponding to a frame ξ of a point of UGM by

τ(x; ξ) =
∑
λ

ξλsλ(x),

where the summation is taken over all partitions.
For a given point of UGM a frame ξ of it satisfying the condition (2.3) is not unique. If ξ is

replaced by another frame the tau function is multiplied by a non-zero constant.

Theorem 2.1 ([19]). For a frame ξ of a point of UGM τ(x; ξ) is a solution of the KP-hierarchy.
Conversely for any formal power series solution τ(x) of the KP-hierarchy there exists a unique
point U of UGM and a frame ξ of U such that τ(x) = τ(x; ξ).

3 (n,k) solitons

In this section we recall the results on (n, k) solitons (see [12] for more details).
For a positive integer N and a nonnegative integer N ′ we use the following notation:

[N ] = {1, . . . , N},
(

[N ]

N ′

)
=
{

(i1, . . . , iN ′) ∈ [N ]N
′ | i1 < · · · < iN ′

}
.

Let n, k be positive integers which satisfy n ≥ k, A = (aij) be an n× k matrix of rank k and
λ1, . . . , λn non-zero complex numbers.
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For I = (i1, . . . , ik) ∈
([n]
k

)
we set

AI = det(aip,q)1≤p,q≤k, ∆I(λ1, . . . , λn) =
∏
p<q

(λiq − λip).

Then

τ(x) =
∑

I∈([n]
k )

∆I(λ1, . . . , λn)AI exp

(∑
i∈I

ηi

)
, ηi =

∞∑
j=1

xjλ
j
i (3.1)

becomes a solution of the KP-hierarchy [10, 22]. It is called the (n, k) soliton associated with
the data (A, {λj}) or the (n, k) soliton associated with A if {λj} are fixed.

The (n, k) soliton (3.1) can be written in the form of Wronskian. Let

Sj =

n∑
i=1

aij exp(ηi).

Then

τ(x) = Wr(S1, . . . , Sk) = det
(
S

(i−1)
j

)
1≤i,j≤k, S(i) =

∂iS

∂xi1
.

Remark 3.1. In the case n = k, τ(x) = C exp
( ∞∑
i=1

dixi

)
for some constants C, di. It is a trivial

solution of (2.1) which is obtained from the constant solution by a gauge transformation. We
include this case for the sake of convenience to describe the limits of the quasi-periodic solutions
later.

The point of UGM corresponding to an (n, k) soliton is determined by Sato [20]. We consider
the function 1/(1− λiz) as a power series in z by

1

1− λiz
=

∞∑
r=0

λri z
r.

Then

Theorem 3.2 ([20]). The point of UGM corresponding to the (n, k) soliton associated with
(A, {λj}) is given by the following frame:

z−(k−1)
n∑
i=1

aij
1− λiz

, j ∈ [k], z−j , j ≥ k. (3.2)

4 Algebraic curves and UGM

It is possible to embed certain set of data of algebraic curves to the Sato Grassmannian (see
[11, 15, 23] and the references therein). We restrict ourselves to the sepecial case which is
relevant to us.

Let X be a compact Riemann surface of genus g, p∞ a point of X, z a local coordinate
of X around p∞, L a holomorphic line bundle of degree g − 1 and φ a local trivialization of L
around p∞. We define a map

ι : H0(X,L(∗p∞)) −→ V
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as follows. Take an element s of H0(X,L(∗p∞)). Using φ the section s can be considered as
a meromorphic function on some neighborhood of p∞. Therefore it is possible to expand it in z
as

φ(s) =
+∞∑

n=−∞
snz

n.

Define

ι(s) =
+∞∑

n=−∞
snen =

+∞∑
n=−∞

snz
n+1.

Then

Theorem 4.1 ([11, 15, 23]). The image of ι belongs to UGM.

Let us interpret this theorem in terms of dvisors and meromorphic functions.

Let m0 be an integer satisfying 0 ≤ m0 ≤ g, pj , j ∈ [m0], points of X such that pj 6= p∞ for
any j, D = p1 + · · ·+pm0 +(g−1−m0)p∞ the divisor of degree g−1 and L the holomorphic line
bundle corresponding to D. Then L ' O(D) as a sheaf of O-modules. Using this isomorphism
and the local coordinate z we can consider a local section of L near p∞ as a meromorphic
function on some neighborhood of p∞. It gives a local trivialization of L around p∞. So let us
examine how this isomorphism looks like.

Let I be a finite index set which contains the symbol ∞, {Wi | i ∈ I} an open covering
of X such that each Wi is a domain of a local coordinate system of X and contains at most
one pj and di a meromorphic function on Wi whose divisor is D in Wi. We assume that W∞
contains p∞. We can take d∞ = zg−1−m0 . Then djk = dj/dk defines a transition function of the
line bundle L. Let W be an open set and {(sj ,Wj)} a local holomorphic section of L over W .
It means that, if W ∩Wj ∩Wk is not empty, sj = djksk on W ∩Wj ∩Wk. Then sj/dj = sk/dk
on W ∩Wj ∩Wk. Therefore f = {(sj/dj ,Wj)} defines a meromorphic function on W whose
divisor (f) satisfies (f) +D ≥ 0. This is the map from L to O(D).

Let us look at the neighborhood W∞ of p∞. A local section s of L on W∞ is mapped to the
meromorphic function s/zg−1−m0 on W∞. Conversely a local meromorphic function f on W∞
which belongs to O(D) corresponds to the local holomorphic section s = zg−1−m0f of L.

We have the composition of maps:

ι̃ : H0(X,O(D + ∗p∞)) −→ H0(X,L(∗p∞)) −→ V,

where the first map is that induced from O(D) ' L and the second map is ι. Using the
description of the isomorphism O(D) ' L explained above ι̃ is given as follows.

Let us take a meromorphic function f ∈ H0(X,O(D + ∗p∞)) and expand it in z around p∞
as

f =
∑

fnz
n.

Then

ι̃(f) = ι
(
zg−1−m0

∑
fnz

n
)

=
∑

fnz
n+g−m0 = zg−m0f.

Corollary 4.2. The subspace ι̃
(
H0(X,O(D + ∗p∞))

)
belongs to UGM.
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5 Hyperelliptic curves and functions on them

Let X be the hyperelliptic curve of genus g = n− 1 defined by

y2 =

2n∏
j=1

(x− λj), (5.1)

where {λj} are mutually distinct non-zero complex numbers. It can be compactified by adding
two points over x = ∞ which we denote by ∞±. We take z = 1/x as a local coordinate
around ∞±. We distinguish ∞+ and ∞− by the expansion of y:

y = ±z−n(1 +O(z)) at ∞±.

We denote by σ the involution of X defined by σ(x, y) = (x,−y).
Let

p1 + · · ·+ pg, pj ∈ X, (5.2)

be a general divisor. It is known that (5.2) is a general divisor if and only if pi 6= σ(pj) for any
i 6= j (see [9] for example). Let

D = p1 + · · ·+ pg −∞+

the divisor of degree g − 1.
It can be written as

D = p1 + · · ·+ pm0 + (g −m0 − 1)∞+, pj 6=∞+, j ∈ [m0]. (5.3)

for some 0 ≤ m0 ≤ g. Since (5.2) is a general divisor,

pi 6= σ(pj) i 6= j, (5.4)

pj 6=∞−, j ∈ [m0] if m0 < g.

For simplicity we assume that p1, . . . , pm0 are mutually distinct and different from ∞−.
Let us find a basis of H0(X,O(D + ∗∞+)). To this end we first study the case of m0 = 0,

that is, the case D = (g − 1)∞+. In this case

H0(X,O(D + ∗∞+)) = H0(X,O(∗∞+)),

where the right hand side is the space of meromorphic functions on X which are holomorphic
on X\{∞+}. A basis of this space can be given as follows.

It can be easily proved that the space of meromorphic functions on X which are holomorphic
on X\{∞+,∞−} is equal to the space of polynomials in x and y. Let us write the expansion
of y at ∞± as

y = ±z−n
 2n∏
j=1

(1− λjz)

1/2

= ±z−n
∞∑
j=0

αjz
j , α0 = 1. (5.5)

For m ≥ n define polynomials gm(x) and fm(x, y) by

gm(x) =
m∑
j=0

αjx
m−j , fm(x, y) =

1

2

(
xm−ny + gm(x)

)
.
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Since, at ∞±,

gm(x) = z−m
m∑
j=0

αjz
j ,

we have

fm =

{
z−m(1 +O(z)) at ∞+,

O(z) at ∞−.
(5.6)

This means that, for m ≥ n, fm is a meromorphic function on X with a pole only at ∞+ and
the order of a pole is m.

Here we recall the notion of gaps. Let M be a holomorphic line bundle of degree zero, p a point
of X and m a non-negative integer. If there is no meromorphic section of M with a pole of
order m at p and with no other poles, then m is called a gap of M at p. If m is not a gap then
it is called a non-gap of M at p. There are exactly g gaps for any M and p by [17, Lemma 1].
If the set of gaps of the trivial line bundle at p is not [g], then p is called a Weierstrass point.
It is known that the Weierstrass points of the hyperelliptic curve X are branch points (λj , 0),
j ∈ [2g]. In particular ∞± are not Weierstrass points.

Lemma 5.1. The functions {1, fm,m ≥ n} is a basis of the vector space H0(X,O(∗∞+)).

Proof. Since∞+ is not a Weierstrass point, the gaps at∞+ is 1, 2, . . . , g. ThusH0(X,O(∗∞+))
is generated, as a vector space, by fm, m ≥ n = g + 1 and 1. The linear independence follows
from the expansion (5.6) at ∞+. �

Next we consider the general case (5.3) with m0 not necessarily equal to zero. Since pi 6=∞±,
we can write

pi = (ci, yi),

for some ci ∈ C. We assume that ci does not depend on {λj} for any i. In particular ci 6= λj ,
i, j ∈ [2n]. Since {pi} are mutually distinct and satisfy (5.4), {ci} are mutually distinct. In the
following we assume further cj 6= 0, j ∈ [m0].

For j ∈ [m0] define

hj =
fn(x, y)− fn(cj ,−yj)

x− cj
=
y + gn(x)− (−yj + gn(cj))

2(x− cj)
. (5.7)

It is a meromorphic function on X with the pole divisor pj + (n− 1)∞+.

Lemma 5.2. The functions {1, fm,m ≥ n, hj , j ∈ [m0]} is a basis of H0(X,O(D + ∗∞+))

Proof. Let M be the holomorphic line bundle of degree zero corresponding to the divisor
p1 + · · ·+ pm0 −m0∞+,

M ' O(p1 + · · ·+ pm0 −m0∞+). (5.8)

Then we have

M(m∞+) ' O(p1 + · · ·+ pm0 + (m−m0)∞+), (5.9)

H0(X,M(∗∞+)) ' H0(X,O(D + ∗∞+)). (5.10)

We identify the left hand side of (5.10) with the right hand side of (5.10). Then 1 and hj ,
j ∈ [m0], belong to H0(X,M((m0 + g)∞+)). Since c1, . . . , cm0 are mutually distinct, the set of
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functions {1, hj , j ∈ [m0]} is linearly independent and it spans an m0 + 1 dimensional subspace
of H0(X,M((m0 + g)∞+)). Since the degree of M is zero

dimH0(X,M((m0 + g)∞+)) ≤ m0 + g + 1,

Notice that, for m ≥ g + 1,

fm ∈ H0(X,M((m0 +m)∞+)), fm /∈ H0(X,M((m0 +m− 1)∞+)).

Therefore there are at most m0 + g + 1 − (m0 + 1) = g gaps in H0(X,M(∗∞+)). Since there
are exactly g gaps by [17, Lemma 1], we can conclude that {1, hj , j ∈ [m0]} is a basis of
H0(X,M((m0 + g)∞+)). It then shows that {1, hj , j ∈ [m0], fm,m ≥ g + 1} is a basis of
H0(X,M(∗∞+)). �

Let us determine the gap sequence of M defined by (5.8) at ∞+. By (5.9) a meromorphic
function from H0(X,O(D+∗∞+)) with a pole of order r at∞+ is identified with a meromorphic
section of M with a pole of order r +m0 at ∞+. We prove

Proposition 5.3. The gap sequence of M at ∞+ is (0, 1, . . . ,m0 − 1,m0 + 1, . . . , g).

Let K = (kij)1≤i,j≤m0 be the m0 ×m0 matrix defined by

kij =

j−1∑
s=0

αsc
j−1−s
i .

Lemma 5.4.

(i) detK =
∏

1≤i<j≤m0

(cj − ci).

(ii) Let K−1 = (k′ij)1≤i,j≤m0 and

h̃i(z) =

m0∑
j=1

k′ijhj(z).

Then

h̃i(z) = z−(g+1−i) +O
(
z−(g−m0)

)
, 1 ≤ i ≤ m0.

Proof. (i) It can be proved just by computation using the properties of determinants. So we
leave the details to the reader.

(ii) By expanding hi(z) in z we have

hi(z) = z−g

m0∑
j=1

kijz
j−1 +O

(
zm0

) .

The assertion (ii) follows from this. �

By the lemma we have

Corollary 5.5.

(i) The following set of functions is a basis of H0(X,O(D + ∗∞+)),

1, fm, m ≥ n, h̃i, i ∈ [m0].

(ii) The expansion coefficients of fm(z) and h̃i(z) are polynomials of {λj}.
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Proof. (i) The assertion follows from Lemmas 5.2 and 5.4.

(ii) By (5.5) αi is a polynomial in {λj} for any i. Then kij and the expansion coefficients of fm
are polynomials of {λj} by their definitions. It follows that the expansion coefficients of hi(z)
are polynomials of {λj}. Then k′ij is a polynomial of {λr} by Lemma 5.4(i). Consequently the

expansion coefficients of h̃i(z) are polynomials of {λj}. �

Proof of Proposition 5.3. By Lemma 5.4(ii) and Corollary 5.5(i) we see thatm0, m0+g+1−i,
i ∈ [m0], m0 +m, m ≥ g + 1 are non-gaps. The complement of these numbers in non-negative
integers consists of 0, 1, . . . ,m0 − 1,m0 + 1, . . . , g. Since the number of gaps of M at ∞+ is g,
these g numbers are exactly the gaps. �

6 Theta function solution

By Corollary 4.2, Lemma 5.2 and Corollary 5.5(i) it is possible to give the following definition.

Definition 6.1.

(i) Define the point U(D) of UGM by

U(D) = ι̃
(
H0(X,O(D + ∗∞+))

)
.

(ii) Define the frames ξ(D) and ξ̃(D) of U(D) by

ξ(D) =
(
. . . , ι̃(fn+1), ι̃(fn), ι̃(hm0), . . . , ι̃(h1), ι̃(1)

)
,

ξ̃(D) =
(
. . . , ι̃(fn+1), ι̃(fn), ι̃

(
h̃m0

)
, . . . , ι̃

(
h̃1

)
, ι̃(1)

)
.

By Lemma 5.4 the tau functions corresponding to ξ(D) and ξ̃(D) are related by

τ(x; ξ(D)) =

 ∏
1≤i<j≤m0

(cj − ci)

 τ
(
x; ξ̃(D)

)
. (6.1)

By Krichever’s construction [14] the tau function τ
(
x; ξ̃(D)

)
is expressed in terms of Riemann’s

theta function as follows.

Let {εi, δi | i ∈ [g]} be a canonical homology basis, {dvj | j ∈ [g]} the normalized holomor-
phic one forms, Ω =

( ∫
δj

dvi
)

the period matrix, θ(z |Ω) Riemann’s theta function and K∞+

Riemann’s constant corresponding to the point ∞+.

For i ≥ 1 we denote by dr̃i the normalized differential of the second kind with a pole only
at ∞+ of order i+ 1. Namely it satisfies

dr̃i = d
(
z−i +O(z)

)
at ∞+,

∫
εj

dr̃i = 0, j ∈ [g].

Define γij , Γ, e by

dvi =

∞∑
j=1

γijz
j−1dz, Γ = (γij)i∈[g],j≥1,

e = −
m0∑
j=1

∫ pj

∞+

dv +K∞+ , dv = t(dv1, . . . ,dvg). (6.2)
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Since p1 + · · ·+ pm0 + (g−m0)∞+ is a general divisor, θ(
∫ p
∞+

dv+ e) has a zero of order g−m0

at ∞+ by Riemann’s theorem [9]. Therefore

θ0 :=
1

(g −m0)!

 g∑
j=1

dvj
dz

∂

∂zj

g−m0

θ

 (e |Ω)

does not vanish. By Krichever’s theory [14] the following function Ψ(x; z) defines an adjoint
wave function [8],

Ψ(x; z) =
zg−m0θ0θ

(
Γx+

∫ p
∞+

dv + e |Ω
)

θ
( ∫ p
∞+

dv + e |Ω
)
θ(Γx+ e |Ω)

exp

(
−
∞∑
i=1

∫ p

dr̃i

)
,

where
∫ p

dr̃i is the indefinite integral without the constant term. Let

[z] =

(
z,
z2

2
,
z3

3
, . . .

)
.

By [8] there exists, up to a constant multiple, a function τ(x) which satisfies the following
equation near ∞+,

Ψ(x; z) =
τ(x+ [z])

τ(x)
exp

(
−
∞∑
i=1

xiz
−i

)
. (6.3)

Since z−(g−m0)Ψ(x; z) is invariant when p goes round εi, δi cycles, the expansion coefficients in
x1, x2, . . . of z−(g−m0)Ψ(x; z)θ(Γx+ e |Ω) are elements of H0(X,O(D+ ∗∞+)). Therefore τ(x)
coincides with τ

(
x; ξ̃(D)

)
up to a constant multiple (see [16]).

The function τ(x) satisfying the relation (6.3) can be constructed in the following way. Let
E(p1, p2) be the prime form [9]. Write

E(p1, p2) =
E(z1, z2)√
dz1

√
dz2

,

where zi = z(pi), i = 1, 2.
Define qi,j , βj , q(x) by

dz1dz2 logE(z1, z2) =

 1

(z1 − z2)2
+
∑
i,j≥1

qijz
i−1
1 zj−1

2

 dz1dz2,

log

(
zg−m0−1E(0, z)θ0

θ
( ∫ p
∞+

dv + e |Ω
)) =

∞∑
j=1

βj
zj

j
, q(x) =

∞∑
i,j=1

qijxixj .

By a similar computation to [16] we have

Proposition 6.2. There exists a non-zero constant c such that

τ
(
x; ξ̃(D)

)
= c exp

 ∞∑
j=1

βjxj +
1

2
q(x)

 θ(Γx+ e |Ω).

By Proposition 5.3 the top term of the Schur function expansion of τ
(
x; ξ̃(D)

)
is determined.

Let λ be the partition defined by

λ = (g, g − 1, . . . ,m0 + 1,m0 − 1, . . . , 1, 0)− (g − 1, . . . , 1, 0) =
(
1g−m0

)
.
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By [17, Corollaries 1 and 2] the partition corresponding to the Schur function which appears in
the top term of the expansion of τ

(
x; ξ̃(D)

)
is given by the conjugate partition of λ, tλ = (g−m0).

Taking the conjugate of λ is due to the minus sign in the definition (6.2) of e. By the form of
the frame ξ̃(D) the Schur function expansion of τ

(
x; ξ̃(D)

)
begins from s(g−m0)(x) = pg−m0(x).

Thus

Proposition 6.3. The following expansion holds,

τ
(
x; ξ̃(D)

)
= pg−m0(x) +

∑
(g−m0)<µ

ξµsµ(x),

where (g −m0) < µ means that, if µ = (µ1, . . . , µr), g −m0 ≤ µ1 and µ 6= (g −m0).

7 Degeneration

We consider the limit λj+n → λj , j ∈ [n], of the curve (5.1). By Corollary 5.5 and Lemma 5.4,
the limits ξ0(D) and ξ̃0(D) of ξ(D) and ξ̃(D) exist respectively. Since the Plücker coordinates
of ξ̃(D) tends to those of ξ̃0(D) the following equation holds

lim τ
(
x; ξ̃(D)

)
= τ

(
x; ξ̃0(D)

)
.

In this section we show that ξ0(D) can be transformed to a frame of the form (3.2) by a gauge
transformation.

The hyperelliptic curve (5.1) tends to

y2 = F (x)2, F (x) =
n∏
j=1

(x− λj).

Let

f(z) =
n∏
j=1

(1− λjz).

Then the Taylor series y(z) of y around ∞+ tends to

y(z) = z−nf(z),

where we use the same symbol y(z) for the limit of y(z). Let g0
m and f0

m be the limits of gm
and fm respectively. Then

g0
m = f0

m(z) = z−mf(z), m ≥ n.

To determine the limit of hi we need to specify the limit of the point pi = (ci, yi). We do this
in the following way.

Since ci does not depend on {λj}, pi goes to

p0
i = (ci, εiF (ci)), (7.1)

where εi = ±1. Let k be an integer such that

0 ≤ k ≤ m0.

Set

l = m0 − k.
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We assume, in (7.1), that

εi =

{
−1, 1 ≤ i ≤ k,

1, k + 1 ≤ i ≤ m0.

For simplicity set

di = ck+i, i ∈ [l].

Then

p0
i = (ci,−F (ci)), i ∈ [k], p0

k+i = (di, F (di)), i ∈ [l].

This condition is satisfied if p1, . . . , pk are in a small neighborhood of ∞− and pk+1, . . . , pm0 are
in a small neighborhood of ∞+.

The limits of the quantities in the numerator of (5.7) are

−yi + gn(ci) −→ 2F (ci), i ∈ [k], −yk+i + gn(di) −→ 0, i ∈ [l],

y + gn(x) −→ 2z−nf(z).

Therefore the limit h0
i (z) of hi becomes

h0
i (z) = z−(n−1) f(z)− znF (ci)

1− ciz
, i ∈ [k],

h0
k+i(z) = z−(n−1) f(z)

1− diz
, i ∈ [l].

Then the frame ξ0(D) is given by

ξ0(D) =
(
. . . , z−m0−2f(z), z−m0−1f(z), zg−m0h0

m0
(z), . . . , zg−m0h0

1(z), zg−m0
)
. (7.2)

Definition 7.1. We denote the point of UGM corresponding to the frame (7.2) by U0(D).

In order to identify the solution corresponding to U0(D) with a soliton solution we change
a basis and make a gauge transformation. To this end let

ϕ(z) =
l∏

j=1

(1− djz), ϕi(z) =
ϕ(z)

1− diz
.

Consider the gauge transformation ϕ(z)U0(D) of U0(D). Then the following set of functions
is a basis of ϕ(z)U0(D),

zg−m0ϕ(z), zg−m0ϕ(z)h0
i (z), i ∈ [k], z−m0ϕi(z)f(z), i ∈ [l],

z−iϕ(z)f(z), i ≥ m0 + 1.

Lemma 7.2. The following set of functions is a basis of ϕ(z)U0(D):

zg−m0ϕ(z), zg−m0ϕ(z)h0
i (z), i ∈ [k], z−if(z), i ≥ k + 1.

Proof. Since di’s are mutually distinct and degϕi(z) = l − 1,

SpanC{ϕi(z) | i ∈ [l]} = SpanC
{
zi | 0 ≤ i ≤ l − 1

}
,

where SpanC{∗} denotes the vector space spanned by {∗}. Therefore, noticing that degϕ(z) = l,
we have

SpanC
{
z−m0ϕi(z), i ∈ [l], z−iϕ(z), i ≥ m0 + 1

}
= SpanC

{
z−i | i ≥ k + 1

}
,

which shows the lemma. �
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Define bi,j by

zgh0
i (z) =

f(z)− znF (ci)

1− ciz
=

n−1∑
j=0

bi,jz
j . (7.3)

It is possible to erase the terms of degree less than l in ϕ(z)
n−1∑
j=0

bi,jz
j by subtracting an

appropriate linear combination of zrf(z), 0 ≤ r ≤ l− 1. It means that there exist constants ηr,
0 ≤ r ≤ l − 1 and a unique polynomial Gi(z) of degree at most n − 1 satisfying the following
equation:

ϕ(z)
n−1∑
j=0

bi,jz
j =

l−1∑
r=0

ηrz
rf(z) + zlGi(z). (7.4)

Proposition 7.3. A basis of ϕ(z)U0(D) is given by

zg−m0ϕ(z), z−kGi(z), i ∈ [k], z−if(z), i ≥ k + 1.

Proof. Multiplying (7.4) by z−m0 we have

z−m0ϕ(z)

n−1∑
j=0

bi,jz
j =

m0∑
j=k+1

ηm0−jz
−jf(z) + z−kGi(z). (7.5)

Then the lemma follows from Lemma 7.2, (7.3), (7.5). �

Define

Û0(D) = ϕ(z)f(z)−1U0(D). (7.6)

Then

Theorem 7.4. The following set of functions is a basis of Û0(D):

z−k
n∑
i=1

ai,j
1− λiz

, j ∈ [k + 1], z−i, i ≥ k + 1,

where A = (ai,j)i∈[n],j∈[k+1] is given by

A =


D1
Λ1
C1,1 . . . D1

Λ1
C1,k

D1
Λ1

...
...

...
Dn
Λn
Cn,1 . . . Dn

Λn
Cn,k

Dn
Λn

 ,
Λi =

n∏
r 6=i

(λi − λr), Di =

l∏
s=1

(λi − ds), Ci,j =

n∏
r 6=i

(cj − λr).

Define

Ĥj =

z
−k

n∑
i=1

ai,j
1− λiz

, j ∈ [k + 1],

z−j+1, j ≥ k + 2,

ξ̂0(D) =
[
. . . , Ĥ3, Ĥ2, Ĥ1

]
.

Then Theorem 7.4 tells that τ
(
x; ξ̂0(D)

)
is an (n, k + 1) soliton.
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Remark 7.5. In [1] the case m0 = n − 1, which corresponds to regular solutions, is studied.
In this case the matrix A in Theorem 7.4 is the dual matrix of that in [1]. More precisely
the correspondence is as follows. We denote Gr(M,N) the Grassmannian which is the set of
M -dimensional subspaces in an N -dimensional vector space. Let k, l be as in the present paper.

Consider the l× n matrix B in Gr(l, n) corresponding to the divisor
(
γ

(l)
1 , . . . , γ

(l)
l , δ

(l)
1 , . . . , δ

(l)
k

)
given in [1, Theorem 9.1]. We identify di = γ

(l)
i , ci = δ

(l)
i , λj = κj . Since n− l = k+ 1, the dual

matrix B̂ of B given in [1, Section 10] belongs to Gr(k + 1, n). Then it can be shown that tA
and B̂ give the same element of Gr(k+ 1, n). That is there exists an invertible (k+ 1)× (k+ 1)
matrix C such that tAC = B̂. So the tau function corresponding to A in Theorem 7.4 coincides
with that corresponding to B̂ up to constant multiple.

The theorem is proved by expanding elements of the basis in Proposition 7.3 into partial
fractions by using the following lemma which easily follows from the definition (7.4) of Gi(z).

Lemma 7.6. For 1 ≤ j ≤ n we have

Gi
(
λ−1
j

)
= λ

−(n−1)
j

l∏
s=1

(λj − ds)
n∏
r 6=j

(ci − λr).

8 The tau function corresponding to ξ̃0(D)

In this section we compute the tau function τ
(
x; ξ̃0(D)

)
and the corresponding adjoint wave

function.
By taking the limit of (6.1) we have

τ(x; ξ0(D)) =

 ∏
1≤i<j≤m0

(cj − ci)

 τ
(
x; ξ̃0(D)

)
. (8.1)

The tau function τ
(
x; ξ̂0(D)

)
can be expressed by τ

(
x; ξ0(D)

)
as follows.

If two frames of points of UGM are related by

ξ′ = ψ(z)ξ, ψ(z) = 1 +O(z), logψ(z) =

∞∑
i=1

gi
zi

i
,

then, by (6.3),

τ(x; ξ′) = τ(x; ξ) exp

( ∞∑
i=1

gixi

)
.

So in our case we need to compute the expansion of log f(z) and logϕ(z). Let Pi(u1, . . . , ur)
be the power sum symmetric function defined by

Pi(u1, . . . , ur) =

r∑
j=1

uij .

Then

log f(z)−1 =
∞∑
j=1

Pj(λ1, . . . , λn)
zj

j
, logϕ(z) = −

∞∑
j=1

Pj(d1, . . . , dl)
zj

j
.
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By (7.6) we have

τ
(
x; ξ̂0(D)

)
= exp

 ∞∑
j=1

(Pj(λ1, . . . , λn)− Pj(d1, . . . , dn))xj

 τ
(
x; ξ0(D)

)
. (8.2)

By (8.1) and (8.2)

τ
(
x; ξ̃0(D)

)
=

 ∏
1≤i<j≤m0

(cj − ci)

−1

exp

 ∞∑
j=1

(−Pj(λ1, . . . , λn) + Pj(d1, . . . , dn))xj


× τ
(
x; ξ̂0(D)

)
. (8.3)

The tau function corresponding to ξ̂0(D) can be computed by (3.1) with the matrix A given
in Theorem 7.4. Let us compute AI .

Lemma 8.1. For I ∈
( [n]
k+1

)
we have

AI = Ξ×
∏
i∈I


l∏

j=1
(λi − dj)

k∏
j=1

(λi − cj)

1
n∏
r 6=i

(λi − λr)

 ∏
i,j∈I,i<j

(λi − λj), (8.4)

Ξ =
k∏
i<j

(cj − ci)
k∏
j=1

n∏
r=1

(cj − λr). (8.5)

The lemma can be proved using the following Cauchy like formula which is easily proved:

∣∣∣∣∣∣∣
1

c1−λ1 . . . 1
ck−λ1 1

...
...

...
1

c1−λk+1
. . . 1

ck−λk+1
1

∣∣∣∣∣∣∣ =

k∏
i<j

(cj − ci)
k+1∏
i<j

(λi − λj)

k∏
i=1

k+1∏
j=1

(ci − λj)
.

We assign weight i to xi. Then

Corollary 8.2.

(i) We have

τ
(
x; ξ̃0(D)

)
= c′ exp

( ∞∑
i=1

(−Pi(λ1, . . . , λn) + Pi(d1, . . . , dl))xi

)

×
∑

I∈( [n]
k+1)

∏
i∈I


l∏

j=1
(λi − dj)

k∏
j=1

(λi − cj)

1
n∏
r 6=i

(λi − λr)

 exp

(∑
i∈I

ηi

)
, (8.6)

where

c′ =
Ξ

m0∏
i<j

(cj − ci)
,

and Ξ is given by (8.5).
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(ii) The following expansion holds,

τ
(
x; ξ̃0(D)

)
= pg−m0(x) + · · · ,

where · · · part contains only terms with the weights greater than g −m0.

Proof. (i) It follows from Theorems 7.4 and 3.2, Lemma 8.1, (3.1), (8.3).

(ii) It follows from Proposition 6.3. �

Next we examine the conditions of the regularity of τ
(
x; ξ̃0(D)

)
. Hereafter we assume that

λi, ci, di, xi are real for all possible i and that

λ1 < · · · < λn.

By Corollary 8.2(ii) if m0 < g, τ
(
x; ξ̃0(D)

)
becomes singular since it vanishes at x = t(0, 0, . . .).

So let us consider the case m0 = g. Then k + l = g = n− 1. In this case the tau function (8.6)
is the same as that studied in [1] as mentioned in Remark 7.5. Thus the following proposition
is proved in [1].

Proposition 8.3. If there exists a permutation w of {1, 2, . . . , n} such that

λ1 < cw(1) < λ2 < cw(2) < · · · < cw(n−1) < λn,

then the sign of AI does not depend on I ∈
( [n]
k+1

)
.

Proposition 8.3 means that τ
(
x; ξ̃0(D)

)
is positive for all x1, x2, . . . , if it is multiplied by some

constant and the solution u = 2∂2
x log τ

(
x; ξ̃0(D)

)
of the KP equation (2.2) has no singularity.

Finally we give explicitly the adjoint wave function, which we denote by Ψ0(x; z), correspon-
ding to the tau function in Corollary 8.2. The result is

Ψ0(x; z) =
1

Φ(x)

∑
I

∆IAI

( ∏
i∈Ic

(1− λiz)
)

e

∑
i∈I

ηi

l∏
j=1

(1− djz)

(
−
∞∑
i=1

xiz
−i

)
,

where Ic denotes the complement of I in [n], ∆I = ∆I(λ1, . . . , λn), AI is given by (8.4) and Φ(x)
is the part of τ

(
x; ξ̃0(D)

)
which is obtained by removing the part in front of the sum symbol

(the constant and the exponential function). The function Ψ0(x; z) is the expression of the limit
of Ψ(x; z) near ∞+.

Notice that the poles at p1, . . . , pk of Ψ(x; z) disappear in the limit. This is possible because
we consider the reducible degeneration of the curve X.
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