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Abstract. Umbral moonshine describes an unexpected relation between 23 finite groups
arising from lattice symmetries and special mock modular forms. It includes the Mathieu
moonshine as a special case and can itself be viewed as an example of the more general
moonshine phenomenon which connects finite groups and distinguished modular objects.
In this paper we introduce the notion of generalised umbral moonshine, which includes the
generalised Mathieu moonshine [Gaberdiel M.R., Persson D., Ronellenfitsch H., Volpato R.,
Commun. Number Theory Phys. 7 (2013), 145–223] as a special case, and provide supporting
data for it. A central role is played by the deformed Drinfel’d (or quantum) double of each
umbral finite group G, specified by a cohomology class in H3(G,U(1)). We conjecture that
in each of the 23 cases there exists a rule to assign an infinite-dimensional module for the
deformed Drinfel’d double of the umbral finite group underlying the mock modular forms of
umbral moonshine and generalised umbral moonshine. We also discuss the possible origin
of the generalised umbral moonshine.

Key words: moonshine; mock modular form; finite group representations; group cohomology

2010 Mathematics Subject Classification: 11F22; 11F37; 20C34

1 Introduction

Moonshine is a relation between finite groups and modular objects. The study of this relation
started with the so-called monstrous moonshine [22] and has recently been revived by the dis-
covery of Mathieu moonshine [12, 35, 36, 41, 42] and umbral moonshine [17, 18], which recovers
Mathieu moonshine as a special case. While in moonshine one considers functions indexed by
elements of a finite group, in generalised moonshine the relevant functions are indexed by pairs
of commuting elements. The latter is a generalisation in that it recovers the former when the
first element of the pair is set to be the identity element of the group. In this work we introduce
generalised umbral moonshine, recovering the generalised Mathieu moonshine [43] as a special
case. With this we hope to contribute to the understanding of moonshine in the following two
ways: 1) by providing more examples of the moonshine relation, in particular working towards
a complete analysis of umbral moonshine, and 2) by shedding light on the underlying structure
of umbral moonshine which is still obscure.

This paper is a contribution to the Special Issue on Moonshine and String Theory. The full collection is
available at https://www.emis.de/journals/SIGMA/moonshine.html

mailto:mcheng@uva.nl
mailto:p.delange@uky.edu
mailto:dpzwhalen@gmail.com
https://doi.org/10.3842/SIGMA.2019.014
https://www.emis.de/journals/SIGMA/moonshine.html


2 M.C.N. Cheng, P. de Lange and D.P.Z. Whalen

The discovery of moonshine was initiated in the late 1970’s with the realisation [22] that there

must be a representation V \
n of the monster group responsible for each of the Fourier coefficients

of a set of distinguished modular functions. These modular functions – the Hauptmoduls Jg –
are indexed by elements g of the monster group:

Jg = q−1 +
∞∑
n=1

ag(n) qn, ag(n) = Tr
V \n
g.

Importantly, it was soon realised that this representation has an underlying algebraic structure:
a vertex operator algebra (VOA), or a 2d chiral conformal field theory (CFT) in the physics

language [4, 38, 39, 40]. In particular, the monster representation V \
n is nothing but the space

of quantum states with energy (eigenvalue of Ĥ = L0 − c/24) n of a chiral CFT – the so-called
monster CFT – that has monster symmetry.

Given a chiral conformal field theory with a discrete symmetry group G, one can also consider
orbifolding the theory by subgroups of G. This leads to the concept of twisted sectors, which
have symmetries given by elements of the group G that commute with the twisting subgroup.
Considering the action of this remaining symmetry group on the twisted sector quantum states
leads to the twisted-twined partition functions indexed by two commuting elements – the twisting
and the twining elements – of the original group G. At least heuristically, the existence of these
twisted-twined partition functions is believed to be a conceptual partial explanation for Norton’s
generalised monstrous moonshine [50, 51], which we will review in more detail in Section 2.1.

The landscape of moonshine has changed dramatically since the observation of Eguchi,
Ooguri, and Tachikawa in 2010 [36]. These authors pointed out a surprising empirical rela-
tion between the elliptic genus of K3 surfaces and the sporadic Mathieu group M24. The
ensuing development has led to the discovery of 23 cases of umbral moonshine, which recovers
the above-mentioned M24 relation as a special case. The important features of umbral moon-
shine include the following facts: 1) the relevant functions are so-called mock modular forms
which have a modified transformation property under the modular group, and 2) the 23 cases
are organised in terms of 23 special (Niemeier) lattices of rank 24. In particular, their lattice
symmetries dictate the finite groups featuring in umbral moonshine.

In order to understand umbral moonshine, it is crucial to know what the underlying algebraic
structure is. Despite various recent advances [21, 20, 33, 46, 47, 49], the nature of this structure
is still obscure. An obvious first guess is that a 2d CFT will again be the relevant structure,
especially given the CFT context in which the first case of umbral moonshine – the Mathieu
moonshine – was uncovered. However, there is a salient incompatibility between the modular
behaviour expected from a CFT partition function and that displayed in umbral moonshine
that we will explain in Section 2.2. As a result, new ingredients other than a conventional
CFT/VOA are believed to be necessary for a uniform understanding of umbral moonshine. The
quest for this new structure constitutes one of our motivations to study generalised umbral
moonshine, which establishes the central role played by the deformed Drinfel’d double. Note
that the importance of the third group cohomology in moonshine has been suggested by Terry
Gannon and nicely demonstrated in [43] in the context of generalised Mathieu moonshine.

The rest of the paper is organised as follows. To describe our results, we begin in Section 2
by recalling the (generalised) monstrous moonshine, umbral moonshine, and reviewing the basic
properties of the deformed Drinfel’d double of a finite group and its representations. In Section 3
we conjecture that there is a way to assign an infinite-dimensional module for the deformed
Drinfel’d double of the umbral group underlying each of the 23 cases of generalised umbral
moonshine and unpack this conjecture in a more explicit form in terms of the six conditions
of generalised umbral moonshine. To provide evidence and explicit data for this conjecture, in
Section 4 we present the group theoretic underpinnings of the generalised umbral moonshine and
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exposit our methodology and results. In Section 5 we turn our attention to the modular side
of moonshine and present our proposal for the twisted-twined functions of generalised umbral
moonshine. In Section 6 we close the paper with a summary and discussions. To illustrate
the content of the generalised umbral moonshine conjecture, in the appendix we provide the
expansion of three examples of the g-twisted generalised moonshine functions belonging to three
different lambencies, as well as the decompositions of the first few homogeneous components of
the corresponding (conjectural) generalised umbral moonshine module into irreducible projective
representations.

We also include two files accompanying this article; the first describes the explicit construction
of the umbral groups that we employ, and the second describes the construction of the 3-cocycles.

2 Background

In this section we provide the relevant background for generalised umbral moonshine by review-
ing the theories of generalised monstrous moonshine and umbral moonshine. We also review the
basic properties of the deformed Drinfel’d double of a finite group and its representation theory.

2.1 Generalised monstrous moonshine

The monster (or the Fischer–Griess monster) group M is the largest sporadic group. Monstrous
moonshine connects the representation theory of the monster group and certain distinguished
modular functions, namely the Hauptmoduls for genus zero subgroups of PSL2(R).1 In par-
ticular, the Fourier coefficients of the modular J-invariant are equated with the dimensions of
the homogeneous components of a distinguished infinite-dimensional Z-graded module for the
monster group. This module was constructed (conjecturally) by Frenkel, Lepowsky, and Meur-
man [39, 40]. It possesses the structure of a VOA and is later proven by Borcherds to be the
monstrous module [5]. In this way, the q-powers of the J-invariant acquire the interpretation as
the L0-eigenvalues of the states in the corresponding chiral conformal field theory shifted by −1.
Here −1 = −c/24, where c is the central charge of the Virasoro algebra. More precisely, if we

label by V \ = ⊕n≥−1V
\
n the Hilbert space of quantum states of the monstrous chiral conformal

field theory, we have

TrV \ q
L0−c/24 :=

∑
n≥−1

qn dimV \
n = J(τ) = q−1 + 196884q + 21493760q2 + · · · ,

where q := e2πiτ . More generally, for any g ∈ M the corresponding twined partition function,
given by TrV \ gq

L0−c/24, coincides with the Hauptmodul Jg(τ) = q−1 + O(q) of a genus zero
subgroup Γg of PSL2(R).

An important way to construct new chiral CFTs is to “orbifold” a chiral CFT that has
a discrete symmetry group G [25, 28, 29, 40] by combining g-twisted modules for g ∈ G. The
g-twisted sector Hilbert space, denoted by Hg, has remaining symmetries given by elements
of G commuting with g. By considering these symmetries, one can define the twisted-twined
partition function

Z(g,h)(τ) = TrHg hq
L0−c/24

for all commuting pairs (g, h) of G. Recall that in a (non-chiral) orbifold conformal field theory
the above quantity is associated to a torus path integral interpretation with a g-twisted mon-
odromy/defect for the spatial circle and h-boundary condition for the temporal circle. Hence,

1A discrete subgroup Γ ⊂ PSL2(R) is said to be genus zero if its fundamental domain on the upper-half plane,
when suitabley compactified, is a genus zero Riemann surface. A function is said to be a Hauptmodul for Γ if it
is an isomorphism from the compactified fundamental domain to the Riemann sphere.
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for any γ =
(
a b
c d

)
∈ SL2(Z) the transformation τ 7→ aτ+b

cτ+d of the torus complex structure is

equivalent to the transformation (g, h) 7→ (g′, h′) =
(
gahc, gbhd

)
of the twisting-twining ele-

ments. When working with a chiral theory, this consideration then leads to the expectation
that Z(g,h)

(
aτ+b
cτ+d

)
and Z(g′,h′)(τ) coincide up to a phase. Indeed, eight years after the monstrous

moonshine conjecture, Norton proposed the following.

Generalised monstrous moonshine conjecture [50] (revised in [51]): There exists a rule that
assigns to each element g of the monster group M a graded projective representation V (g) =⊕

n∈Q V (g)n of the centraliser group CM(g), and to each pair (g, h) of commuting elements of M
a holomorphic function T(g,h) on the upper-half plane H, satisfying the following conditions:

I For any
(
a b
c d

)
∈ SL2(Z), T(gahc,gbhd)(τ) is proportional to T(g,h)

(
aτ+b
cτ+d

)
.

II The function T(g,h) is either constant or a Hauptmodul for some genus zero congruence
group.

III The function T(g,h) is invariant up to constant multiplication under simultaneous conjuga-
tion of the pair (g, h) in M.

IV There is some lift h̃ of h to a linear transformation on V (g) such that

T(g,h)(τ) =
∑
n∈Q

TrV (g)n h̃q
n−1.

V The function T(g,h) coincides with the J-invariant if and only if g = h = e ∈M.

The proof of this conjecture has been recently announced [10], building on previous work
[8, 9, 11, 30, 48]. See also [54] for a previous result and [10] for a more in-depth review of the
literature. With the crucial exception of the genus zero property (II), all the above properties
of generalised moonshine can be understood in the physical framework of holomorphic orbifolds
along the lines discussed above [27]. See [52] for a recently proposed physical interpretation of
the genus zero property.

2.2 Umbral moonshine

Historically, the study of umbral moonshine started with the discovery of Mathieu moonshine,
initiated by a remarkable observation made in the context of K3 conformal field theories in [36].
The Mathieu moonshine can be phrased as the fact that the Fourier coefficients of a set of mock
modular forms can be equated with the group characters of a distinguished infinite-dimensional
Z-graded module for M24. Later it was realised in [17, 18] that the Mathieu moonshine is but
an instance of a larger structure, which was named umbral moonshine. Umbral moonshine is
labelled by Niemeier lattices, the unique (up to isomorphism) 23 even self-dual positive-definite
lattices in 24 dimensions with a non-trivial root system. Recall that the root system is the sub-
lattice generated by the root vectors, the lattice vectors of norm squared 2. These 23 Niemeier
lattices are uniquely specified by their root systems, which are precisely the 23 unions of simply-
laced (ADE) root systems with the same Coxeter number whose ranks are 24. The relevant
finite groups, the so-called umbral groups, are given by the automorphism of the corresponding
lattice quotiented by the Weyl reflections with respect to the lattice root vectors.

It turns out to be natural to associate a genus zero subgroup of SL2(Z) of the form Γ0(m) +
e, f, . . . to each of the 23 Niemeier lattices [15, 18], where Γ0(m)+e, f, . . . denotes the subgroup
of SL2(R) obtained by attaching the corresponding Atkin–Lenher involutions We,Wf , . . . to
the congruence subgroup Γ0(m). Following [18] we use the shorthand ` = m + e, f, . . . for the
genus zero group Γ0(m) + e, f, . . . and call ` the lambency of the corresponding instance of
umbral moonshine. The level m of the group Γ0(m) + e, f, . . . coincides with the index of the
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corresponding mock Jacobi forms, so we say that m is the index of that lambency. We also
observe that m is the Coxeter number of the root system of the corresponding Niemeier lattice:

meromorphic

Jacobi forms

ψ
(`)
(g,h)

subtracting−−−−−−−−→
the polar part

mock

Jacobi forms

ψ̃
(`)
(g,h)

θ-function−−−−−−−−−→
decomposition

vector-valued

mock modular forms

H
(`)
(g,h) =

(
H

(`)
(g,h),r

)
There are a few ways to view the modular objects of umbral moonshine, which are summarised

in diagram (2.2) and which we will now explain. We start by defining a number of actions on
functions defined on H×C that will be used in the modularity criteria. For a given m ∈ Z+ we
defined the index m (generalised) elliptic action by2

(φ
∣∣
m

(λ, µ))(τ, ζ) := φ(τ, ζ + λτ + µ) e
(
m
(
λ2τ + 2λζ + λµ

))
(2.1)

for any (λ, µ) ∈ R2. Here and in the rest of the paper we will use the shorthand notation e(x) :=
e2πix. Moreover, for 2k ∈ Z and γ =

(
a b
c d

)
∈ SL2(Z) we define the modular transformation

(φ
∣∣
k,m

γ)(τ, ζ) := φ

(
aτ + b

cτ + d
,

ζ

cτ + d

)
1

(cτ + d)k
e

(
− cmζ2

cτ + d

)
. (2.2)

It is easy to check that the elliptic and modular operators satisfy

φ|m(x, y)|k,mγ = φ|k,mγ|m(γ(x, y)). (2.3)

for all γ ∈ SL2(Z) and (x, y) ∈ R2, where we have defined γ(x, y) := (ax+ cy, bx+ dy).
Associated to each lambency ` = m+e, f, . . . and each element g of the corresponding umbral

group G(`) is a so-called meromorphic Jacobi form ψ
(`)
g . In particular, ψ

(`)
g transforms as a weight

one index m Jacobi form for a congruence subgroup Γg ⊆ SL2(Z), possibly with a non-trivial
multiplier (cf. Sections 3 and 5.2). Namely, we have

ψ(`)
g

∣∣
m

(λ, µ) = ψ(`)
g

and

ςg(γ)ψ(`)
g

∣∣
1,m

γ = ψ(`)
g (2.4)

for all (λ, µ) ∈ Z2, γ ∈ Γg, and for some ςg : Γg → C×. Moreover, ψ
(`)
g is meromorphic as

a function ζ 7→ ψ
(`)
g (τ, ζ) and can have poles at most at 2m-torsion points, ζ ∈ 1

2mZ + τ
2mZ.

As explained in [23, 57], meromorphic Jacobi forms such as ψ
(`)
g lead to vector-valued mock

modular forms. Recall that a holomorphic function f : H → C is said to be a weight k mock
modular form for Γ ⊆ SL2(Z) with shadow g if g is a holomorphic modular form of weight 2− k
such that the non-holomorphic function

f̂(τ) := f(τ) + (4i)k−1

∫ ∞
−τ̄

(z + τ)−kg(−τ̄)dz

transforms as a weight k modular form for Γ. To explain the relation between meromorphic
Jacobi forms and vector-valued mock modular forms in the current context, we first define the

holomorphic function ψ̃
(`)
g from the meromorphic function ψ

(`)
g by subtracting its “polar part”

ψ̃(`)
g (τ, ζ) := ψ(`)

g (τ, ζ)− ψ(`),P
g (τ, ζ). (2.5)

2Note that usually the elliptic action is only defined for (λ, µ) ∈ Z2, in which case the factor e(mλµ) is unity
and is not included in the standard definition.
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The polar part ψ
(`),P
g is

ψ(`),P
g =

∑
a,b∈Z/2mZ

χ(a,b)
g µm|m

(
a

2m ,
b

2m

)
, (2.6)

with χ
(a,b)
g ∈ C given by the characters of certain representations of the umbral group G(`) [18].

In the above we have used the generalised Appell–Lerch sum

µm(τ, ζ) = −
∑
k∈Z

qmk
2
y2mk 1 + yqk

1− yqk
,

with q = e(τ) and y = e(ζ).
It follows from the mock modular property of the Appell–Lerch sum (see, for instance, [23, 57])

that ψ̃
(`)
g is an example of the so-called weak mock Jacobi forms. Moreover, from the elliptic

transformations of ψ
(`)
g (cf. equation (3.1)) and µm we see that ψ̃

(`)
g satisfies the same elliptic

transformation as ψ
(`)
g , and therefore admits the following theta function decomposition [23]

ψ̃(`)
g (τ, ζ) =

∑
r∈Z/2mZ

Hg,r(τ)θm,r(τ, ζ), (2.7)

where

θm,r(τ, ζ) =
∑

k=r mod 2m

qk
2/4myk. (2.8)

Recall that, when regarded as a vector-valued function with 2m components, θm = (θm,r)
transforms under γ ∈ SL2(Z) as

ρm(γ)θm| 1
2
,mγ = θm (2.9)

with the multiplier system ρm : SL2(Z) → GL(2m,C) whose detailed description can be found

in, for instance, [37, Section 5]. From the modular property of ψ
(`)
g (2.4) and the mock modular

property of the Appell–Lerch sum [23, 57]), we see that Hg = (Hg,r) is a weight 1/2 vector-valued
mock modular form3 for a certain Γg ⊆ SL2(Z) that we will define in (3.5).

In the rest of the paper, we will generalise the above relation between meromorphic Jacobi
forms, mock Jacobi forms, and vector-valued mock modular forms, to functions labelled by
commuting pairs of elements ofG(`). This relation between ψ(g,h), ψ̃(g,h) andH(g,h) is summarised
in diagram (2.2).

Just like the Hauptmoduls in monstrous moonshine, the mock modular forms H
(`)
g are also

special as we shall explain now. Recall that Cappelli, Itzykson and Zuber found an ADE classifi-
cation of modular invariant combinations ofA1 affine characters [7]. This classification, combined
with the ADE data from the root systems of the Niemeier lattices, leads to a specification of
the modularity property of the mock modular forms of umbral moonshine as described in [18].

The umbral moonshine conjecture states that these vector-valued mock modular forms H
(`)
g for

g = e, are in fact the unique such forms with the slowest possible growth in their Fourier co-

efficients given their modularity properties. In particular, H
(`)
e coincides with the Rademacher

sum specified by its modular property and its pole at the cusps [18]. See [13, 14, 19, 55] for
a discussion on the cases where g 6= e.

3In general Hg,r(τ) grows exponentially near at most one cusp of the group Γg. Hence, it is weakly holomorphic
vector-valued mock modular forms that we encounter in generalised umbral moonshine. To avoid clutter we will
skip the adjective “weakly holomorphic” in the remaining of the paper.
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After specifying the finite groupG(`) and the vector-valued mock modular formsH
(`)
g = (H

(`)
g,r)

for all elements g ∈ G(`), the umbral moonshine conjecture states that there exists a G(`)-module

whose graded characters coincide with the Fourier expansion of H
(`)
g . Namely, there exists an

infinite-dimensional G(`)-module

K(`) =
⊕

r∈{1,...,m−1}
α∈Q>0

K(`)
r,α

such that for all g ∈ G and r ∈ {1, . . . ,m− 1} we have

H(`)
g,r(τ) = −2δ

[4m]
r2,1

q−1/4m +
∑

α∈Q>0

qαTr
K

(`)
r,α
g. (2.10)

In the above equation we defined

δ
[C]
a,b =

{
1 if a = b mod C,

0 otherwise.

Corresponding to the Niemeier lattice with root system A24
1 is the case of umbral moonshine with

` = 2 and G(`) ∼= M24. In this case, the vector-valued mock modular forms have just a single

independent component since H
(2)
g,r = ±H(2)

g,1 for r = ±1 mod 4 and H
(2)
g,r = 0 for r = 0 mod 2,

and the above conjecture recovers that of Mathieu moonshine.
The above conjecture was proven in [32, 44], in the sense that the existence of the module K(`)

has been established using properties of (mock) modular forms. However, among the 23 cases of
umbral moonshine, modules have only been constructed for the eight simpler cases [2, 16, 33, 34].
A uniform construction of the umbral moonshine modules is to the best of our knowledge not
yet in sight and is expected to be the key to a true understanding of this new moonshine
phenomenon. One of the most puzzling features in this regard is the non-vanishing weight of
the umbral moonshine function: if one assumes that the umbral moonshine module, just like the
monstrous moonshine module, possesses the structure of a conventional chiral CFT, than the
usual physics lore mentioned in the last subsection as well as mathematical results on VOAs [56]
lead to the expectation that one should be able to attach a weight zero modular object to the
moonshine module. This process can be done in a straightforward manner for the eight cases
of umbral moonshine which correspond to the eight Niemeier lattices with A-type root systems,
but not for the remaining fifteen cases involving D- and/or E-type root systems, at least not
if we require the modular object to be holomorphic as usual. Moreover, among all the A-type
cases, it was argued in [17] that apart from the A24

1 case of Mathieu moonshine, the associated
weight zero Jacobi forms cannot coincide with a partition function or elliptic genus of a “usual”
(chiral) conformal field theory. This is due to the expectation that the NS-NS ground states
lead to a non-vanishing q0ym−1 term in the index m weight zero Jacobi form, which is absent
in all cases other than the A24

1 case. In this regard, the A24
1 case of umbral moonshine is set

apart from the other cases that the mock modular forms can be regarded as arising from the
supersymmetric index of a physical conformal field theory – any K3 non-linear sigma model in
fact. This more involved modular property suggests that a novel approach is likely to be needed
in order to understand umbral moonshine in general.

2.3 Deformed Drinfel’d double and its representations

To set the stage for the generalised umbral moonshine conjecture, we will quickly review the
definition of a deformed Drinfel’d (or quantum) double of a finite group and its representations.
Drinfel’d introduced the quantum double construction, which associates to a Hopf algebra A
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a quasi-triangular Hopf algebra D(A). This quasi-triangular Hopf algebra contains A as well
as its dual algebra A∗ as Hopf algebras and D(A) = A∗ ⊗ A as a vector space [31]. Let G
be a finite group and A = kG be the group algebra over field k. It was argued that the
corresponding quantum double for the case k = C, often denoted simply by D(G), is relevant
for 3d TQFTs [26] and relatedly 2d orbifold CFTs [24, 25]. The finite group G plays the role
of the discrete gauge group in te former case and that of the orbifold group in the latter case.
Here and in the rest of the paper we will work with k = C exclusively.

In [24], Dijkgraaf, Pasquier and Roche introduced an interesting generalisation of this con-
struction. For G a finite group and M a G-module, one can define the group cohomology
Hn(G,M) := Ker ∂(n)/ Im ∂(n−1) where the coboundary operator ∂(n) on the space of n-cochains
is given by(

∂(n)λ
)
(h1, . . . , xn, xn+1) = λ(x2, . . . , xn+1) + (−1)n+1λ(h1, . . . , xn)

+
n∑
i=1

(−1)iλ(h1, . . . , xixi+1, . . . , xn+1).

From now on we take M = U(1) (on which G acts trivially), and to avoid an overload of
notation we will often conflate x ∈ R/Z ∼= U(1) with e2πix ∈ C× when the meaning is clear
from the context. Given G and a 3-cocycle ω : G × G × G → C×, the deformed quantum dou-
ble Dω(G) is a quasi-triangular quasi-Hopf algebra generated by the elements4 P (x) and Q(y),
with x, y ∈ G [24]. The multiplications are given by

P (x)P (y) =

{
P (x) if x = y,

0 otherwise,
Q(x)Q(y) = θ(x, y)Q(xy),

while the co-multiplication are given by

∆P (x) =
∑
z∈G

P (z)⊗ P
(
z−1x

)
, ∆Q(x) = η(x)Q(x)⊗Q(x).

The multiplication and co-multiplication rules are determined by the 3-cocycle ω as

θ(x, y) =
∑
z∈G

θz(x, y)P (z), η(z) =
∑
x,y∈G

ηz(x, y)P (x)⊗ P (y),

where

θg(x, y) :=
ω(x, g|x, y)

ω(g, x, y)ω(x, y, g|xy)
, (2.11)

ηg(x, y) :=
ω(x, g, y|x)

ω(x, y, g)ω(g, x|g, y|g)
. (2.12)

Moreover, we have

Q(x)−1P (y)Q(x) = P
(
y|x
)
,

where we use the notation y|x:= x−1yx to denote the conjugate of y by x. The identity element
of Dω(G) is Q(1) =

∑
z∈G

P (z).

4Here we use the notation in [3]. Some other common choices of notation for P (x)Q(y) include δxy, x X
y

and 〈 y←− x〉. We will work only with the so-called normalised cochains, namely functions u : Gn → C× satisfying
u(x1, . . . , xn) = 1 whenever at least one of the n group elements x1, . . . , xn coincides with the identity element e.
This corresponds to requiring ρ(e) = 1V ∈ End(V ) in the G-representation (ρ, V ).
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Note that θg(x, y) = ηg(x, y) when x, y ∈ CG(g), the centralizer of g in G. It is easy to
check that the restriction cg := θg|CG(g)×CG(g)= ηg|CG(g)×CG(g) is a 2-cocycle and moreover,
that the corresponding map Z3(G,U(1)) → Z2(CG(g), U(1)) induces a map H3(G,U(1)) →
H2(CG(g), U(1)).

The fact that the above defines a quasi-Hopf algebra is guaranteed by the 3-cocycle condition
∂(3)ω = 0. In particular, the co-multiplication, instead of satisfying (1 ⊗∆) ·∆ = (∆ ⊗ 1) ·∆
as in the case of a Hopf algebra, satisfies

(1⊗∆) ·∆(a) = ϕ(∆⊗ 1) ·∆(a)ϕ−1 ∀a ∈ Dω(G)

in a quasi-Hopf algebra, where the intertwiner is given by

ϕ =
∑

x,y,z∈G
ω(x, y, z)P (x)⊗ P (y)⊗ P (z).

It is easy to see that changing ω without changing the cohomology class leads to an isomorphic
quasi-Hopf algebra [24]. In the language of holomorphic orbifold the non-triviality of the 3-
cocycle signals the failure of the fusion between operators belonging to different twisted sectors
to be associative. See [24] and references therein for more details on Dω(G) including the
R-matrices and the antipode.

Next we will summarize the basic properties of the representations of Dω(G). See, for in-
stance, [1, 3, 24] for more information. Firstly, we will establish that given an ω-compatible
projective representation of CG(g) for some g ∈ G we can build a corresponding Dω(G)-
representation via the so-called DPR induction.

Recall that a projective representation (ρ, V ), where ρ : H → End(V ), satisfies

ρ(h1)ρ(h2) = cρ(h1, h2) ρ(h1h2)

for any h1, h2 ∈ H, where cρ ∈ Z2(H,U(1)). Given a gA ∈ G and a projective representation
(ρgA , VgA) of CG(gA) corresponding to the 2-cocycle θgA ∈ Z2(CG(gA), U(1)), we can construct
a DPR-induced representation of Dω(G) in the following way [24]. Let BgA be the subalgebra
of Dω(G) spanned by elements of the form P (g)Q(x) with g ∈ G and x ∈ CG(gA). We define
the action of BgA on VgA by π(P (g)Q(x)) = δg,gAρgA(x). The DPR-induced Dω(G) representa-
tion, denoted

(
π(ρgA ,VgA ), IndDPR(VgA)

)
, is given by IndDPR(VgA) := C[G] ⊗BgA VgA , where we

identify C[G] as the subalgebra spanned by
∑
z∈G

P (z)Q(x) with x ∈ G. Explicitly, to describe

the action of Dω(G) we choose a set of representatives {x1, . . . , xn} of G/CG(gA), and it can be
checked that, for v ∈ VgA ,

π(ρgA ,VgA )(P (g)Q(x))(xj ⊗ v) =
θgA(x, xj)

θgA(xk, h)
δg|x,gj (xk ⊗ ρgA(h)v),

where h ∈ CG(gA) is determined by xxj = xkh.

Secondly, any irreducible representation of Dω(G) is labelled by a conjugacy class A of G
and an irreducible projective representation of CG(gA) with the 2-cocycle θgA , where gA ∈ A.
Moreover, such a irreducible representation of Dω(G) is equivalent to the corresponding DPR-
induced representation described above. As a result, studying the representations of Dω(G) is
equivalent to studying the projective representations of all the centraliser subgroups with the
2-cocycles given by ω via (2.11), a fact that we will exploit in order to make explicit conjectures
in the next subsection.

The representations of a deformed quantum double share many features with those of finite
groups. For instance there is an orthogonality relation among irreducible representations. For
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a given representation V of Dω(G), we write its character as ChV(x,y) := TrV (P (x)Q(y)). These
characters satisfy the following properties,

ChV(x,y) = 0 unless xy = yx,

ChV(x|z ,y|z) =
θx(z, y|z)
θx(y, z)

ChV(x,y), (2.13)

which can also be checked explicitly for the DPR-induced representations. Moreover, Rep(Dω(G))
is a modular category. In terms of the characters, the modular group acts as

T ChV(x,y) = θx(x, y) ChV(x,xy), (2.14)

S ChV(x,y) =
1

θy(x, x−1)
ChV(y,x−1), (2.15)

satisfying S2 = (ST )3, S4 = id. In particular, the fusion rules between different representations
satisfy the Verlinde formula given by the above S-matrix.

3 Generalised umbral moonshine

The generalised umbral moonshine conjecture states that for each of the 23 lambencies of umbral
moonshine with umbral group G there is a 3-cocycle ω : G×G×G→ C× such that there exists
an infinite-dimensional module for Dω(G) underlying a set of distinguished meromorphic Jacobi
forms that we will specify in Section 5. In the following we will re-formulate the conjecture in
explicit terms, using the relation to the projective representations of the centraliser subgroups
discussed in Section 2.3. This leads to the first five of the six conditions that we will discuss in this
section. The sixth condition is the counterpart of the Hauptmodul condition and demonstrates
the special property of the generalised umbral moonshine functions.

Explicitly, given the lambency ` with index m and the corresponding umbral group G, we
propose in Section 5 the twisted-twined functions ψ(g,h) (and the corresponding twisted-twined
mock modular forms H(g,h)) for each commuting pair (g, h). We conjecture that they satisfy the
six conditions listed below. The relation between ψ(g,h) and the mock modular forms H(g,h) is
as described in (2.2).

I Modularity. The modularity condition first states that the function ψ(g,h), which is
meromorphic as a function ζ 7→ ψ(g,h)(τ, ζ) and can have poles (at most) at 2m-torsion

points, ζ ∈ 1
2mZ+ τ

2mZ, transforms in the same way as an index m Jacobi form under the
elliptic transformation (cf. equation (2.1)). Namely, for all (λ, µ) ∈ Z2,

ψ(g,h)

∣∣
m

(λ, µ) = ψ(g,h). (3.1)

Second, under the weight one modular transformation they satisfy for any g, h ∈ G and
any γ ∈ SL2(Z)

ς(g,h)(γ)ψ(g,h)

∣∣
1,m

γ = ψγ(g,h) (3.2)

for some ς(g,h) : SL2(Z)→ C×. In the above we have defined γ(g, h) :=
(
gahc, gbhd

)
for

two commuting elements g, h ∈ G.

This condition reflects the modular properties (2.14), (2.15) of Dω(G) representations,
embodied by the meromorphic Jacobi forms ψ(g,h), and can be regarded as the counterpart
of condition I of generalised monstrous moonshine.



Generalised Umbral Moonshine 11

II 3-cocycle. This condition states that there exists a 3-cocycle ω : G × G × G → C×
compatible with the multiplier system ς(g,h) in (3.2) in the following way. For any g ∈ G
let θg be defined as in (2.11). Then the compatibility conditions read

ς(g,h) (( 1 1
0 1 )) = θg(g, h)−1,

ς(g,h)

((
0 −1
1 0

))
= θh

(
g, g−1

)
,

(3.3a)

(3.3b)

which determine ς(g,h) in terms of ω together with (3.2).

This condition captures the modular properties (2.14), (2.15) of representations of the
quantum deformed double Dω(G). It is believed that a 3-cocycle underlies the generalised
monstrous moonshine in a similar way [43], although it was not mentioned in any of the
five stated conditions of generalised monstrous moonshine.

III Projective class function. This condition states that ψ(g,h) is a projective class function,
satisfying for all k ∈ G

ψ(g|k,h|k) = ξ(g,h)(k)ψ(g,h) (3.4)

with the phases ξ(g,h)(k) determined by the 3-cocycle ω as

ξ(g,h)(k) =
θg(k, h|k)
θg(h, k)

.

This property together with the modularity property (3.2) implies that the SL2(Z) sub-
group for which H(g,h) is a vector-valued mock modular form is given by

Γg,h :=
{
γ ∈ SL2(Z)

∣∣γ(g, h) =
(
g|k, h|k

)
for some k ∈ G

}
. (3.5)

This condition captures the property (2.13) of representations of the quantum deformed
double Dω(G) and is the counterpart of condition III of generalised monstrous moonshine.

IV Finite group. The vector-valued mock modular forms H(g,h) = (H(g,h),r) have the fol-

lowing moonshine relation to the finite group G = G(`). Namely, there is a way to assign
an infinite-dimensional projective CG(g)-module

Kg =
⊕

r∈Z/2mZ
α∈Q>0

Kg
r,α

with the 2-cocycle given by cρ = θg, such that for all g ∈ G, h ∈ CG(g) and r ∈ Z/2mZ,

H(g,h),r(τ) = c(g,h),rq
−1/4m +

∑
α∈Q>0

qαTrKg
r,α
h. (3.6)

The coefficient c(g,h),r equals ∓2 whenever H(g,h),r(τ) = ±H(e,h),1(τ) and vanishes other-
wise.

The above condition describes the Dω(G)-module as DPR-induced modules as explained
in Section 2.3 and can be regarded as the counterpart of condition IV of generalised
monstrous moonshine.
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V Consistency. This condition states that the generalised umbral moonshine is compatible

with umbral moonshine in the sense that ψ
(`)
(e,h) coincides with the weight one meromorphic

Jacobi form ψ
(`)
h given in [17, 18]. In particular, the resulting mock modular form H(e,h)

coincides with the McKay–Thompson series H
(`)
h = (H

(`)
h,r) proposed in [17, 18].

This condition establishes the relation between generalised umbral moonshine and the
original umbral moonshine, and can be regarded as the counterpart of condition V of
generalised monstrous moonshine.

VI Pole structure. This condition states that the mock modular form H(g,h) is bounded at
all but at most one orbit of the cusps Q ∪ {i∞} under Γ(g,h). It serves as the counterpart
of condition II (the Hauptmodul condition) of generalised monstrous moonshine.

An immediate consequence of the generalised umbral moonshine conjecture is certain non-
trivial constraints on their twisted-twined functions. To illustrate this, let us consider a pair
(g, h) of commuting elements in G that is conjugate to

(
g−1, h−1

)
. The conditions (3.2) and (3.4)

lead to the equality

ς(g,h)

((−1 0
0 −1

))
ψ(g,h) = ξ(g,h)(k)ψ(g,h), (3.7)

where k a group element satisfying
(
g−1, h−1

)
=
(
g|k, h|k

)
. It follows that ψ(g,h) must vanish

unless

ς(g,h)

((−1 0
0 −1

))
= ξg−1,h−1(k).

This is the analogue of the obstruction (2) in [43]. We will employ this obstruction5 in our
computation and list the obstructed twisted-twined functions in Table 2.

Note that in the case ` = 2, the first five conditions are equivalent to the ones discussed in [43].

4 Groups, cohomologies, and representations

In this section we present the group-theoretic underpinnings of the theory. We introduce the
umbral groups and discuss their cohomology, their rank-2 subgroups, and the projective repre-
sentations of their centraliser subgroups.

4.1 Group cohomology

The computation of the twisted-twined functions for generalised umbral moonshine depends
crucially on the computation of the third group cohomology H3

(
G(`), U(1)

)
.

The cohomology groups are computed for all of the umbral groups using GAP and the module
HAP. The results are listed in Table 1, where we include the root system X, the lambency `, the
umbral group G(`), of the corresponding cases of umbral moonshine. Throughout this paper we

write Z/NZ as N . Also listed in the table is n, given by the group automorphism G(`) ∼= n.G
(`)

,

where G
(`)

is the group of permutations of the irreducible components of the root systems of the
corresponding Niemeier lattice induced by the lattice automorphism group. See [18] for more
details. Note that n = 2 or n = 1 for all lambencies except for ` = 6 + 3 which has n = 3.

The subgroups n ⊂ G(`) play a special role in umbral moonshine: the corresponding twined
functions are proportional to the untwined functions, H(e,z),r = crH(e,e),r for a cr ∈ C for all z ∈ n

5In principle there is another independent possible obstruction coming from the projective class function
property of ψ(g,h), namely ψ(g,h) must vanish unless ξ(g,h)(k) = 1 for all k commuting with both g and h.
However, in all cases apart from the ` = 2 case treated in [43], this does not lead to new constraints.
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Table 1: Umbral groups and group cohomology.

X A24
1 A12

2 A8
3 A6

4 A4
5D4 A4

6 A2
7D

2
5 A3

8

` 2 3 4 5 6 7 8 9

GX M24 2.M12 2.AGL3(2) GL2(5)/2 GL2(3) SL2(3) Dih4 Dih6

ḠX M24 M12 AGL3(2) PGL2(5) PGL2(3) PSL2(3) 22 Sym3

H3(G(`),C×) 12 8⊕ 24 4⊕ 24 4⊕ 12 2⊕ 24 24 2⊕ 2⊕ 4 2⊕ 2⊕ 6
n 1 2 2 2 2 2 2 2
|new| 34 12 8 3 0 0 0 0

X A2
9D6 A11D7E6 A2

12 A15D9 A17E7 A24 D6
4 D4

6

` 10 12 13 16 18 25 6+3 10+5

GX 4 2 4 2 2 2 3.Sym6 Sym4

ḠX 2 1 2 1 1 1 Sym6 Sym4

H3(G(`),C×) 4 1 4 1 1 1 2⊕ 6⊕ 12 2⊕ 12
n 2 2 2 2 2 2 3 2
|new| 0 0 0 0 0 0 8 0

X D3
8 D10E

2
7 D2

12 D16E8 D24 E4
6 E3

8

` 14+7 18+9 22+11 30+15 46+23 12+4 30+6, 10, 15

GX Sym3 2 2 1 1 GL2(3) Sym3

ḠX Sym3 2 2 1 1 PGL2(3) Sym3

H3(G(`),C×) 6 1 1 1 1 2⊕ 24 6
n 1 1 1 1 1 2 1
|new| 0 0 0 0 0 0 0

and r ∈ Z/2mZ. More generally, we have H(e,zg),r = crH(e,g),r for all g ∈ G(`). Together with the
modularity condition (3.2), it suggests that the generalised umbral moonshine function H(g,h)

is really “new” if (g, h) cannot be obtained from the pair (z, g′) for some z ∈ n via an SL2(Z)
transformation. This inspires the following terminology: we say that a subgroup 〈g, h〉 is old if
it is isomorphic to 〈z, g′〉 for some g′ ∈ G(`), z ∈ n, and is new otherwise. We will also call the
corresponding twisted-twined function an old resp. new function. In Table 1 we also list |new|,
the number of conjugacy classes of rank-2 Abelian subgroups of G(`) that are new.

The group theoretic computation for the case ` = 2 has been performed in [43]. For ` = 3,
direct evaluation of cochains is computationally challenging. However, restriction of cochains to
the p-Sylow subgroups Sp(G) together with the inclusion map (cf. [6, Chapter III-10])

H3
(
G(`), U(1)

)
→

⊕
p| exp(G)

H3
(
Sp
(
G(`)

)
, U(1)

)
,

allows us to simplify our calculations for ` = 3. In the above, exp(G) denotes the exponent of
the group, and exp(G(3)) = 1320.

4.2 The 3-cocycles

For most of the lambencies ` of umbral moonshine, the cohomology class of the 3-cocycle ω can
be uniquely determined by the multiplier systems of the old functions ψ(e,g) in the following

way. Fix a lambency `. For any g ∈ G, ς(e,g) (cf. equation (3.2)) can be restricted to Γ0(ord g)
to obtain a multiplier system ς(e,g) : Γ0(ord g)→ C×, which we assume to arise from a 3-cocycle
ω : G×G×G→ C× as discussed in Section 3. At the same time, these multipliers are required
to coincide with those of the known functions ψ(e,g) [17, 18] (cf. Section 3, condition V). In
this way, we obtain a consistency condition on [ω]. This consistency condition uniquely fixes
[ω] ∈ H3(G,U(1)) for all umbral moonshine cases except for ` = 3, 4, 7. In these cases, there
are exactly two cohomology classes that are consistent with the multiplier phases of the known
functions ψ(e,g) for all g ∈ G.
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For the ` = 4 case, the two cohomology classes provide different multiplier systems on
a weight 1 Jacobi form associated to one of the new functions. One of the corresponding spaces
of weight 1 weak Jacobi forms has dimension 0, but the vanishing of that specific new function
would be incompatible with a decomposition of the characters into projective representations
(cf. Section 3, condition IV). We therefore conclude that the new function must be non-zero and
this allows us to uniquely select a 3-cohomology class.

For ` = 3 and ` = 7, both of the 3-cohomology classes that are consistent with the known
functions ψ(e,g) are also consistent with all the remaining twisted-twined functions we propose.
As a result, in this sense generalised umbral moonshine for these two cases is compatible with
both choices.

4.3 The rank two subgroups

Given a 3-cocycle ω, the projective class function property (cf. equation (3.4)) guarantees that
the generalised umbral moonshine function ψ(g,h) is determined by ψ(g′,h′) whenever the groups
〈g, h〉 and 〈g′, h′〉 are conjugate to each other. It therefore suffices to specify the twisted-twined
functions ψ(g,h) for a set of representatives in the coset {g, h ∈ G | gh = hg}/∼, where the
equivalence relation is generated by SL2(Z) transformations and by conjugation. In other words,
we let (g, h) ∼ γ

(
g|k, h|k

)
for all k ∈ G and γ ∈ SL2(Z).

We tabulate these rank-2 subgroups in Table 2 and indicate the new rank-2 subgroups whose
twisted-twined functions are obstructed by the condition discussed at the end of Section 3. In
this table we also list the congruence subgroups Γ(g,h) ⊆ SL2(Z) stabilising the pair (g, h) up
to simultaneous conjugation (cf. (3.5)). In this list we employed the following notation for the
congruence subgroups

H(p, q, r) = {γ ∈ SL2(Z) | γ = ( 1 0
0 1 ) mod ( p qr p )} ,

which is a group if and only if p|qr. We also use the familiar convention for specific congruence
subgroups:

Γ(N) := H(N,N,N), Γ1(N) := H(N, 1, N), and Γ0(N) := H(1, 1, N).

Finally, we have

Γ(4A,4c) =
{(

a b
c d

)
∈ Γ(2) | a+ b+ c ≡ 1 mod 4

}
.

Here and everywhere else we denote the conjugacy class names of group elements g ∈ G with
upper case letters, while the conjugacy class names of elements h ∈ CG(g) in centralizer sub-
groups are denoted with lower case letters. See the file accompanying this article for an explicit
construction of the umbral groups.

4.4 Projective representations

In this subsection we briefly explain how we construct the relevant projective representations.
Our discussion follows closely Appendices C and D of [43].

Recall the definition of a projective representation in Section 2.3. We say that two projective
representations ρ and ρ′ of a group H are equivalent if they differ by a 1-cochain ξ ∈ Z1(H,U(1)),
namely when ρ(x) = ξ(x)ρ′(x) for all x ∈ H. As a result, different classes in the second group
cohomology H2(H,U(1)) lead to inequivalent projective representations. A convenient way to
study the projective representations of a group H is to study the representations of a Schur
cover X of H, defined as a central extension

1→M(H)→ X
φ−→ H → 1,
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where the normal subgroup is the Schur multiplier M(H) ∼= H2(H,Z). As we will now explain,
every representation of the Schur cover corresponds to a projective representation of H and vice
versa.

Let φ−1 : H → X be a lift of H. Let ρ̄ : X → End(V ) be a representation of X. Then
ρ := ρ̄ ◦ φ−1 is a projective representation of H with the associated cocycle cρ satisfying

cρ(h1, h2)1V = ρ
(
φ−1(h1)φ−1(h2)φ−1

(
(h1h2)−1

))
.

As a result, the 2-cocycle cρ is fixed by ρ̄ restricted to M(H). Every projective representation
of H is equivalent to a representation arising from its Schur cover in this way, and different (nec-
essarily isoclinic) Schur covers of H lead to different but equivalent projective H-representations.

Given a two-cohomology class [c] ∈ H2(H,U(1)), we would like to select the compatible
representations from all the representations of X. In other words, we would like to pick out
the X-representations that give rise to projective representations of H whose corresponding 2-
cocycle is consistent with [c]. Now we describe how this can be achieved. For a representation ρ̄
of X and k ∈ M(H), if h1, h2 ∈ H satisfy k = φ−1(h1)φ−1(h2)φ−1

(
h−1

1

)
φ−1

(
h−1

2

)
, then h1

and h2 necessarily commute, and so cρ(h1, h2)/cρ(h2, h1) depends only on the cohomology [cρ].
Moreover, the quotient can be evaluated as

cρ(h1, h2)/cρ(h2, h1)1V

= ρ̄
(
φ−1(h1)φ−1(h2)φ−1(h1h2)−1

)
ρ̄
(
φ−1(h2)φ−1(h1)φ−1(h2h1)−1

)−1
= ρ̄(k), (4.1)

which enables us to identify exactly the projective representations that are consistent with the
given cohomology [cρ]. Finally, irreducible representations of X give rise to irreducible projective
representations of H.

For our purpose, the finite groups whose projective representations we are interested in are
the centralizer groups CG(g) where G is one of the umbral groups. The relevant 2-cocycle is de-
termined by the 3-cocycle ω ∈ Z3(G,U(1)) as in (2.11). By considering the Schur cover of CG(g)
we obtain all irreducible projective representations CG(g), and using (4.1) these projective rep-
resentations can then be filtered to those consistent with [ω] ∈ H3(G,U(1)).

5 The generalised umbral mock modular forms

In this section, we employ the mock modularity property discussed in Section 3 to compute
the mock modular forms of generalised umbral moonshine, which conjecturally arise from the
generalised umbral moonshine module for the underlying deformed quantum double Dω

(
G(`)

)
.

In Section 5.1 we compute the g-twisted h-twined functions when 〈g, h〉 is an old group. In
Section 5.2 we compute the remaining functions, the g-twisted h-twined functions when 〈g, h〉
is a new group.

5.1 Old groups

The untwisted twining functions of umbral moonshine were given in [12, 17, 18, 35, 41, 42], and
explicit expressions for them can be found in [32]. For a given ` with index m, these functions,
which are denoted H(e,g) = (H(e,g),r), are 2m-dimensional vector-valued mock modular forms of
weight-1/2 which are related to the meromorphic Jacobi forms ψ(e,g) as discussed in Sections 2.2
and 3. In this subsection we will discuss how to obtain the meromorphic Jacobi form ψ(g,h) and
the vector-valued mock modular form H(g,h) from the untwisted function ψ(e,g′) for these cases.

In the case there exists an SL2(Z) element γ such that γ(e, g′) = (g, h), by the modularity
condition (3.2), we have

ψ(g,h) = ς(e,g′)(γ)ψ(e,g′)|1,mγ, (5.1)
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which can be evaluated explicitly from the relation between ψ(e,g′) and ψ(e,e) and the explicit
expression for ψ(e,g′) given in [18, 32].

When G(`) ∼= Ḡ(`) has n = 1, all old groups are isomorphic to a cyclic group generated
by an element g′, and the mock modular forms are found as described above. First consider
umbral groups with n = 2. Let z ∈ n be the nontrivial element and note that n is in the center
of G(`). For the rank two old groups, namely those groups 〈g, h〉 that are isomorphic to 〈z, g′〉 for
some g′ ∈ G(`), we provide a conjecture and a justification for the corresponding twisted-twined
functions ψ(g,h). From the modularity property (3.2), we see that it suffices to calculate ψ(z,g).
Fix the lambency ` with index m. We conjecture that

ψ(z,g) = ςψ(e,g)|1,m
(

1
2 , 0
)

(5.2)

for all g ∈ G for some ς ∈ C.
To justify the conjecture, we start by verifying (5.2) whenever ord(g) is odd. Let γ be an

element of SL2(Z) such that γ(e, zg) = (z, g). For instance, we can take γ =
(

1 1
ord(g) ord(g)+1

)
.

Since g is an element of the umbral group with odd order, the function ψ(e,g) transforms as
a weight one Jacobi form for Γ0(ord(g)) with a multiplier system [18]. Hence we have

ψ(z,g) = ς(e,zg)(γ)ψ(e,zg)

∣∣
1,m

γ = −ς(e,zg)(γ)ψ(e,g)

∣∣
m

(
0, 1

2

)∣∣
1,m

γ = −
ς(e,zg)(γ)

ς(e,g)(γ)
ψ(e,g)

∣∣
m

(
1
2 , 0
)
,

where we have used the operator relation (2.3) and the fact that

ψ(e,zg) = −ψ(e,g)

∣∣
m

(
0, 1

2

)
(5.3)

for all g ∈ G(`).
Using ς(z,g) (( 1 1

0 1 ))ψ(z,g)

∣∣
1,m

( 1 1
0 1 ) = ψ(z,zg), it is easy to also verify the validity of (5.2) for

elements zg that are “paired” with the odd order elements g. Finally, we conjecture that (5.2)
is also true when g and zg both have even order.

This conjecture is strongly motivated by the finite group property discussed in Section 3,
which states that there exists an infinite dimensional module for CG(z) ∼= G that underlies H(z,g).

Since replacing θm by θm
∣∣
m

(
1
2 , 0
)

simply reorders the components of the vector-valued mock
modular forms H(e,g) = (H(e,g),r) by a shift r 7→ r + m, the group theoretic consideration
strongly suggests that this reordering has to happen for all g ∈ G, given that it is true for all
odd order elements g as well as the elements zg that they are paired with.

For ` = 6 + 3, the unique instance of umbral moonshine with n = 3, the conjecture is slightly
different. First, instead of (5.3) we have now

ψ(e,zg) = ψ(e,g) −
1

2

∑
A∈Z/3Z

ψ(e,g)|1,m(0, A/3).

for g ∈ G(`) with order ng not divisible by 3 that commutes with z. Choose any γ =
(
a b
c d

)
satisfying

c = 0 mod ng = 1 mod 3, d = 1 mod ng = 0 mod 3,

we have

ψ(z,g) =
ς(e,zg)(γ)

ς(e,g)(γ)

ψ(e,g) −
1

2

∑
A∈Z/3Z

ψ(e,g)|1,m(A/3, 0)

 .

Repeating the same argument as before by evoking the projective representation property of
moonshine, we conjecture that the above equality also holds for all g commuting with z, and
hence for all rank two Abelian old groups 〈z, g〉.
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5.2 New groups

Let 〈g, h〉 be a new group and consider the problem of evaluating H(g,h) = (H(g,h),r). First we
discuss their analytic properties. We wish to show that for a new group 〈g, h〉, H(g,h) is bounded
at all cusps.

Recall that the umbral moonshine conjecture [17, 18] states that, for all g ∈ G, the untwisted
twined functions H(e,g) are bounded at all cusps inequivalent to {i∞} under the action of Γ0(ng).
The number ng is given by the order of the group element g as permutations of the irreducible
components of the root system of the corresponding Niemeier lattice. See the appendices of [18]
for the list of ng. In particular, this means that they have no poles at the cusp τ → 0 for all g 6∈ n
and the modular property of generalised umbral moonshine (3.2) implies that the corresponding
twisted untwined functions H(g,e) are bounded at the cusp i∞. This fact together with the
finite group property of generalised umbral moonshine (3.6) then implies that all twisted twined
functions H(g,h) are bounded at the cups i∞ for all g ∈ G, g 6∈ n and for all h ∈ CG(g). Finally,
evoking again the modular property (3.2) and considering γ ∈ SL2(Z) with (g, h) = γ(g′, h′)
to transform between cusps shows that the twisted twined functions H(g,h) are bounded at all
cusps whenever 〈g, h〉 is a new group.

Next we discuss the modular properties of the new functions. From the above comment
that H(g,h) is bounded at all cusps and the absence of the mock Jacobi form in the correspond-
ing space with non-trivial shadow (see the proof of Proposition 4.1.1 of [15]), we expect that
the shadow of H(g,h) vanishes. As a result, we conclude that H(g,h) is a weight 1/2 vector-
valued modular form for Γ(g,h) with the multiplier system determined by the 3-cocyle ω (cf.
equation (3.2)). Note that any congruence subgroup, for instance Γ(g,h), contains a subgroup of
the form Γ(N). Hence each individual component H(g,h),r is a weight 1/2 modular form (with
trivial multiplier) for some Γ(N). As a result, evoking Corollary 3 of [53], we conclude that each
component H(g,h),r lies in the linear span of the theta functions

θ0
m′,s(τ) := θm′,s(τ, 0) =

∑
k∈Z

q
(2m′k+s)2

4m′

for m′ ∈ Z+, s ∈ Z/2m′Z.

Next we would like to further constrain the space of potential new functions of generalised
umbral moonshine. Consider the congruence condition, which states that the set of q-powers
of H(g,h),r with non-vanishing coefficients must be a subset of that of H(g,e),r, a property that
follows from the finite group property (3.6). This defines a subspace Θ(g,h),r generated by all
theta functions θ0

m′,s that H(g,h),r must lie in. Note that till now the space Θ(g,h),r is inde-
pendent of the twining element h, as long as it generates a new group with the given twisting
element g. We can further restrict this space in two ways. First we require that also Hγ(g,h)

must have the correct q-powers for all γ ∈ SL2(Z). Second, elements of Γ(g,h) act as a linear
transformation on this space, denoted σ : Γ(g,h) → End(Θ(g,h),r), and H(g,h),r must lie in the
simultaneous eigenspace of σ(γ) for all γ ∈ Γ(g,h), with the eigenvalues given by the multiplier
system ξ(g,h) (cf. equation (3.4)). In all of the unobstructed new groups, these simultaneous
eigenspaces have dimension either 0 or 1. Together with the requirement of the existence of
a decomposition of the first homogeneous into projective representations, this fixes all the new
functions.

In Table 2 we also record all the new functions up to a phase. To avoid cluttering we have
adopted the shorthand notation

î := θm,i(τ, ζ)− θm,−i(τ, ζ)

for i ∈ Z/2mZ.
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Table 2: New umbral subgroup representatives 〈g, h〉 ⊆ G(`).

` 〈g, h〉 Γ(g,h) Obs. ψ
(`)
(g,h)(τ, ζ)

3

〈2B, 2a〉 SL2(Z) X 0
〈2B, 2c〉 Γ1(2) X 0
〈2B, 4a〉 H(2, 2, 4) X 0
〈2B, 4c〉 H(2, 1, 4) X 0
〈2C, 2b〉 Γ(2) X 0
〈2C, 2e〉 SL2(Z) X 0

〈3A, 3a〉 SL2(Z) −2θ04,2 · 1̂ +
(
θ04,0 + θ04,4

)
· 2̂

〈3A, 3b〉 SL2(Z) −2θ04,2 · 1̂ +
(
θ04,0 + θ04,4

)
· 2̂

〈3A, 3c〉 Γ1(3)
(
θ09,3 − θ09,9

)
· 1̂ +

(
θ09,0 − θ09,6

)
· 2̂

〈3A, 6a〉 Γ1(6) −
(
θ09,3 − θ09,9

)
· 1̂ +

(
θ09,0 − θ09,6

)
· 2̂

〈3A, 6b〉 Γ1(2) 2θ04,2 · 1̂ +
(
θ04,0 + θ04,4

)
· 2̂

〈3A, 6h〉 Γ1(2) 2θ04,2 · 1̂ +
(
θ04,0 + θ04,4

)
· 2̂

4

〈2B, 2a〉 Γ1(2) X 0
〈2B, 2b〉 SL2(Z) X 0

〈2B, 4b〉 Γ1(2) 2
(
θ04,0 − θ04,4

)
· 2̂

〈2C, 2a〉 SL2(Z) X 0
〈2C, 2c〉 SL2(Z) 0
〈2C, 2i〉 Γ1(2) X 0
〈2C, 4c〉 Γ1(2) X 0

〈4A, 4c〉 Γ(4A,4c) (2− 2i)θ02,1 · 2̂

5
〈2B, 2d〉 SL2(Z) X 0
〈2B, 2e〉 Γ1(2) X 0

〈2B, 4a〉 Γ1(4) 2i
(
θ020,2 − θ020,18

)
· 2̂ + 2i

(
θ020,6 − θ020,14

)
· 4̂

6+3

〈2A, 2a〉 SL2(Z) X 0
〈2A, 2b〉 Γ1(2) X 0
〈2A, 2c〉 Γ1(2) X 0
〈2A, 2b〉 Γ(2) X 0
〈2A, 6a〉 Γ0(3) X 0
〈2A, 6a〉 Γ0(3) X 0
〈2A, 2a〉 SL2(Z) X 0
〈2B, 4b〉 H(2, 2, 4) X 0

6 Summary and discussion

In this paper we introduced the notion of generalised umbral moonshine. Generalised um-
bral moonshine can be regarded as an extension of umbral moonshine and is analogous to the
generalised monstrous moonshine, albeit with significant conceptual and technical differences.
When restricting to the A24

1 case it reduces to the generalised Mathieu moonshine analysed
in [43].

We conjecture that the deformed Drinfel’d double of finite groups is the key structure un-
derlying the (generalised) umbral moonshine phenomenon. More specifically, the generalised
umbral moonshine conjecture states that for each of the 23 lambencies of umbral moonshine
there is a way to assign an infinite-dimensional module for a deformed Drinfel’d double of the
umbral group such that its graded character is given by the twisted-twined functions which we
specified in Section 5. More explicitly, we proposed in Section 3 six conditions of generalised
umbral moonshine conjecture and provided evidence in the form of proposing all the twisted-
twined functions for all cases of generalised umbral moonshine. A proof of this conjecture should
be attaianable following the methods of [32, 45].
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It is interesting that one does not obtain new mock modular forms (with non-vanishing
shadow) in this generalisation of umbral moonshine. As we reviewed in Section 2.2, the origin of

the mockness of the umbral moonshine mock modular forms H
(`)
g is the poles of the meromorphic

Jacobi forms ψ
(`)
g (2.5), and the residues of the poles of these functions are given by characters

of the umbral group. From (3.2) and the conjecture in Section 5.1, we see that the shadow

of the mock modular form H
(`)
(g,h) when 〈g, h〉 is an old group can be obtained from that of

certain umbral moonshine function H
(`)
g′ . In the case when 〈g, h〉 is a new group, the shadow

of H
(`)
(g,h) vanishes as a result of the reasoning presented in Section 5.2. In fact, all the new

functions, which do not play a role in umbral moonshine itself, are given by theta functions (see
Table 2).

The existence of generalised umbral moonshine is particularly interesting in view of the
absence (so far) of a clear relation between umbral moonshine and conventional CFTs6. As
mentioned in Section 2.1, the generalised monstrous moonshine is believed to be a manifes-
tation of the fact that one can define the twisted modules in view of the existence of the
moonshine VOA. More generally, the physical context of the deformed Drinfel’d double of a
finite group is usually assumed to be that of holomorphic orbifold CFTs or closely related
structures such as 3d TQFTs. The important lesson generalised umbral moonshine has taught
us is the following: whatever algebraic structure underlies umbral moonshine, it has to re-
tain the intimate relation to the deformed Drinfel’d double as chiral conformal field theories
do.

A Examples

In this appendix we focus on three examples of g-twisted generalised umbral moonshine functions
for lambency ` = 3, 4, 6 + 3 of index m = 3, 4, 6 respectively. In particular, we list the inde-
pendent components of the vector-valued mock modular forms H(g,h) = (H(g,h),r), r ∈ Z/2mZ,
for all h ∈ CG`(g). Our notation for the conjugacy classes can be found in the attached file.
In these tables, the rational numbers in the first column denotes the q-power of the corre-
sponding terms in the Fourier expansion of H(g,h),r. We also list the projective character table
for the projective representations compatible with the 3-cocycle, as well as the decompositions
of the first few homogeneous components Kg

r,α of the conjectural generalised umbral moon-
shine module for these cases (cf. equation (3.6)). To increase readability we use “.” to denote
zero.

6From this point of view, the fact that there is a generalised moonshine for each of the 23 cases of umbral
moonshine is perhaps more surprising than the existence of generalised Mathieu moonshine alone. This is because,
unlike the other 22 cases of umbral moonshine, Mathieu moonshine has an obvious relation to CFTs. Indeed,
in [43] the existence of generalised Mathieu moonshine is argued to suggest that a holomorphic VOA may be
underlying Mathieu moonshine.
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A.1 ` = 3, 4B twist

Table 3: Projective character table for CG(3)(g).

1a 2a 2b 2c 2d 2e 4a 4b 4c 4d 4e 4f 8a 8b 8c 8d 8e 8f 8g 8h

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 −1 1 −1 1 1 1 −1 1 −1 1 1 −1 1 −1 1 −1 1 −1 1
χ3 1 1 1 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
χ4 1 −1 1 −1 1 1 1 −1 1 −1 1 1 1 −1 1 −1 1 −1 1 −1
χ5 1 −1 1 1 −1 −1 i −i −i i −i i ζ7

8 ζ3
8 ζ5

8 ζ8 ζ3
8 ζ7

8 ζ8 ζ5
8

χ6 1 −1 1 1 −1 −1 i −i −i i −i i ζ3
8 ζ7

8 ζ8 ζ5
8 ζ7

8 ζ3
8 ζ5

8 ζ8

χ7 1 −1 1 1 −1 −1 −i i i −i i −i ζ5
8 ζ8 ζ7

8 ζ3
8 ζ8 ζ5

8 ζ3
8 ζ7

8

χ8 1 −1 1 1 −1 −1 −i i i −i i −i ζ8 ζ5
8 ζ3

8 ζ7
8 ζ5

8 ζ8 ζ7
8 ζ3

8

χ9 1 1 1 −1 −1 −1 i i −i −i −i i ζ7
8 ζ7

8 ζ5
8 ζ5

8 ζ3
8 ζ3

8 ζ8 ζ8

χ10 1 1 1 −1 −1 −1 i i −i −i −i i ζ3
8 ζ3

8 ζ8 ζ8 ζ7
8 ζ7

8 ζ5
8 ζ5

8

χ11 1 1 1 −1 −1 −1 −i −i i i i −i ζ5
8 ζ5

8 ζ7
8 ζ7

8 ζ8 ζ8 ζ3
8 ζ3

8

χ12 1 1 1 −1 −1 −1 −i −i i i i −i ζ8 ζ8 ζ3
8 ζ3

8 ζ5
8 ζ5

8 ζ7
8 ζ7

8

χ13 1 −1 1 −1 1 1 −1 1 −1 1 −1 −1 −i i i −i −i i i −i
χ14 1 −1 1 −1 1 1 −1 1 −1 1 −1 −1 i −i −i i i −i −i i
χ15 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −i −i i i −i −i i i
χ16 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 i i −i −i i i −i −i
χ17 2 . −2 . −2 2 2 . 2 . −2 −2 . . . . . . . .
χ18 2 . −2 . −2 2 −2 . −2 . 2 2 . . . . . . . .
χ19 2 . −2 . 2 −2 2i . −2i . 2i −2i . . . . . . . .
χ20 2 . −2 . 2 −2 −2i . 2i . −2i 2i . . . . . . . .

Table 4: Coefficients of H(g,h),1.

1a 2a 2b 2c 2d 2e 4a 4b 4c 4d 4e 4f 8a 8b 8c 8d 8e 8f 8g 8h

2/12 2 . 2 . 2 2 2 . 2 . 2 2 . 2 . 2 . 2 . 2
5/12 4 . −4 . 4 −4 4i . −4i . 4i −4i . . . . . . . .
8/12 6 . 6 . 6 6 −6 . −6 . −6 −6 . 2i . −2i . 2i . −2i

11/12 8 . −8 . 8 −8 −8i . 8i . −8i 8i . . . . . . . .
14/12 12 . 12 . 12 12 12 . 12 . 12 12 . −4 . −4 . −4 . −4
17/12 16 . −16 . 16 −16 16i . −16i . 16i −16i . . . . . . . .
20/12 20 . 20 . 20 20 −20 . −20 . −20 −20 . −4i . 4i . −4i . 4i
23/12 28 . −28 . 28 −28 −28i . 28i . −28i 28i . . . . . . . .
26/12 36 . 36 . 36 36 36 . 36 . 36 36 . 4 . 4 . 4 . 4
29/12 44 . −44 . 44 −44 44i . −44i . 44i −44i . . . . . . . .

Table 5: Coefficients of H(g,h),2.

1a 2a 2b 2c 2d 2e 4a 4b 4c 4d 4e 4f 8a 8b 8c 8d 8e 8f 8g 8h

2/12 2 . 2 . −2 −2 2i . −2i . −2i 2i 2ζ7
8 . 2ζ5

8 . 2ζ3
8 . 2ζ8 .

5/12 4 . −4 . −4 4 −4 . −4 . 4 4 . . . . . . . .
8/12 6 . 6 . −6 −6 −6i . 6i . 6i −6i 2ζ5

8 . 2ζ7
8 . 2ζ8 . 2ζ3

8 .
11/12 8 . −8 . −8 8 8 . 8 . −8 −8 . . . . . . . .
14/12 12 . 12 . −12 −12 12i . −12i . −12i 12i 4ζ3

8 . 4ζ8 . 4ζ7
8 . 4ζ5

8 .
17/12 16 . −16 . −16 16 −16 . −16 . 16 16 . . . . . . . .
20/12 20 . 20 . −20 −20 −20i . 20i . 20i −20i 4ζ8 . 4ζ3

8 . 4ζ5
8 . 4ζ7

8 .
23/12 28 . −28 . −28 28 28 . 28 . −28 −28 . . . . . . . .
26/12 36 . 36 . −36 −36 36i . −36i . −36i 36i 4ζ7

8 . 4ζ5
8 . 4ζ3

8 . 4ζ8 .
29/12 44 . −44 . −44 44 −44 . −44 . 44 44 . . . . . . . .
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Table 6: Decompositions for the first few Kg
1,α.

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9 χ10 χ11 χ12 χ13 χ14 χ15 χ16 χ17 χ18 χ19 χ20

2/12 1 1 . . . . . . . . . . . . . . . . . .
5/12 . . . . . . . . . . . . . . . . . . 2 .
8/12 . . . . . . . . . . . . 2 1 1 2 . . . .

11/12 . . . . . . . . . . . . . . . . . . . 4
14/12 2 2 4 4 . . . . . . . . . . . . . . . .
17/12 . . . . . . . . . . . . . . . . . . 8 .
20/12 . . . . . . . . . . . . 4 6 6 4 . . . .
23/12 . . . . . . . . . . . . . . . . . . . 14
26/12 10 10 8 8 . . . . . . . . . . . . . . . .
29/12 . . . . . . . . . . . . . . . . . . 22 .

Table 7: Decompositions for the first few Kg
2,α.

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9 χ10 χ11 χ12 χ13 χ14 χ15 χ16 χ17 χ18 χ19 χ20

2/12 . . . . 1 . . . 1 . . . . . . . . . . .
5/12 . . . . . . . . . . . . . . . . . 2 . .
8/12 . . . . . . 2 1 . . 2 1 . . . . . . . .

11/12 . . . . . . . . . . . . . . . . 4 . . .
14/12 . . . . 2 4 . . 2 4 . . . . . . . . . .
17/12 . . . . . . . . . . . . . . . . . 8 . .
20/12 . . . . . . 4 6 . . 4 6 . . . . . . . .
23/12 . . . . . . . . . . . . . . . . 14 . . .
26/12 . . . . 10 8 . . 10 8 . . . . . . . . . .
29/12 . . . . . . . . . . . . . . . . . 22 . .

A.2 ` = 4, 2B twist

Table 8: Projective character table for CG(4)(g).

1a 2a 2b 2c 2d 2e 3a 3b 4a 4b 4c 6a 6b 6c 6d 6e 6f

χ1 2 . . 2 2 2 1 1 2 . . 1 1 1 1 1 1
χ2 2 . . −2 2 −2 1 1 . . 2 1 −1 −1 −1 −1 1
χ3 2 . . −2 −2 2 1 1 . 2 . −1 −1 −1 1 1 −1
χ4 2 . . 2 2 2 ζ2

3 ζ3 2 . . ζ3 ζ2
3 ζ3 ζ2

3 ζ3 ζ2
3

χ5 2 . . 2 2 2 ζ3 ζ2
3 2 . . ζ2

3 ζ3 ζ2
3 ζ3 ζ2

3 ζ3

χ6 2 . . −2 2 −2 ζ2
3 ζ3 . . 2 ζ3 ζ6 ζ5

6 ζ6 ζ5
6 ζ2

3

χ7 2 . . −2 2 −2 ζ3 ζ2
3 . . 2 ζ2

3 ζ5
6 ζ6 ζ5

6 ζ6 ζ3

χ8 2 . . −2 −2 2 ζ2
3 ζ3 . 2 . ζ5

6 ζ6 ζ5
6 ζ2

3 ζ3 ζ6

χ9 2 . . −2 −2 2 ζ3 ζ2
3 . 2 . ζ6 ζ5

6 ζ6 ζ3 ζ2
3 ζ5

6

χ10 4 . . 4 −4 −4 −1 −1 . . . 1 −1 −1 1 1 1
χ11 4 . . 4 −4 −4 ζ6 ζ5

6 . . . ζ3 ζ6 ζ5
6 ζ2

3 ζ3 ζ2
3

χ12 4 . . 4 −4 −4 ζ5
6 ζ6 . . . ζ2

3 ζ5
6 ζ6 ζ3 ζ2

3 ζ3

χ13 6 . . 6 6 6 . . −2 . . . . . . . .
χ14 6 . . −6 6 −6 . . . . −2 . . . . . .
χ15 6 . . −6 −6 6 . . . −2 . . . . . . .
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Table 9: Coefficients of H(g,h),1.

1a 2a 2b 2c 2d 2e 3a 3b 4a 4b 4c 6a 6b 6c 6d 6e 6f

3/16 4 . . 4 4 4 −1 −1 4 . . −1 −1 −1 −1 −1 −1
11/16 4 . . −4 4 −4 2 2 . . 4 2 −2 −2 −2 −2 2
19/16 12 . . 12 12 12 . . −4 . . . . . . . .
27/16 16 . . −16 16 −16 −1 −1 . . . −1 1 1 1 1 −1
35/16 24 . . 24 24 24 . . 8 . . . . . . . .
43/16 36 . . −36 36 −36 . . . . 4 . . . . . .
51/16 56 . . 56 56 56 −2 −2 −8 . . −2 −2 −2 −2 −2 −2
59/16 76 . . −76 76 −76 2 2 . . −4 2 −2 −2 −2 −2 2
67/16 108 . . 108 108 108 . . 12 . . . . . . . .
75/16 148 . . −148 148 −148 −1 −1 . . 4 −1 1 1 1 1 −1

Table 10: Coefficients of H(g,h),2.

1a 2a 2b 2c 2d 2e 3a 3b 4a 4b 4c 6a 6b 6c 6d 6e 6f

0/2 2 . . −2 −2 2 1 1 . 2 . −1 −1 −1 1 1 −1
1/2 8 . . 8 −8 −8 −2 −2 . . . 2 −2 −2 2 2 2
2/2 12 . . −12 −12 12 . . . −4 . . . . . . .
3/2 16 . . 16 −16 −16 2 2 . . . −2 2 2 −2 −2 −2
4/2 32 . . −32 −32 32 −2 −2 . . . 2 2 2 −2 −2 2
5/2 48 . . 48 −48 −48 . . . . . . . . . . .
6/2 64 . . −64 −64 64 2 2 . . . −2 −2 −2 2 2 −2
7/2 96 . . 96 −96 −96 . . . . . . . . . . .
8/2 132 . . −132 −132 132 . . . 4 . . . . . . .
9/2 184 . . 184 −184 −184 2 2 . . . −2 2 2 −2 −2 −2

Table 11: Coefficients of H(g,h),3.

1a 2a 2b 2c 2d 2e 3a 3b 4a 4b 4c 6a 6b 6c 6d 6e 6f

3/16 4 . . −4 4 −4 −1 −1 . . 4 −1 1 1 1 1 −1
11/16 4 . . 4 4 4 2 2 4 . . 2 2 2 2 2 2
19/16 12 . . −12 12 −12 . . . . −4 . . . . . .
27/16 16 . . 16 16 16 −1 −1 . . . −1 −1 −1 −1 −1 −1
35/16 24 . . −24 24 −24 . . . . 8 . . . . . .
43/16 36 . . 36 36 36 . . 4 . . . . . . . .
51/16 56 . . −56 56 −56 −2 −2 . . −8 −2 2 2 2 2 −2
59/16 76 . . 76 76 76 2 2 −4 . . 2 2 2 2 2 2
67/16 108 . . −108 108 −108 . . . . 12 . . . . . .
75/16 148 . . 148 148 148 −1 −1 4 . . −1 −1 −1 −1 −1 −1
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Table 12: Decompositions for the first few Kg
1,α.

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9 χ10 χ11 χ12 χ13 χ14 χ15

3/16 . . . 1 1 . . . . . . . . . .
11/16 . 2 . . . . . . . . . . . . .
19/16 . . . . . . . . . . . . 2 . .
27/16 . . . . . 1 1 . . . . . . 2 .
35/16 2 . . 2 2 . . . . . . . 2 . .
43/16 . 2 . . . 2 2 . . . . . . 4 .
51/16 . . . 2 2 . . . . . . . 8 . .
59/16 . 4 . . . 2 2 . . . . . . 10 .
67/16 6 . . 6 6 . . . . . . . 12 . .
75/16 . 6 . . . 7 7 . . . . . . 18 .

Table 13: Decompositions for the first few Kg
2,α.

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9 χ10 χ11 χ12 χ13 χ14 χ15

0/2 . . 1 . . . . . . . . . . . .
1/2 . . . . . . . . . 2 . . . . .
2/2 . . . . . . . . . . . . . . 2
3/2 . . . . . . . . . . 2 2 . . .
4/2 . . . . . . . 2 2 . . . . . 4
5/2 . . . . . . . . . 4 4 4 . . .
6/2 . . 4 . . . . 2 2 . . . . . 8
7/2 . . . . . . . . . 8 8 8 . . .
8/2 . . 6 . . . . 6 6 . . . . . 16
9/2 . . . . . . . . . 14 16 16 . . .

Table 14: Decompositions for the first few Kg
3,α.

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9 χ10 χ11 χ12 χ13 χ14 χ15

3/16 . . . . . 1 1 . . . . . . . .
11/16 2 . . . . . . . . . . . . . .
19/16 . . . . . . . . . . . . . 2 .
27/16 . . . 1 1 . . . . . . . 2 . .
35/16 . 2 . . . 2 2 . . . . . . 2 .
43/16 2 . . 2 2 . . . . . . . 4 . .
51/16 . . . . . 2 2 . . . . . . 8 .
59/16 4 . . 2 2 . . . . . . . 10 . .
67/16 . 6 . . . 6 6 . . . . . . 12 .
75/16 6 . . 7 7 . . . . . . . 18 . .
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A.3 ` = 6 + 3, 3B twist

Table 15: Projective character table for CG(6+3)(g).

1a 2a 3a 3b 3c 3d 3e 6a 6b

χ1 1 1 1 1 1 1 1 1 1
χ2 1 −1 1 1 1 1 1 −1 −1
χ3 1 −1 ζ2

3 ζ3 ζ3 1 ζ2
3 ζ6 ζ5

6

χ4 1 −1 ζ3 ζ2
3 ζ2

3 1 ζ3 ζ5
6 ζ6

χ5 1 1 ζ2
3 ζ3 ζ3 1 ζ2

3 ζ2
3 ζ3

χ6 1 1 ζ3 ζ2
3 ζ2

3 1 ζ3 ζ3 ζ2
3

χ7 2 . 2 2 −1 −1 −1 . .
χ8 2 . 2ζ3 2ζ2

3 ζ6 −1 ζ5
6 . .

χ9 2 . 2ζ2
3 2ζ3 ζ5

6 −1 ζ6 . .

Table 16: Coefficients of H(g,h),1.

1a 2a 3a 3b 3c 3d 3e 6a 6b

5/72 2 2 2 2 2 2 2 2 2
29/72 2 −2 2ζ3 2ζ2

3 2ζ2
3 2 2ζ3 2ζ5

6 2ζ6

53/72 4 . 4ζ2
3 4ζ3 4ζ3 4 4ζ2

3 . .
77/72 2 −2 2 2 2 2 2 −2 −2

101/72 6 2 6ζ3 6ζ2
3 6ζ2

3 6 6ζ3 2ζ3 2ζ2
3

125/72 6 −2 6ζ2
3 6ζ3 6ζ3 6 6ζ2

3 2ζ6 2ζ5
6

149/72 8 . 8 8 8 8 8 . .
173/72 8 . 8ζ3 8ζ2

3 8ζ2
3 8 8ζ3 . .

197/72 12 4 12ζ2
3 12ζ3 12ζ3 12 12ζ2

3 4ζ2
3 4ζ3

221/72 14 −2 14 14 14 14 14 −2 −2

Table 17: Coefficients of H(g,h),3.

1a 2a 3a 3b 3c 3d 3e 6a 6b

5/72 4 . 4ζ3 4ζ2
3 2ζ6 −2 2ζ5

6 . .
29/72 4 . 4ζ2

3 4ζ3 2ζ5
6 −2 2ζ6 . .

53/72 8 . 8 8 −4 −4 −4 . .
77/72 4 . 4ζ3 4ζ2

3 2ζ6 −2 2ζ5
6 . .

101/72 12 . 12ζ2
3 12ζ3 6ζ5

6 −6 6ζ6 . .
125/72 12 . 12 12 −6 −6 −6 . .
149/72 16 . 16ζ3 16ζ2

3 8ζ6 −8 8ζ5
6 . .

173/72 16 . 16ζ2
3 16ζ3 8ζ5

6 −8 8ζ6 . .
197/72 24 . 24 24 −12 −12 −12 . .
221/72 28 . 28ζ3 28ζ2

3 14ζ6 −14 14ζ5
6 . .
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Table 18: Decompositions for the first few Kg
1,α.

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9

5/72 2 . . . . . . . .
29/72 . . . 2 . . . . .
53/72 . . 2 . 2 . . . .
77/72 . 2 . . . . . . .

101/72 . . . 2 . 4 . . .
125/72 . . 4 . 2 . . . .
149/72 4 4 . . . . . . .
173/72 . . . 4 . 4 . . .
197/72 . . 4 . 8 . . . .
221/72 6 8 . . . . . . .

Table 19: Decompositions for the first few Kg
3,α.

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9

5/72 . . . . . . . 2 .
29/72 . . . . . . . . 2
53/72 . . . . . . 4 . .
77/72 . . . . . . . 2 .

101/72 . . . . . . . . 6
125/72 . . . . . . 6 . .
149/72 . . . . . . . 8 .
173/72 . . . . . . . . 8
197/72 . . . . . . 12 . .
221/72 . . . . . . . 14 .
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