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Abstract. We show that non-stationary Gromov–Witten invariants of P1 can be extracted
from open periods of the Eynard–Orantin topological recursion correlators ωg,n whose Lau-
rent series expansion at ∞ compute the stationary invariants. To do so, we overcome the
technical difficulties to global loop equations for the spectral x(z) = z+ 1/z and y(z) = ln z
from the local loop equations satisfied by the ωg,n, and check these global loop equations
are equivalent to the Virasoro constraints that are known to govern the full Gromov–Witten
theory of P1.
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1 Introduction

The Gromov–Witten invariants of P1 were expressed as expectation values of Plancherel measure
by Okounkov and Pandharipande in [14]. This viewpoint naturally led to the conjecture that
the Gromov–Witten invariants of P1 satisfy topological recursion applied to the complex curve
defined by a dual Landau–Ginzburg model [13], proven in [5] using a completely different point
of view. Topological recursion, defined in Section 3, produces a collection of meromorphic
multidifferentials ωg,n on a complex curve via a recursive relation between the expansion of ωg,n
at its poles and the expansion of ωg′,n′ for 2g′− 2 + n′ < 2g− 2 + n at their poles. This relation
at the poles takes the form of Virasoro constraints which we will call local Virasoro constraints.
The Gromov–Witten invariants of P1 already satisfy Virasoro constraints, conjectured in [6] and
proven in [8, 15], which we will call global Virasoro constraints. Until now the direct relation
between these local and global Virasoro constraints has been missing. This paper fills this gap,
showing that the global Virasoro constraints satisfied by Gromov–Witten invariants of P1 are
a consequence of the local Virasoro constraints that constitute topological recursion.

The genus g connected Gromov–Witten invariants of P1 with n insertions are defined as〈 n∏
i=1

ταibi

〉d
g

=

∫
[Mg,n(P1,d)]vir

n∏
i=1

ψbii ev∗i (γαi),

where d is determined by
n∑
i=1

bi = 2g − 2 + 2d and hence sometimes omitted from the notation.

The cohomology classes γi are chosen to be either the unit γ0 = 1 ∈ H0
(
P1
)

(non-stationary
insertion) or the dual of the class of a point γ1 = ω ∈ H2

(
P1
)

(stationary insertion). The 0-point
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invariants vanish except for 1 =
∫
[M0,0(P1,1)]vir 1 so we consider only n > 0. The generating series

of stationary invariants

Ωg,n(x1, . . . , xn) =
∑

b1,...,bn≥0

〈 n∏
i=1

τ1bi

〉
g

n∏
i=1

(bi + 1)!

xbi+2
i

(1)

is analytic in a neighbourhood of xi = ∞ and for (g, n) 6= (0, 1) it analytically continues to
a meromorphic function on Sn, for S ∼= P1, via the substitution xi = x(zi) = zi + 1/zi.

In order to prove the Virasoro constraints satisfied by the Gromov–Witten invariants of P1, we

represent
〈 n∏
i=1

ταibi
〉d
g

as periods, or contour integrals, of the rational functions defined in (1). The

computation of these invariants as periods is expected from mirror symmetry. The stationary
invariants were already known to be given by periods of rational functions, and what is new here
is representing the non-stationary invariants as contour integrals of the same rational functions.
By construction, Ωg,n(x1, . . . , xn) stores the stationary invariants via〈 n∏

i=1

τ1bi

〉
g

=

n⊗
i=1

I1bi
[
Ωg,ndx1 · · · dxn

]
,

where the linear functional I1b is a contour integral defined on a meromorphic 1-form f by

I1b [f ] := −Res
∞

xb+1

(b+ 1)!
f.

We show how Ωg,n(x1, . . . , xn) also stores the non-stationary invariants via contour integrals.
The contours involved are now non-compact, so we need to first develop the main technical tool
introduced in this paper, which is a collection of regularised contour integrals. Theorem 1 ex-
hibits the non-stationary invariants as regularised contour integrals of the analytic continuation
of Ωg,n. It is rather interesting that the non-stationary invariants use the global structure of the
analytic continuation.

To state the result, we distinguish S ∼= P1 with coordinate z, and Š ∼= P1 with coordinate x.
If f is a 1-form on S without poles at ∞, we introduce for b ≥ 0

Rb[f ] = f −
b−1∑
a=0

(a+ 1)! dx

xa+2
I1a [f ].

We define an inverse function to x by

Z : Š \ [−2, 2] −→ S,

x 7−→ x−
√
x2 − 4

2
,

with the standard determination of the square root having a discontinuity on R−. We then
define Řb[f ](x) = Rb[f ](Z(x)) which is a 1-form on Š \ [−2, 2]. Notice that Řb[f ] behaves as
O
(
x−(b+1)dx

)
when x → 0 and behaves as O

(
x−bdx

)
when x → ∞. This remark shows that

the following definition is well-posed

I0b [f ] = lim
ε→0+

(
2I1b−1[f ] ln ε−

∫ i∞

0

xb

b!
Řb[f ](x+ iε)−

∫ −i∞
0

xb

b!
Řb[f ](x− iε)

)
. (2)

When b = 0 we set I1−1 = 0. In Section 5.1 it is proven that I0b [f ] = −
∫
γ
xb

b! f for a certain class

of 1-forms f on S, where γ is a contour from z = 0 to z = ∞ (the two points above x = ∞).
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Rather generally, I0b satisfies a formula of integration by parts. Hence we consider the linear
functional I0b to be a regularised integral. We actually extend the definition of I0b to 1-forms
with poles or other singularities at ∞ such that the integration by parts is still satisfied.

For 2g − 2 + n > 0, define ωg,n(z1, . . . , zn) to be the analytic continuation of

Ωg,n(x1, . . . , xn)dx1 · · · dxn

to Sn where xi = zi + 1/zi. Equivalently ωg,n(z1, . . . , zn) is rational with expansion around
zi =∞ given by Ωg,n(x1, . . . , xn)dx1 · · · dxn. The fact that Ωg,n(x1, . . . , xn) analytically contin-
ues to a rational function is a consequence of topological recursion proven in [5] – see Remark 3 –
or topological recursion relations obtained by pulling back relations in H∗

(
Mg,n

)
to relations

in H∗
(
Mg,n

(
P1, d

))
[12] which are satisfied quite generally by Gromov–Witten invariants. We

expect that it can also be derived from the semi-infinite wedge formalism of Okounkov and
Pandharipande [14].

Theorem 1. For 2g − 2 + n > 0, b1, . . . , bn ≥ 0 and α1, . . . , αn ∈ {0, 1}〈 n∏
i=1

ταibi

〉
g

=

( n⊗
i=1

Iαibi
)
ωg,n. (3)

In the case (g, n) = (0, 2), replace ω0,2 in (3) by

ωodd
0,2 (z1, z2) =

1

2

dz1 dz2
(z1 − z2)2

+
1

2

dz1dz2
(1− z1z2)2

,

and for (g, n) = (0, 1) we have〈
ταb
〉
0

= Iαb+1

[
dz

z

]
.

Remark 1. Integrals of differentials over compact and non-compact contours appearing in
work of Dubrovin [3] were used in [4] to produce correlators of cohomological field theories such
as Gromov–Witten invariants. That paper considered only primary invariants, corresponding
to Iα0 , where the contour integrals do not require regularisation. Our technical contribution is
a rigorous definition of the integrals over non-compact contours.

Define the partition function which stores Gromov–Witten invariants by

ZP1

(
~,
{
tαk
})

= exp

( ∑
g,n,b1,...,bn≥0
α1,...,αn∈{0,1}

~g−1

n!

〈 n∏
i=1

ταibi

〉
g

n∏
i=1

tαibi

)
.

Define the Virasoro operators Ln for n ≥ −1 by

Ln = −(n+ 1)!
∂

∂t0n+1

+
∑
j≥1

(n+ j)!

(j − 1)!
t0j

∂

∂t0n+j
+ 2

∑
j≥1

(n+ j)!

(j − 1)!
(Hn+j −Hj−1)t

0
j

∂

∂t1n+j−1

+
∑
j≥0

(n+ j + 1)!

j!
t1j

∂

∂t1n+j
− 2(n+ 1)!Hn+1

∂

∂t1n

+ ~
n−2∑
j=0

(j + 1)!(n− j − 1)!
∂

∂t1j

∂

∂t1n−j−2
+ ~−1δn,0(t00)2 + ~−1δn,−1t00t10, (4)

where Hk =
k∑
j=1

1
j . We give a new proof of the following theorem of [15].
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Theorem 2. The partition function ZP1

({
tαk
})

satisfies the Virasoro constraints

∀n ≥ −1, Ln · ZP1

({
tαk
})

= 0.

We derive the global constraints of Theorem 2 from the local constraints of topological recur-
sion, by moving the contours from poles z = ±1 to z =∞. For spectral curves that are smooth
algebraic plane curves, there would be no difficulty in doing so, cf., e.g., [16]. The difficulty which
we overcome is the handling of the log singularities in the Landau–Ginzburg model dual to P1,
via an asymptotic expansion result for the Hilbert transform found in [11]. The definition of
the regularised integral (2) appears as a byproduct of our analysis. We expect that our method
generalises to more complicated spectral curves with logarithmic singularities, in particular to
certain types of Hurwitz numbers and Gromov–Witten invariants for some other targets.

The Virasoro constraints for Gromov–Witten invariants have been proven in some generality
by Givental and Teleman [8, 17]. The Virasoro operators can be obtained from conjugation of
local Virasoro operators by operators that reconstruct the partition function of the Gromov–
Witten invariants from the partition function of Gromov–Witten invariants of a point. The
work of [5] showed that topological recursion is equivalent to this reconstruction of Givental
and Teleman. Hence one would expect that the global Virasoro constraints of Theorem 2 can
be derived directly from the local Virasoro constraints. Our result essentially exhibits this
conjugation via moving contours.

The paper is organised as follows. In Section 2 we recall the definition of descendant and
ancestor Gromov–Witten invariants which are needed in the proof of Theorem 1. In Section 3 we
review the topological recursion and its application to Gromov–Witten invariants of P1 proven
in [5], and derive a preliminary form of the global constraints from the local ones. Section 5
develops the regularised integral and its properties which is the main technical tool of this
paper. Section 6 contains the proof of Theorem 1. In Section 7, we use the properties of the
regularised integral and the aforementioned preliminary global constraints to produce a new
proof of Theorem 2.

2 Gromov–Witten invariants

2.1 The moduli space of stable maps

Let X be a projective algebraic variety and consider (C, x1, . . . , xn) a connected smooth curve of
genus g with n distinct marked points. For d ∈ H2(X,Z) the moduli space of maps Mg,n(X, d)
consists of morphisms

f : (C, x1, . . . , xn)→ X

satisfying f∗[C] = d quotiented by isomorphisms of the domain C that fix each xi. The moduli
space has a compactificationMg,n(X, d) given by the moduli space of stable maps: the domain C
is a connected nodal curve; the distinct points {x1, . . . , xn} avoid the nodes; any genus zero
irreducible component of C with fewer than three distinguished points (nodal or marked) must
be collapsed to a point; any genus one irreducible component of C with no marked point must
be collapsed to a point. The moduli space of stable maps has irreducible components of different

dimensions but it has a virtual fundamental class,
[
Mg,n(X, d)

]vir
, the existence and construction

of which is highly nontrivial [1], of dimension

dim
[
Mg,n(X, d)

]vir
= 〈c1(X), d〉+ (dimX − 3)(1− g) + n. (5)
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2.1.1 Cohomology on Mg,n(X,d)

Let Li be the line bundle over Mg,n(X, d) with fibre at each point the cotangent bundle over
the ith marked point of the domain curve C. Define ψi = c1(Li) ∈ H2

(
Mg,n(X, d),Q

)
to be

the first Chern class of Li. For i ∈ {1, . . . , n} there exist evaluation maps

evi : Mg,n(X, d) −→ X, evi(f) = f(xi),

so that classes γ ∈ H∗(X,Z) pull back to classes in H∗
(
Mg,n(X, d),Q

)
ev∗i : H∗(X,Z) −→ H∗(Mg,n(X, d),Q).

The forgetful map π : Mg,n(X, d) → Mg,n sends the map to its domain curve with possible
contractions of unstable components.

The Gromov–Witten invariants are defined by integrating cohomology classes, often called
descendant classes, of the form

τbi(γ) = ψbii ev∗i (γ)

against the virtual fundamental class. The descendant Gromov–Witten invariants are defined
by 〈 n∏

i=1

τbi(γαi)

〉d
g

:=

∫
[Mg,n(X,d)]vir

n∏
i=1

ψbii ev∗i (γαi).

When X = {pt},Mg,n(X, d) =Mg,n is the moduli space of genus g stable curves with n labeled
points, equipped with line bundles Li with fibre at each point the cotangent bundle over the ith
marked point of the domain curve C and ψi = c1(Li) ∈ H2

(
Mg,n,Q

)
. For 2g − 2 + n > 0, let

ψi = π∗ψi ∈ H2
(
Mg,n(X, d),Q

)
. The ancestor Gromov–Witten invariants use the classes ψi in

place of ψi:〈 n∏
i=1

τ bi(γαi)

〉d
g

:=

∫
[Mg,n(X,d)]vir

n∏
i=1

ψ
bi
i ev∗i (γαi).

They are defined only in the stable case, i.e., when 2g − 2 + n > 0.

2.2 Specialising to P1

We now only consider the target X = P1. Let γ0 ∈ H0
(
P1,Z

)
be the unit and γ1 ∈ H2

(
P1,Z

)
be the Poincaré dual class of a point. For brevity we denote ταb := τb(γα). The degree d ∈ N

of the Gromov–Witten invariants
〈 n∏
i=1

ταibi
〉
g

is determined by
n∑
i=1

(bi + αi) = 2g − 2 + 2d + n

coming from (5). Insertions of γ1 are called stationary Gromov–Witten invariants of P1 since
the images of the marked points are fixed, and insertions of γ0 are called non-stationary. The

ancestor invariants of P1 use the analogous notation
〈 n∏
i=1

ταibi
〉
g
. We introduce the descendant

partition function in the variables tαk for α ∈ {0, 1} and k ∈ N by

ZP1

(
~,
{
tαk
})

= exp

( ∑
g,n,b1,...,bn≥0
α1,...,αn∈{0,1}
2g−2+n>0

~g−1

n!

〈 n∏
i=1

ταibi

〉
g

n∏
i=1

tαibi

)
, (6)
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and the ancestor partition function using the variables t
α
k :

ZP1

(
~,
{
t
α
k

})
= exp

( ∑
g,n,b1,...,bn≥0
α1,...,αn∈{0,1}

~g−1

n!

〈 n∏
i=1

ταibi

〉
g

n∏
i=1

t
αi
bi

)
. (7)

The descendant invariants uniquely determine the ancestor invariants. They are related by an
endomorphism valued series S(u) =

∑
k≥0

Sk u
k known as the S-matrix, by the linear change

t
α
m =

∑
k≥m

β∈{0,1}

(Sk−m)αβ t
β
k .

Equivalently

τβk =
∑
m≤k

α∈{0,1}

(Sk−m)αβτ
α
m, (8)

when evaluated between 〈·〉, so for example the 1-point genus g invariants satisfy〈
τβk
〉
g

=
∑
m≤k

α∈{0,1}

(Sk−m)αβ
〈
ταm
〉
g
.

It is proven in [10] that

Zst
X

(
~,
{
tβk
})

= ZX
(
~,
{
t
α
m

})∣∣
t
α
m=

∑
k,β

(Sk−m)αβ t
β
k
,

where Zst
X

(
~,
{
tβk
})

is the stable part of the descendant invariants, i.e., it excludes the terms
(g, n) = (0, 1) and (0, 2) in (6).

3 Topological recursion

3.1 Definition

Topological recursion [7] takes as input a spectral curve C = (S, x, y, B) consisting of a Riemann
surface S, two meromorphic functions x and y on S and a symmetric bidifferential B on S2. We
assume that each zero of dx is simple and does not coincide with a zero of dy. The output of

topological recursion is a collection of symmetric multidifferentials ωg,n ∈ H0
(
KS(∗D)�n,Sn

)Sn
for g ≥ 0 and n ≥ 1 such that 2g− 2 +n > 0, which we call correlators. Here D is the divisor of
zeroes of dx = 0. In other words the multidifferentials are holomorphic outside of dx = 0 and
can have poles of arbitrary order when each variable approaches D.

The correlators are defined as follows. We first define the exceptional cases

ω0,1(p1) = y(p1) dx(p1) and ω0,2(p1, p2) = B(p1, p2).

The correlators ωg,n for 2g − 2 + n > 0 are defined recursively via the following equation

ωg,n(p1,pI) =
∑

dx(α)=0

Res
p=α

K(p1, p)

[
ωg−1,n+1(p, σα(p),pI)
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+
◦∑

h+h′=g
JtJ ′=I

ωh,1+|J |(p,pJ)ωh′,1+|J ′|(σα(p),pJ ′)

]
.

Here, we use the notation I = {2, 3, . . . , n} and pJ = {pj1 , pj2 , . . . , pjk} for J = {j1, j2, . . . , jk}
⊆ I. The holomorphic function p 7→ σα(p) is the non-trivial involution defined locally at the
ramification point α and satisfying x(σα(p)) = x(p). The symbol ◦ over the inner summation
means that we exclude any term that involves ω0,1. Finally, the recursion kernel is given by

K(p1, p) =
1

2

∫ p
σα(p)

ω0,2(p1, ·)
[y(p)− y(σα(p))]dx(p)

.

The recursion only depends on the local behaviour of y near the zeros of dx up to functions that
are even with respect to the involution. Hence it only depends on dy. Below we write a spectral
curve (9) in terms of dy.

For 2g − 2 + n > 0, the multidifferentials ωg,n(p1, . . . , pn) are meromorphic on Sn with poles
at pi ∈ D. They can be expressed as polynomials in a basis of differentials with poles only at D
and divergent part odd under each local involution σα. We denote ξαk such a basis indexed by
k ≥ 0 and zeroes α of dx. Once a choice of basis is made, we define the partition function of
the spectral curve C = (S, x, y, B) by

ZC
(
~,
{
tαk
})

= exp

( ∑
g≥0, n≥1
2g−2+n>0

~g−1

n!
ωg,n|ξαk=tαk

)
.

3.2 Relation to Gromov–Witten theory of P1

Dunin-Barkowski, Orantin, Shadrin and Spitz [5] proved that for a particular choice of ba-
sis
{
ξαk
}

, the partition function ZC
(
~,
{
tαk
})

coincides with the partition function of a cohomo-
logical field theory. In particular, they showed how to realise in this way the cohomological field
theory encoding Gromov–Witten invariants of P1, which corresponds to the spectral curve

CP1 =

(
P1, x = z +

1

z
, dy =

dz

z
, B =

dz1 dz2
(z1 − z2)2

)
. (9)

For 2g − 2 + n > 0, the associated correlators ωg,n have poles at D = {−1, 1} and the global
involution z 7→ 1/z realises the local involutions σ±1. The aforementioned basis of 1-forms is
defined by induction for k ≥ 0 and α ∈ {0, 1}

ξαk (z) = −d

(
ξαk−1(z)

dx(z)

)
, (10)

from the initial data ξα−1(z) = z−α dz which are not part of the basis.

Remark 2. The ξαk (z) for k ≥ 0 are odd under the involution because they are unchanged if
we replace ξα−1(z) with its odd part

ξα,odd−1 (z) =
(x

2

)1−α dz

z
. (11)

Theorem 3 ([13] for g ∈ {0, 1}, [5] in general). For 2g−2+n > 0, Ωg,n(x(z1), . . . , x(zn))dx(z1)⊗
· · ·⊗dx(zn) initially defined as a formal series near zi =∞ analytically continues to a symmetric
multidifferential on Sn, which coincides with the correlators of the topological recursion for the
spectral curve (9). In particular,〈 n∏

i=1

τ1bi

〉
g

= I1b1 ⊗ · · · ⊗ I1bn [ωg,n].
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For 2g − 2 + n > 0, each correlator ωg,n of CP1 is a polynomial in ξαk (z). Using the basis
in (10), the topological recursion partition function of the spectral curve CP1 coincides with the
ancestor partition function (7) of the Gromov–Witten invariants of P1.

Theorem 4 ([5]). Let ωg,n be the correlators of the topological recursion applied to the spectral
curve C defined by (9). Then

ZP1

(
~,
{
t
α
k

})
ZP1(~, 0)

= ZCP1
(
~,
{
t
α
k

})
= exp

( ∑
g≥0, n≥1
2g−2+n>0

~g−1

n!
ωg,n|ξαk=tαk

)
.

Theorem 4 states that the coefficients of the differentials ξ0m and ξ1m correspond to insertions
of stationary ancestor invariants τ0m, respectively τ1m. To retrieve the descendant Gromov–
Witten invariants from the correlators ωg,n one must understand elements of the dual of the
space of meromorphic differentials on the spectral curve which can be naturally realised as
integration over contours on the spectral curve. The next section is devoted to technical aspects
of integration over non-compact contours which need regularisation.

Remark 3. The proof of Theorem 3 in [5] uses Theorem 4 together with the linear functio-
nals I1k which are shown to encode the S-matrix coefficients required to produce stationary de-
scendant invariants. An immediate consequence is that the Taylor expansion of ωg,n(z1, . . . , zn)
around zi = ∞ with respect to the local coordinate 1/x(z) gives Ωg,n(x1, . . . , xn)dx1 · · · dxn
when 2g − 2 + n > 0. In particular this gives a proof that there is an analytic continuation of
Ωg,n(x1, . . . , xn)dx1 · · · dxn to a rational curve.

3.3 From local to global constraints on multidifferentials

Let ωg,n be the multidifferentials of the topological recursion for the spectral curve (9). We
choose the determination of the logarithm to have a branchcut on iR−, and such that ln(1) = 0.
With this choice, y(z) is holomorphic in the neighborhood of z = ±1.

The topological recursion is such that for any g ≥ 0 and n ≥ 1, ωg,n satisfy the linear and
quadratic loop equations [2]. The linear loop equations is a symmetry property with respect to
the involution z 7→ 1/z

ωg,n(z, z2, . . . , zn) + ωg,n(1/z, z2, . . . , zn) = δg,0δn,2
dx(z1)dx(z2)

(x(z1)− x(z2))2
. (12)

The quadratic loop equations state that, for I = {2, . . . , n} and denoting dx(zI) =
n∏
i=2

dx(zi),

qg,n(z; zI) =
1

dx(z)2

(
ωg−1,n+1(z, 1/z, zI) +

∑
h+h′=g
JtJ ′=I

ωh,1+|J |(z, zJ)ωh′,1+|J ′|(1/z, zJ ′)

)
(13)

is holomorphic in a neighborhood of z = ±1. These two sets of equations are (by definition)
equivalent to the local Virasoro constraints mentioned in the introduction. We would like to
derive from them global constraints, which concern the Laurent expansion of qg,n at x(z) =∞.
We use the following notation.

Definition 1. If f is a 1-form, we define

A[f ](x1) :=
∑

a=pole of f

Res
z=a

f(z) ln z

x1 − x(z)
, (14)
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L[f ](z1, zi) := 2ωodd
0,2 (z1, zi)

f(z1)

dx1
− di

(
dx1

x1 − xi
f(zi)

dxi

)
, (15)

where

ωodd
0,2 (z1, z2) :=

1

2

(
ω0,2(z1, z2)− ω0,2(1/z1, z2)

)
= ωodd

0,2 (1/z1, 1/z2).

The following result gives a preliminary form of global constraints, which will be exploited
in Section 7.

Lemma 1. Assume 2g− 2 + n ≥ 2. Let I := {2, . . . , n} and for any i ∈ I, set Ii := I \ {i}. We
have

A
[
ωg,n(·, zI)

]
(x1) dx1 =

n∑
i=2

L
[
ωg,n−1(·, zIi)

]
(z1, zi) +

ωg−1,n+1(z1, z1, zI)

dx1

+

◦◦∑
h+h′=g
JtJ ′=I

ωh,1+|J |(z1, zJ)ωh′,1+|J ′|(z1, zJ ′)

dx1
.

Here, ◦◦ means that the terms involving ω0,1 and ω0,2 are excluded from the sum. For (g, n) =
(0, 3), we have

A[ω0,3(·, z2, z3)](x1) dx1 = −
2ωodd

0,2 (z1, z2)ω
odd
0,2 (z1, z3)

dx1

+ d2

(
dx1

x1 − x2
ωodd
0,2 (z2, z3)

dx2

)
+ d3

(
dx1

x1 − x3
ωodd
0,2 (z2, z3)

dx3

)
.

For (g, n) = (1, 1), we have A[ω1,1](x1) dx1 = −ω0,2(z1, 1/z1).

Proof. Since qg,n is holomorphic in a neighborhood of z = ±1 we have

0 =
∑

a=−1,1
Res
z=a

dx1 dx(z)

x1 − x(z)
qg,n(z, z2, . . . , zn), (16)

for 2g − 2 + n > 0 and x1 6= ±2. To prove the lemma we are going to compute separately the
contributions of the various terms in the right-hand side of (16).

Stable terms. We observe that

ωg−1,n+1(z, 1/z, zI) = −ωg,n(z, z,zI) = ωg,n(1/z, 1/z, zI),

and ωg−1,n+1(z, z,zI) ∈ O
(
dx(z)2/x(z)4

)
when z → ∞. Therefore, after division by (x(z) −

x1)dx(z) this expression has no residues at z = 0 and ∞. We compute

A(g−1,n+1)
g,n :=

∑
a=−1,1

Res
z=a

dx1
x1 − x(z)

ωg−1,n+1(z, 1/z, zI)

dx(z)

=
∑

a=z1,1/z1

Res
z=a

dx1
x(z)− x1

ωg−1,n+1(z, 1/z, zI)

dx(z)

=
2ωg−1,n+1(z1, 1/z1, zI)

dx1
,
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noticing there are no contributions from 0 and∞ when moving the contour. In case (g, n) 6= (1, 1)
this is also equal to

A(g−1,n+1)
g,n = −2ωg−1,n+1(z1, z1, zI)

dx1
.

Likewise if h+h′ = g and JtJ ′ = I such that 2h−2+(1+|J |) > 0 and 2h′−2+(1+|J ′|) > 0,
we compute

A(h,J),(h′,J ′)
g,n :=

∑
a=−1,1

Res
z=a

dx1
x1 − x(z)

ωh,1+|J |(z, zJ)ωh′,1+|J ′|(1/z, zJ ′)

dx(z)

=
2ωh,1+|J |(z1, zJ)ωh′,1+|J ′|(1/z1, zJ ′)

dx1
= −

2ωh,1+|J |(z1, zJ)ωh′,1+|J ′|(z1, zJ ′)

dx1
.

The (0,2) × (g,n − 1) term. Assume that (g, n) 6= (0, 3). Fix i ∈ {2, . . . , n} and let
Ii = I \ {i}. We would like to compute, following the previous steps,

A(g,n−1)
g,n :=

∑
a=−1,1

Res
z=a

dx1
x1 − x(z)

ωg,n−1(z,zIi)ω0,2(1/z, zi) + ωg,n−1(1/z, zIi)ω0,2(z, zi)

dx(z)
,

but there are two notable differences. Firstly, there is a shift in the antisymmetry relation
for ω0,2

ω0,2(z, zi) + ω0,2(1/z, zi) =
dx(z)dx(zi)

(x(z)− x(zi))2
.

Secondly, the presence of ω0,2 creates a pole at z = zi and 1/zi. We obtain

A(g,n−1)
g,n =

∑
a=zi,1/zi,z1,1/z1

Res
z=a

dx1
x(z)− x1

−2ωg,n−1(z, zIi)ω0,2(z, zi) + ωg,n−1(z,zIi)
dx(z)dx(zi)
(x(z)−x(zi))2

dx(z)

=
∑

a=zi,z1

Res
z=a

2dx1
x(z)− x1

−2ωg,n−1(z,zIi)ω0,2(z, zi) + ωg,n−1(z, zIi)
dx(z)dx(zi)
(x(z)−x(zi))2

dx(z)
,

since the integrand is again invariant under z 7→ 1/z. There is a double pole at z = zi and
a simple pole at z = z1. We obtain

A
(g,n−1)
(g,n) = 2di

(
ωg,n−1(zI) dx1
dxi(x1 − xi)

)
+ 2

ωg,n−1(z1, zIi)

dx1

(
−2ω0,2(z1, zi) +

dx1dxi
(x1 − xi)2

)
= 2di

(
ωg,n−1(zI) dx1
dxi(x1 − xi)

)
− 2
(
ω0,2(z1, zi)− ω0,2(z1, 1/zi)

)ωg,n−1(z1, zIi)
dx1

= 2di

(
ωg,n−1(zI) dx1
dxi(x1 − xi)

)
+ 2ω0,2(1/z1, zi)ωg,n−1(z1, zIi)

+ 2ω0,2(z1, zi)ωg,n−1(1/z1, zIi).

(0,2)× (0,2) term for the (0,3) case. We have to consider

A
(0,2),(0,2)
0,3 :=

∑
a=−1,1

Res
z=a

dx1
x1 − x(z)

ω0,2(z, z2)ω0,2(1/z, z3) + ω0,2(1/z, z2)ω0,2(z, z3)

dx(z)

=
∑

a=−1,1
Res
z=a

dx1
x1 − x(z)

ω0,2(z, z2)ω0,2(1/z, z3)

dx(z)
+ (z2 ↔ z3)

=
∑

a=z1,1/z1,z2,1/z3

Res
z=a

dx1
x(z)− x1

ω0,2(z, z2)ω0,2(1/z, z3)

dx(z)
+ (z2 ↔ z3).
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In the first term, we have a simple pole at z = z1, 1/z1 and double poles at z = z2 and z = 1/z3.
Using ω0,2(1/z, z3) = ω0,2(z, 1/z3), we get

A
(0,2),(0,2)
0,3 =

ω0,2(z1, z2)ω0,2(1/z1, z3) + ω0,2(1/z1, z2)ω0,2(z1, z3)

dx1

+ d2

(
dx1
dx2

ω0,2(z2, 1/z3)

x2 − x1

)
+ d3

(
dx1
dx3

ω0,2(z2, 1/z3)

x3 − x1

)
+ (z2 ↔ z3).

This can be written in terms of the odd part of ω0,2

A
(0,2),(0,2)
0,3 = −

2ωodd
0,2 (z1, z2)ω

odd
0,2 (z1, z3)

dx1
+ d2

(
dx1
dx2

ωodd
0,2 (z2, z3)

x1 − x2

)

+ d3

(
dx1
dx3

ωodd
0,2 (z2, z3)

x1 − x3

)
+

dx1 dx2 dx3
2(x1 − x2)2(x1 − x3)2

− d2

(
dx1 dx3

2(x1 − x2)(x2 − x3)2
)
− d3

(
dx1 dx2

2(x1 − x3)(x2 − x3)2
)

+ (z2 ↔ z3)

= −
4ωodd

0,2 (z1, z2)ω
odd
0,2 (z1, z3)

dx1
+ 2d2

(
dx1
dx2

ωodd
0,2 (z2, z3)

x1 − x2

)

+ 2d3

(
dx1
dx3

ωodd
0,2 (z2, z3)

x1 − x3

)
.

The (0,1) terms. The last term is

A(0,1),(g,n)
g,n :=

∑
a=−1,1

Res
z=a

dx1
x1 − x(z)

ωg,n(z,zI)ω0,1(1/z) + ωg,n(1/z, zI)ω0,1(z)

dx(z)
.

Using the involution z 7→ 1/z and recalling that ω0,1(z) = ln z dx(z), we rewrite it for 2g− 2 +n
> 0 as

A(0,1),(g,n)
g,n = −2

∑
a=−1,1

Res
z=a

dx1
x1 − x(z)

ωg,n(z, zI)ω0,1(z)

dx(z)
= 2A

[
ωg,n(·, zI)

]
(x1). (17)

This exhausts the study of the terms contributing to (16). Summing them up concludes the
proof of the lemma. �

4 Properties of A and L

The contribution of unstable ωs in the global constraints of Lemma 1 is more complicated than
the others and need special care. This technical section establishes their properties, that will be
used in Section 7.

4.1 Laurent expansion of A[f ]

We are going to compute the Laurent series expansion ofA[f ](x1), defined in (14), when x1 →∞,
where f is a meromorphic 1-form on S with poles away from z = 0,∞ and such that f(z) +
f(1/z) = 0.

Let us assume Rex1 > 0 and move the contour (see Fig. 1). It will surround the poles at z = z1
and 1/z1 – which give equal contributions and which we handle as in the previous paragraphs –
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z1

−1 1

1/z1

−i∞

0

−i

Figure 1. The integration contour in S (the z-plane).

as well as the cut of the logarithm for z on the nonpositive imaginary axis, together with a half-
circle arbitrarily close to 0 and an arbitrarily large circle. When z goes to ∞ in C \ iR− we
have f(z) ∈ O

(
dx(z)/x(z)2

)
since f has no pole at ∞. Therefore the integrand in (17) behaves

as O
(
|dz| |z|−3 ln |z|

)
and the large circle pushed to ∞ gives a zero contribution. By symmetry

z 7→ 1/z of the integrand the same is true for the contribution of the half-circle pushed to 0.
The discontinuity of ln z on its branchcut, from right to left is then −2iπ. Therefore

A[f ](x1) = −2f(z1)

dx1
ln
(
x(z1)/z1

)
+

2f(z1)

dx1
lnx1 +

∫ −i∞
0

f(z)

x1 − x(z)

= −2f(z1)

dx1
ln
(
x(z1)/z1

)
+

2f(z1)

dx1
lnx1 −

(∫ −i
0

+

∫ −i∞
−i

)
f(z)

x1 − x(z)
.

We use z 7→ 1/z convert the first integral from 0 to −i into a integral from +i∞ to i in the
z-plane. This also multiplies f(z) by a minus sign according to (12). The resulting integral in
the z-plane is then equivalent to the integral over the positive imaginary axis in the x-plane.
The second integral from −i to −i∞ in the z-plane is equivalent to an integral over the negative
imaginary axis in the x-plane. We therefore obtain

A[f ](x1) = −2f(z1)

dx1
ln
(
x(z1)/z1

)
+

2f(z1)

dx1
lnx1 −

(∫ +i∞

0
+

∫ −i∞
0

)
f(Z(x))

x1 − x
.

The integrals are closely related to the Hilbert transform, defined for a function F : R≥0 → R
and with v ∈ C \ R>0 by

H[F ](v) :=

∫ ∞
0

F (u) du

v + u
.

Namely, we have with F̌ (x) = f(Z(x))/dx

A[f ](x1) = −2f(z1)

dx1
ln
(
x(z1)/z1

)
+

2f(z1)

dx1
lnx1 +H[F̌ (i·)](ix1) + 2H[F̌ (−i·)](−ix1). (18)

To obtain the asymptotic expansion of the last terms we can rely on the following result
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Lemma 2 ([11]). Let F : R>0 → C such that, for any integer b ≥ 0

F (u) =

b+1∑
a=0

fk
uk+1

+ rb+1(u), and sup
u≥0

ub+1+η |rb+1(u)| ≤ Cb

for some η ∈ (0, 1) and Cb > 0. Then for u→∞ away from the real axis we have

H[F ](u) =

(
b+1∑
a=0

(−1)afa
ua+1

)
lnu+

b+1∑
a=0

(−1)a

ya+1

(
−Hafa + Ja[F ]

)
+O

(
|u|−(b+1+α)

)
,

where ln is the logarithm with its standard choice of branchcut on the negative real axis, and

Jb[F ] := lim
ε→0+

(
−fb ln ε+

∫ +∞

ε
(u− ε)brb(u) du

)
.

Corollary 1. Let f be a meromorphic 1-form on S with poles away from z = 0,∞ and such
that f(z) + f(1/z) = 0. We have the Laurent series expansion when x1 →∞∑

a=±1
Res
z=a

f(z) ln z

x1 − x(z)
∼ −2f(z1) ln

(
x(z1)/z1

)
+
∑
b≥0

(b+ 1)!

xb+2
1

(
2Hb+1I1b [f ] + I0b+1[f ]

)
.

where I0b was introduced in the introduction, equation (2).

Proof. Let us denote momentarily

f̃b = (b+ 1)! I1b [f ], r̃b+1(u) = Řb+1[f ](u),

with the convention f̃−1 = 0. When we apply Lemma 2 with F (u) = F̃ (iu) for which

fb = (−i)b+1 f̃b−1, rb+1(u) = r̃b+1(iu), η = 1/2,

we find

H
[
F̃ (i·)

]
(ix1) +O

(
|x1|−(b+5/2)

)
=

(
b+1∑
a=0

(−1)a (−i)2(a+1) f̃a−1

xa+1
1

)
ln(ix1)

+

b∑
a=0

(−1)a(−i)2(a+1)

xa+1
1

{
−Haf̃a−1 + lim

ε→0+

(
−f̃a−1 ln ε+

∫ +∞

ε
ia+1 (u− ε)ar̃a(iu) du

)}

= −
(

b∑
a=−1

f̃a

xa+2
1

)
ln(ix1)

−
b∑

a=0

1

xa+2
1

{
−Ha+1f̃a + lim

ε→0+

(
−f̃a ln ε+

∫ +i∞

iε
(x− iε)a+1r̃a+1(x) dx

)}
. (19)

In principle, the two sums should start from a = −1, but as f̃−1 = 0 the first one effectively
starts at a = 0. In the second one, the a = −1 summand only contains the regularised integral.
When we apply Lemma 2 for F (u) = F̃ (−iu), for which

fa = ia+1 f̃a−1, rb+1(u) = r̃b+1(−iu),

we find

H
[
F̃ (−i·)

]
(−ix1) +O

(
|x1|−(b+5/2)

)
=

(
b+1∑
a=0

(−1)ai2(a+1) f̃a−1

xa+1
1

)
ln(−ix1)
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+
b∑

a=0

(−1)ai2(a+1)

xa+1
1

{
−Haf̃a−1 + lim

ε→0+

(
−f̃a−1 ln ε+

∫ +∞

ε
(−i)a+1(u− ε)ar̃a(−iu) du

)}

= −
(

b∑
a=0

f̃a

xa+2
1

)
ln(−ix1)

−
b∑

a=−1

1

xa+2
1

{
−Ha+1f̃a + lim

ε→0+

(
−f̃a ln ε+

∫ −i∞
−iε

(x+ iε)a+1 r̃a+1(x) dx

)}
. (20)

We multiply (19) and (20) by 2 and sum them, in view of obtaining the asymptotic expansion
of (18). We observe that the logarithm term in (19)–(20) contributes to

−2

(
b∑

a=0

f̃a

xa+2
1

)
lnx1,

and therefore cancels the second term in (18). The final result is

A[f ](x1) = −2f(z1)

dx1
ln
(
x(z1)/z1

)
+O

(
|x1|−(b+5/2)

)
+

b∑
a=0

1

xa+2
1

{
2Ha+1f̃a

+ lim
ε→0+

(
2f̃a ln ε− 2

∫ i∞

0
xa+1r̃a+1(x+ iε) dx−

∫ −i∞
0

xa+1 r̃a+1(x− iε) dx

)}
= −2f(z1)

dx1
ln
(
x(z1)/z1

)
+

b∑
a=0

(a+ 1)!

xa+2
1

(
2Ha+1I1a + I0a+1

)
[f ]

in terms of the functional I0 introduced in (2). �

4.2 Decomposition of L[f ]

Recall the basis ξαm defined in (10). The following lemma gives a decomposition of L
(
ξαm
)
(z1, z2),

defined in (15). which in particular implies its polar behaviour in z2. It will be applied in
Section 7.

Lemma 3. For any m ≥ 0 and α ∈ {0, 1}, we have

L
(
ξαm
)
(z1, z2) =

∑
β=0,1
`≥0

cα,βm,`(x1)ξ
β
` (z2),

where ξβ` (z2) is defined in (10) and cα,βm,`(x1) =
(
x21 − 4

)−N
Pα,βm,`,N (x1)dx1 for some N ∈ N and

Pα,βm,`,N (x1) is a polynomial of degree at most 2N − 2.

Proof. The differentials cα,βm,`(x1) and ξβ` (z2) form bases of the space of meromorphic differentials
satisfying the following properties:

(i) L
(
ξαm
)
(z1, 1/z2) = −L

(
ξαm
)
(z1, z2);

(ii) L
(
ξαm
)
(1/z1, z2) = L

(
ξαm
)
(z1, z2);

(iii) L
(
ξαm
)
(z1, z2) is meromorphic in z1 with poles only at z1 = ±1;

(iv) L
(
ξαm
)
(z1, z2) is meromorphic in z2 with poles only at z2 = ±1;

(v) for any a ∈ {−1, 1}, Resz2=a L
(
ξαm
)
(z1, z2) = 0.
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Hence it is enough to prove that L
(
ξαm
)
(z1, z2) satisfies these properties.

(i) follows from ξαm(1/z2) = −ξαm(z2), the symmetry x2 = x(z2) = x(1/z2), and the oddness of
ωodd
0,2 (z1, z2) under z2 7→ 1/z2. Property (ii) follows in a similar way once we use ω0,2(z1, 1/z2) =
ω0,2(1/z1, z2) and the oddness of ξαm(z1) to get a symmetric bidifferential.

For (iii), clearly L
(
ξαm
)
(z1, z2) is meromorphic in z1 with poles at z1 = 1,−1, z2, 1/z2 so we

need to show that the poles at z1 = z2 and z1 = 1/z2 are removable. In fact, we only need show
that the pole at z1 = z2 is removable and (i) will imply the same at z1 = 1/z2. The pole on the
diagonal z1 = z2 has order 2, so consider

lim
z1→z2

(z1 − z2)2
dz1 dz2

L
(
ξαm
)
(z1, z2) = lim

z1→z2

(z1 − z2)2
dz1 dz2

{
ω0,2(z1, z2)

ξαm(z1)

dx1
− ξαm(z2)

dx2

dx1dx2
(x1 − x2)2

}
=
ξαm(z2)

dx2
− ξαm(z2)

dx2

dx22
dz22 x

′(z2)2

= 0.

where the first equality removed those terms of L
(
ξαm
)
(z1, z2) with a simple pole (and possibly

holomorphic) at z1 = z2. Hence the pole at z1 = z2 is at most simple and we shall compute
its residue. The residue of L

(
ξαm
)
(z1, z2) at z2 = z1 gives the same residue and is simpler to

calculate. In fact it is immediately 0 because Res
z2=z1

ω0,2(z1, z2) = 0 and ω0,2(z1, 1/z2) has no pole

at z2 = z1, and the final term in L
(
ξαm
)
(z1, z2) is exact in z2 so all residues vanish. Hence the

pole is removable at z1 = z2. This discussion also implies (iv).

Finally, property (v) follows from property (i) and the fact that z1 = ±1 are the fixed points
of the involution z1 7→ 1/z1. �

The main application of Lemma 3 is to show that the operators Iαibi commute on (40) as
explained in the proof of Theorem 2 below. Lemma 3 also shows us that evaluation of

⊗n
i=1 Iαibi

on (40) depends only on the values of the regularised integral I0j applied to the differentials ξαm
which are determined by I0j

(
ξαm
)

= I0j−m(ξα0 ) and the table of Proposition 1. This is because the
right-hand side of (40) is a linear combination of the differentials ξαm(zj) (with coefficients given
by differentials in the other variables), i.e., it has poles only at zj = ±1 for j ∈ {2, . . . , n} – the
other poles are removable – and is odd under zj 7→ 1/zj .

5 Properties of regularised contour integrals

If f is a meromorphic 1-form on S without poles at z = 0 and ∞, we can define

Rb[f ] := f −
b−1∑
a=0

fa
xa+2

, fa = − Res
z=∞

xa+1 f,

and Řb[f ](x) = Rb[f ](Z(x)). Then, if f has no pole for z ∈ iR, we can define for b ≥ 0

I0b [f ] := lim
ε→0+

(
2I1b−1[f ] ln ε−

∫ i∞

0

xb

b!
Řb[f ](x+ iε) dx−

∫ −i∞
0

xb

b!
Řb[f ](x− iε) dx

)
. (21)

5.1 Basic properties and extended definition

We justify that the regularised integral is actually an integral when applied to 1-forms that are
odd with respect to the involution and that do not need regularisation.
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Lemma 4. If f is a meromorphic 1-form on S with no poles at z = ±i, without residues, such
that f(z) + f(1/z) = 0 and I1a [f ] = 0 for all a ∈ {0, . . . , b− 1}, then

I0b [f ] = −
∫
γ

xb

b!
f,

where γ is the contour from z = 0 to z = i∞.

Proof. The conditions on f imply that the integral in the right-hand side is well-defined, and
does not depend on the choice of contour from 0 to i∞. It also shows that

I0b [f ] = −
∫ i∞

i

x(z)b

b!
f(z)−

∫ −i∞
−i

x(z)b

b!
f(z),

where the contour from i to i∞ is avoiding the (finitely many) poles of f , and the result does
not depend on such a choice of contour. We transform the second integral using the change of
variable z 7→ 1/z and the oddness of f with respect to this involution

I0b [f ] = −
∫ i∞

i

x(z)b

b!
f(z)−

∫ i

0

x(z)b

b!
f(z) = −

∫ i∞

0

x(z)b

b!
f(z). �

Notice that if f is a meromorphic 1-form on S, then integration by parts yields

I1b [d(f/dx)] = −I1b−1[f ]. (22)

We now prove a similar property for the regularised integral.

Lemma 5. If f is a meromorphic 1-form on P1 with poles away from z = ±i, 0,∞, then

∀ b ≥ 1, I0b [d(f/dx)] = −I0b−1[f ].

Proof. Let f̃ = d(f/dx). We observe that for any b ≥ 1

I1b [f̃ ] = −I1b−1[f ], Řb[f̃ ](x) = ∂x Řb−1[f ](x).

Therefore

−I0b [f̃ ] = lim
ε→0+

(
2I1b−2[f ] ln ε+

∫ i∞

0

xb

b!
∂xŘb−1[f ](x+ iε) dx

+

∫ −i∞
0

xb

b!
∂xRb−1[f ](x− iε) dx

)
.

An integration by parts yields

−I0b [f̃ ] = lim
ε→0+

(
2I1b−2[f ] ln ε−

∫ i∞

0

xb−1

(b− 1)!
Řb−1[f ](x+ iε)dx

−
∫ −i∞
0

xb−1

(b− 1)!
Řb−1[f ](x− iε)dx

+

[
xb

b!
Řb−1[f ](x+ iε)

]i∞
0

+

[
xb

b!
Řb−1[f ](x− iε)

]−i∞
0

)
.

The first line is by definition I0b−1[f ]. Since Řb−1[f ](x) ∈ O
(
|x|−(b+1) |dx|

)
when |x| → ∞, the

boundary terms ±i∞ in the last line do not contribute. And the boundary terms at 0 vanish
because of the power of x in prefactor and the fact that ε > 0 before we take the limit. �

Remark 4. In (21) we gave a definition of the linear operator I0b for 1-forms in S having no
poles above x =∞. We shall extend this definition, whenever necessary if f has poles at ∞ or
other singularities, such that the integration by parts (Lemma 5) and linearity continue to hold.
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5.2 Evaluation on the odd basis

We now evaluate Iαb on the basis {ξαk (z) | k ∈ N, α ∈ {0, 1}}, defined in (10), of meromorphic
1-forms on P1 with poles at z = ±1 and that are odd under z 7→ 1/z. By (22) and Lemma 5 we
have

Iαa
[
ξβb
]

= Iαa−b
[
ξβ0
]
,

so it is enough to evaluate the operators on ξβ0 for β = 0, 1.

Proposition 1. The operators Iαa evaluate on the basis as follows:

I02m I02m+1 I12m I12m+1

ξ00
1− 2mHm

m!2
0 0

1

m!(m+ 1)!

ξ10 0 −2Hm

m!2
1

m!2
0

Proof. The evaluation of I1 is determined by the Laurent series expansion of ξβ0 . We have

ξ00
dx

=
2

(x2 − 4)3/2
∼
∑
m≥0

(2m+ 2)!

m!(m+ 1)!

1

x2m+3
,

ξ10
dx

=
x

(x2 − 4)3/2
∼
∑
m≥0

1

2

(2m+ 2)!

m!(m+ 1)!

1

x2m+2
,

which yield the entries of the last two columns. The evaluation of I0 can be computed via
Lemma 1. Let us introduce the formal series

L(t) :=
1

(1− 4t)3/2
ln

(
2

1 +
√

1− 4t

)
:=
∑
m≥0

Lm t
m.

We will compute the Lm more explicitly in Lemma 6 at the end of the proof. For f = ξ00 we
compute∑

a=±1
Res
z=a

ξ00(z) ln z

x1 − x(z)
=

x1
x21 − 4

∼
∑
m≥−1

22m+2

x2m+3
1

.

Note that the choice of determination of the logarithm (provided it is holomorphic in a neigh-
borhood of 1 and −1) does not affect the result. We also have

2f(z1) ln(x(z1)/z1) =
4L(x−21 )

x31
∼
∑
m≥0

4Lm
x2m+3

.

Using the values of I1[ξ00 ] already found, we deduce from Lemma 1

I2m+1

[
ξ00
]

= 0, I2m
[
ξ00
]

=
22m + 4Lm−1

2m!
− 2H2m

(m− 1)!m!
. (23)

For f = ξ10 we compute∑
a=±1

Res
z=a

ξ10(z) ln z

x1 − x(z)
=

2

x21 − 4
∼
∑
m≥0

22m+1

x2m+2
1

,
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and

2f(z1) ln(x(z1)/z1) =
2L
(
x−21

)
x21

∼
∑
m≥0

2Lm
x2m+2

.

Using the known values of I1 on ξ10 we get

I2m+1

[
ξ10
]

=
2
(
22m + Lm

)
(2m+ 1)!

− 2H2m+1

m!2
, I2m

[
ξ10
]

= 0. (24)

Now let us evaluate the constants Lm.

Lemma 6. For any m ≥ 1, we have

Lm = −22m +
(2m+ 1)!

m!2
(H2m+1 −Hm+1).

Proof. With the change of variable t = v
(1+v)2

, we compute

Lm = Res
t=0

dt

tm+1 (1− 4t)3/2
ln

(
2

1 +
√

1− 4t

)
= Res

v=0

dv (1 + v)2m+2 ln(1 + v)

vm+1(1− v)2

=
d

dε

(
Res
v=0

dv (1 + v)2m+2+ε

vm+1(1− v)2

) ∣∣∣∣
ε=0

=
d

dε

(
m∑
a=0

(a+ 1)Γ(2m+ 3 + ε)

(m− a)!Γ(m+ 3 + ε+ a)!

)∣∣∣∣
ε=0

.

Using that (ln Γ)′(k+1) = −γE+Hk for any positive integer k where γE is the Euler–Mascheroni
constant, we deduce

Lm =
m∑
a=0

(a+ 1) (2m+ 2)!

(m− a)!(m+ 2 + a)!

(
H2m+2 −Hm+2+a

)
= Km

(
H2m+2 −Hm+1

)
+ ∆m, (25)

where

Km :=
m∑
a=0

(a+ 1) (2m+ 2)!

(m− a)!(m+ 2 + a)!
, ∆m :=

m∑
a=0

(a+ 1) (2m+ 2)!

(m− a)!(m+ 2 + a)!

m+2+a∑
j=m+2

1

j
.

These two sums can be computed in an elementary way. Let us introduce the auxiliary sum for
c ∈ {0, 1, . . . ,m}

K̃m,c =
c∑
b=0

(m+ 1− b) (2m+ 2)!

b!(2m+ 2− b)! .

An easy induction on c shows that

K̃m,c =
1

2

(2m+ 2)!

c!(2m+ 1− c)! .

The change of index a = m− b shows that Km = K̃m,m, hence

Km =
1

2

(2m+ 2)!

m!(m+ 1)!
=

(2m+ 1)!

m!2
. (26)
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It remains to evaluate

∆m =

2m+2∑
j=m+2

1

j

m∑
a=j−(m+2)

(a+ 1) (2m+ 2)!

(m− a)!(m+ 2 + a)!

=
2m+2∑
j=m+2

1

j

2m+2−j∑
b=0

(m+ 1− b) (2m+ 2)!

b!(2m+ 2− b)!

=

2m+2∑
j=m+2

1

j
K̃m,2m+2−j .

Therefore

∆m =
1

2

2m+2∑
j=m+2

(2m+ 2)!

(2m+ 2− j)!(j − 1)!
=

1

2

2m+2∑
j=m+2

(2m+ 2)!

(2m+ 2− j)!j!

=
1

4

2m+2∑
j=0

(2m+ 2)!

(2m+ 2− j)!j!

=
1

4
22m+2 = 22m. (27)

Inserting (26) and (27) in (25) establishes our formula for Lm. �

Inserting this result into (23) and (24) yields the two first columns and concludes the proof
of Proposition 1. �

Proposition 2. For j, k,m ∈ N and α, β ∈ {0, 1}

Iβj
(
xk

k!
ξαm

)
=

(
j + k + β

k

)
Iβj+k

(
ξαm
)

+ 2δ0,β

(
j + k

k

)
(Hj+k −Hj) I1j+k−1

(
ξαm
)
. (28)

Proof. This is straightforward when β = 1, coming from 1
(j+1)!k! =

(
j+k+1
k

)
1

(j+k+1)! . The main
content of the lemma is the case β = 0 which we prove by induction on k.

When k = 0, the second term vanishes and (28) is true in this case. The inductive argument
requires the identity

xξαm = 2ξ1−αm + (m+ α)ξαm−1, m ≥ 0, (29)

which is proven by induction on m by applying −d(·/dx) to both sides of (29). The initial case
m = 0 of (29) is an explicit calculation for α = 0 and α = 1 involving ξα−1(z) defined in (10).

Given k > 0, assume (28) is true for k − 1. Then

I0j
(
xk

k!
ξαm

)
= I0j

(
xk−1

k!
xξαm

)
= I0j

(
xk−1

k!

[
2ξ1−αm + (m+ α)ξαm−1

])
=

2

k
I0j
(

xk−1

(k − 1)!
ξ1−αm

)
+
m+ α

k
I0j
(

xk−1

(k − 1)!
ξαm−1

)
=

2

k

(
j+k−1

k − 1

)
I0j+k−1

(
ξ1−αm

)
+

4

k

(
j+k−1

k − 1

)
(Hj+k−1 −Hj) I1j+k−2

(
ξ1−αm

)
+
m+ α

k

(
j+k−1

k − 1

)
I0j+k−1

(
ξαm−1

)
+

2(m+ α)

k

(
j+k−1

k − 1

)
(Hj+k−1 −Hj) I1j+k−2

(
ξαm−1

)
,
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where the second equality uses (29) and the final equality uses the inductive hypothesis. We

manipulate this expression for I0j
(
xk

k! ξ
α
m

)
to consist of only evaluations involving ξαm as follows.

We use integration by parts Iαi−1
(
ξαm−1

)
= Iαi

(
ξαm
)

and for those evaluations involving ξ1−αm

substitute

Iβj+k−1−β
(
ξ1−αm

)
= 1

2(j + k −m− α)Iβj+k−β
(
ξαm
)

+ δβ,0I1j+k−1
(
ξαm
)
,

which can be checked using the table of values in Proposition 1. Collecting the coefficients of
I0j+k

(
ξαm
)

and I1j+k−1
(
ξαm
)

we get

I0j
(
xk

k!
ξαm

)
=

2

k

(
j+k−1

k − 1

)
(Hj+k−1 −Hj)(j + k −m− α)I1j+k−1

(
ξαm
)

+
2(m+ α)

k

(
j+k−1

k − 1

)
(Hj+k−1 −Hj)I1j+k−1(ξαm)

=
j + k

k

(
j+k−1

k − 1

)
I0j+k

(
ξαm
)

+ 2

(
j+k−1

k − 1

)(
j + k

k
(Hj+k−1 −Hj) +

1

k

)
I1j+k−1

(
ξαm
)

=

(
j + k

k

){
I0j+k

(
ξαm
)

+ 2(Hj+k −Hj)I1j+k−1
(
ξαm
)}
.

Hence (28) for k − 1 implies (28) for k, and by induction (28) is true for k ≥ 0. �

5.3 Evaluation of one operator on ωodd
0,2

In the statement of Theorem 1 for (0, 2), we need to consider Iαk ⊗ I
β
`

[
ωodd
0,2

]
. We can certainly

pose

ηαk (z0) := Iαk
[
ωodd
0,2 (·, z0)

]
,

but it is not obvious that we can then apply Iβ` . Indeed, we now show that ηαk (z) has singularities,
but they are such that after sufficiently many integration by parts it will become a meromorphic
1-form without singularities at ∞.

Lemma 7. For k ≥ 0 we have

η1k(z0) = dz0

( ∑
b,c≥0

2b+c=k

1

b!(k + 1− b)!
zc+1
0 − z−(c+1)

0

2

)
,

η0k(z0) = dz0

(
x(z0)

k

k!
1
2

(
ln z0 − ln

(
z−10

))
−

∑
b,c≥0

2b+c=k−1

Hk−b
b!(k − b)!

(
zc+1
0 − z−(c+1)

0

))
.

Proof. For α = 1 we have

η1k(z0) =
1

2

(
Res
z=0

x(z)k+1

(k + 1)!

dz dz0
(1− zz0)2

− (z0 → 1/z0)

)
=

1

2

(∑
c≥0

(c+ 1)zc0
[
zk−c

](1 + z2
)k+1

(k + 1)!
dz0 − (z0 → 1/z0)

)

= dz0

( ∑
b,c≥0

2b+c=k

1

b!(k + 1− b)!
zc+1
0 − z−(c+1)

0

2

)
.
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For α = 0, we apply Lemma 1

η0k(z0) =
1

2

{
Res
z=∞

x(z)k

k!

(
2 ln

(
1 + z−2

)
dz dz0

(z − z0)2
+ Res
z̃=z0

ln z̃ dz̃ dz0
(z̃ − z0)2

dx(z)

x(z)− x(z̃)

)

+ 2Hk Res
z=∞

xk(z)

k!

dz dz0
(z − z0)2

− (z0 → 1/z0)

}
=

dz0
2

{
1

2
dz0

(
Res
z=∞

x(z)k

k!

ln z0 dx(z)

x(z)− x(z0)

)

+
2

k!

∂

∂ε

[
zk−1

]∑
c≥0

(c+ 1)zc0z
c
(
1 + z2

)k+ε∣∣∣∣
ε=0

}

− 2Hk

k!

[
zk−1

](∑
c≥0

(c+ 1)zc0z
c
(
1 + z2

)k)− (z0 → 1/z0)

= dz0

x(z0)
k

k!
1
2

(
ln z0 − ln

(
z−10

))
−

∑
b,c≥0

2b+c=k−1

Hk−b
b!(k − b)!

(
zc+1
0 − z−(c+1)

0

) . �

6 Proof of Theorem 1

6.1 The S-matrix

This subsection relies on Proposition 1 and does not need the computations with the operators
beyond Section 5.2.

Proposition 3. For any a, b ≥ 0 and α, β ∈ {0, 1}, we have Iαa
[
ξβb
]

= (Sa−b)
β
α.

Together with Proposition 1, we find the table of non-zero entries of Sk is

(Sk)
β
α α = 0 α = 1

β = 0
1− 2mH2m

m!2
(even)

1

m!(m+ 1)!
(odd)

β = 1
−2Hm

m!2
(odd)

1

m!2
(even)

where “even”, respectively “odd”, means that k = 2m, respectively k = 2m+ 1.

Proof. By integration by parts (22) and Lemma 5, it suffices to prove the result for ` = 0.
Kontsevich and Manin [10] show that for k > 0

(Sk)
β
α =

〈
τ1−β0 ταk−1

〉
0
. (30)

The divisor equation and genus 0 topological recursion relations satisfied quite generally by
Gromov–Witten invariants [9] can be used to calculate the right-hand side of (30). We have〈

τ10 τ
1−β
0 ταk−1

〉
=
〈
ταk−2τ

β
0

〉〈
τ1−β0 τ10 τ

1−β
0

〉
=
〈
ταk−2τ

β
0

〉
,

where the first equality is the genus 0 topological recursion relation and
〈
τ1−β0 τ10 τ

1−β
0

〉
= 1 for

β = 0 or 1 gives the second equality. The divisor equation allows one to remove an insertion τ10
and in this case gives〈

τ10 τ
1−β
0 ταk−1

〉
= d
〈
τ1−β0 ταk−1

〉
+ δα,0

〈
τ1−β0 τ1−αk−2

〉
,
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where d = 1
2(k+α− β) is the degree. Putting these together and using (30), one gets for k > 0

1
2(k + α− β) (Sk)

β
α = (Sk−1)

1−β
α − δα,0(Sk−1)β1−α,

which uniquely determines Sk from (S0)
β
α = δα,β and (S1)

1
0 = 0. Then, one can check that

the values of Iαk [ξβ0 ] given in Proposition 1 satisfy the same recursion with the same initial
conditions. �

We can express the S-matrix with respect to the odd part of the (0, 2)-correlator

ωodd
0,2 (z1, z2) =

1

2

(
ω0,2(z1, z2)− ω0,2(z1, 1/z2)

)
.

This quantity is invariant under exchange of z1 and z2 since ω0,2(z1, 1/z2) = ω0,2(1/z1, z2).

Corollary 2. For any b > 0, and α, β ∈ {0, 1}, we have

(Sb)
α
β = Iβb−1 ⊗ I1−α0

[
ωodd
0,2

]
.

Proof. For α = 0, we compute

I10
[
ωodd
0,2 (·, z1)

]
= − Res

z=∞

(z + 1/z)dz dz1
2

(
1

(z − z1)2
+

1

(1− z1z)2
)

=

(
1 + 1/z21

)
dz1

2
= ξ0,odd−1 (z1),

by comparison with (11). For α = 1, we compute using Lemma 4

I00
[
ωodd
0,2 (·, z1)

]
= −dz1

2

∫ ∞
0

(
1

(z − z1)2
+

1

(zz1 − 1)2

)
=

dz1
z1

= ξ1,odd−1 (z1).

Therefore, for any α ∈ {0, 1}, the second evaluation of Iβb−1 is well-defined and we have

Iβb−1 ⊗ I1−α0

[
ωodd
0,2

]
= Iβb−1

[
ξα,odd−1

]
.

Using Remark 2 and the properties of integration by parts (22) and Lemma 5, we get

Iβb−1 ⊗ I1−α0

[
ωodd
0,2

]
= Iβb

[
ξα0
]
,

which is equal to (Sb)
α
β according to Proposition 3. �

6.2 The stable cases

The cases 2g − 2 + n > 0 of Theorem 1 can be deduced purely by linear algebra starting from
Theorem 4 – due to [5] – and Proposition 3. Indeed,

n⊗
i=1

Iαiai [ωg,n] =
n⊗
i=1

Iαibi
[ ∑

k1,...,kn≥0
β1,...,βn∈{0,1}

〈 n∏
i=1

τβiki

〉
g

n⊗
i=1

ξβiki

]

=
∑

k1,...,kn≥0
β1,...,βn∈{0,1}

〈 n∏
i=1

τβiki

〉
g

n∏
i=1

Iαiai
[
ξβiki
]

=
∑

k1,...,kn≥0
β1,...,βn∈{0,1}

〈 n∏
i=1

τβiki

〉
g

n∏
i=1

(Sai−ki)
βi
αi

=

〈 n∏
i=1

ταibi

〉
g

,

where the first equality uses Theorem 4 and the final equality uses (8).
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6.3 The (0,1) cases

We can prove the (0, 1) case of Theorem 1 in the following way. We use the string equation

to represent
〈
τβb
〉
0

=
〈
τ00 τ

β
b+1

〉
0
. This is equal to (Sb+2)

1
β according to (30), hence equal to

Iβb+2

[
ξ10
]

owing to Corollary 2. Using the integration by parts (22) and Lemma 5 it is also

Iβb+1

[
ξ1,odd−1

]
= Iβb+1[dz/z], which is the formula we sought for. According to Proposition 1, the

table of values is〈
τβb
〉
0

β = 0 β = 1

b = 2m 0
1

(m+ 1)!2

b = 2m+ 1 − 2Hm+1

(m+ 1)!2
0

6.4 The (0,2) case

Likewise, Corollary 2 gives the (0, 2) case of Theorem 1 with one insertion of degree 0 since
via (30) it can be restated as〈

τβb τ
α
0

〉
0

= Iβb ⊗ Iα0
[
ωodd
0,2

]
. (31)

The proof of Theorem 1 is completed through the following proposition.

Proposition 4.〈
ταj τ

β
k

〉
0

= Iαj ⊗ Iβk
[
ωodd
0,2

]
.

Proof. By direct evaluation, we have for a ∈ {−1, 1}

Res
z=a

ω0,2(z1, z)ω0,2(z, z2)

dx(z)
=
a

2

dz1
(z1 − a)2

dz2
(z2 − a)2

,

and we sum these to get∑
a=±1

Res
z=a

ω0,2(z1, z)ω0,2(z, z2)

dx(z)
= ξ00(z1)ξ

1
0(z2) + ξ10(z1)ξ

0
0(z2),

where ξβ0 (z), defined in (10), have order two poles at z = ±1. Now∑
a=±1

Res
z=a

ω0,2(z1, z)ω0,2(z, z2)

dx(z)
= − Res

z=z1

ω0,2(z1, z)ω0,2(z, z2)

dx(z)
− Res
z=z2

ω0,2(z1, z)ω0,2(z, z2)

dx(z)

= −d1

(
ω0,2(z1, z2)

dx(z1)

)
− d2

(
ω0,2(z1, z2)

dx(z2)

)
,

where the first equality uses the fact that the only poles of the integrand are 1, −1, z1, z2.
Putting these together gives

−d1

(
ω0,2(z1, z2)

dx(z1)

)
− d2

(
ω0,2(z1, z2)

dx(z2)

)
= ξ00(z1)ξ

1
0(z2) + ξ10(z1)ξ

0
0(z2). (32)

Take 1
2(32)− 1

2(32)|z2 7→1/z2 and since ξα0 (z2) is odd under this involution, we get

−d1

(
ωodd
0,2 (z1, z2)

dx(z1)

)
− d2

(
ωodd
0,2 (z1, z2)

dx(z2)

)
= ξ00(z1)ξ

1
0(z2) + ξ10(z1)ξ

0
0(z2). (33)
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We apply Iαj ⊗ Iβk to (33) to get

Iαj ⊗ Iβk

[
−d1

(
ωodd
0,2 (z1, z2)

dx(z1)

)
− d2

(
ωodd
0,2 (z1, z2)

dx(z2)

)]
= Iαj ⊗ Iβk

[
ξ00(z1)ξ

1
0(z2) + ξ10(z1)ξ

0
0(z2)

]
,

hence

Iαj−1 ⊗ Iβk
[
ωodd
0,2

]
+ Iαj ⊗ Iβk−1

[
ωodd
0,2

]
=
〈
τ10 τ

α
j−1
〉
0

〈
τ00 τ

β
k−1
〉
0

+
〈
τ00 τ

α
j−1
〉
0

〈
τ10 τ

β
k−1
〉
0
, (34)

where on the left-hand side we have used integration by parts, and on the right-hand side we
have used Iαj

[
ξβ0 (z)

]
=
〈
τ1−β0 ταj−1

〉
0

from Proposition 3 and (30). Notice that (34) determines

Iαj ⊗Iβk
[
ωodd
0,2

]
inductively from the case j = 0 and the two-points genus zero descendant Gromov–

Witten invariants with one primary insertion (degree 0) which appear on the right-hand side
of (34). The j = 0 case has already been shown in (31) to give genus zero descendant Gromov–
Witten invariants.

The genus zero descendant Gromov–Witten invariants satisfy〈
ταj−1τ

β
k

〉
0

+
〈
ταj τ

β
k−1
〉
0

=
〈
τ00 τ

α
j τ

β
k

〉
0

=
〈
τ10 τ

α
j−1
〉
0

〈
τ00 τ

β
k−1
〉
0

+
〈
τ00 τ

α
j−1
〉
0

〈
τ10 τ

β
k−1
〉
0
,

where the first equality is the string equation and the second equality is the genus zero topological
recursion relation together with the string equation. Hence the two-points genus zero descen-
dant Gromov–Witten invariants are also determined inductively from the two-points genus zero
descendant Gromov–Witten invariants with one primary insertion, via the relation analogous
to (34). So we conclude〈

ταj τ
β
k

〉
0

= Iαj ⊗ Iβk
[
ωodd
0,2

]
as required. �

7 New proof of global Virasoro constraints for P1

The Virasoro constraints in Theorem 2 allow the removal of non-stationary insertions so that
the stationary invariants determine the non-stationary insertions.

7.1 Decay rules

Okounkov and Pandharipande view the global Virasoro constraints as the decay of non-statio-
nary insertions which are considered to be unstable. The decay rules for Lk defined in (4) are
as follows:

τ0k+1τ
0
` 7→

(
k + `

`− 1

)
τ0k+`, (35)

τ0k+1τ
0
` 7→ 2

(
k + `

`− 1

)
(Hk+` −H`−1)τ

1
k+`−1, (36)

τ0k+1τ
1
` 7→

(
k + `+ 1

`

)
τ1k+`, (37)

τ0k+1 7→ −2Hk+1τ
1
k , (38)

τ0k+1 7→
~

k + 1

k−2∑
m=0

(
k

m+ 1

)−1
τ1mτ

1
k−m−2. (39)
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This means that we sum over interactions of τ0k+1 with all other insertions. For example, when
k = −1, (35) and (37) become τ00 τ

α
` 7→ τα`−1 and (36), (38) and (39) produce zero – where we

use the convention that a sum vanishes if its upper terminal is negative. Summing over these
contributions, we see that L−1 produces the string equation:〈

τ00

n∏
i=1

ταiai

〉
g

=
n∑
j=1

〈
τα1
a1 · · · τ

αj
aj−1 · · · τ

αn
an

〉
g
.

The application of the operators to ω0,1 and ω0,2 was computed in Sections 6.3–6.4 and
their values can be checked to satisfy these decay rules. In fact, the local constraints (13) for
(g, n) = (0, 1) and (0, 2) have an empty content – one rather considers the local constraints for
2g − 2 + n > 0 for given (ω0,1, ω0,2), which determine uniquely the ωg,n for 2g − 2 + n > 0. We
are now going to prove from the local constraints (13) for 2g−2+n > 0 that the global Virasoro
constraints are satisfied.

7.2 Proof of Theorem 2

The cases (0, 3) and (1, 1) are treated separately below, so we assume 2g− 2 +n ≥ 2. The proof
is achieved by applying

⊗n
i=1 Iαibi to both sides of the identity in Lemma 1. It can be rewritten

A
[
ωg,n(·, zI)

]
(x1) dx1 + 2 ln(x(z1)/z1)ωg,n(z1, zI)

=
n∑
i=2

di

(
dx1

x1 − xi
ωg,n−1(zI)

dxi

)
+
ωg−1,n+1(z1, z1, zI)

dx1

+
◦∑

h+h′=g
JtJ ′=I

ωh,1+|J |(z1, zJ)ωh′,1+|J ′|(z1, zJ ′)

dx1
+

2ω̃0,1(z1)ωg,n(z1, zI)

dx1

=
n∑
i=2

L[ωg,n−1(·, zI)](z1) +
ωg−1,n+1(z1, z1, zI)

dx1

+
◦◦∑

h+h′=g
JtJ ′=I

ωh,1+|J |(z1, zJ)ωh′,1+|J ′|(z1, zJ ′)

dx1
+

2ω̃0,1(z1)ωg,n(z1, zI)

dx1
. (40)

We have added artificially the term containing ω̃0,1 = ln(x/z)dx on both sides so as to exploit
Corollary 1.

Fix α1 = 1, b1 = k and allow αi and bi to be arbitrary for i > 1. We first apply
⊗n

i=2 Iαibi , and

then I1k to the first variable z1. We claim that the evaluation of
⊗n

i=1 Iαibi on the right-hand side
of (40) is in fact independent of the order in which we evaluate each Iαibi . It is not obvious for

the terms involving L, but the decomposition proved in Lemma 3 shows that the operators I1b1 ,

respectively Iαibi , naturally act on the variable z1, respectively the variable zi, in L
(
ξαm
)
(z1, zi)

and they commute.
Applying ⊗ni=2Iαibi on the left-hand side of (40) gives a 1-form in the variable x1, to which we

can apply I1k using Corollary 1

n⊗
i=1

Iαibi
(
A
[
ωg,n(·, zI)

]
(x1) dx1 + 2ωg,n(z1, zI) ln(x1/z1)

)
=

〈
τ0k+1

n∏
i=2

ταibi

〉
g

+ 2Hk+1

〈
τ1k

n∏
i=2

ταibi

〉
g

, (41)

which reproduces the decay rule (38).
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The decay rule (39) means that one inserts τ1mτ
1
k−m−2 into a (g − 1, n+ 2) correlator or into

the product of (g1, n1 + 1) and (g2, n2 + 1) correlators for g1 + g2 = g and n1 + n2 = n. This
is reproduced by applying first I1k , then ⊗ni=2Iαibi to the second line of (40) as follows. Note

that ω̃0,1(z) = ln(x/z) dx is analytic at z = ∞, and we use I1k [ω̃0,1](z) = 〈τ1k 〉0 to get the (0, 1)
contribution 〈τ1k 〉0 arising from (39). The action of I1k uses only the expansion at x1 =∞. Hence
from the second line of (40) we can write the insertions as follows:

∑
i≥0

τ1i
(i+ 1)!

xi+2
1

·
∑
j≥0

τ1j
(j + 1)!

xj+2
1

=
∑
k≥2

k−2∑
m=0

τ1mτ
1
k−m−2

(m+ 1)!(k −m− 1)!

xk+2
1

,

thus we have〈
τ0k+1

n∏
i=2

ταibi

〉
g

= −2Hk+1

〈
τ1k

n∏
i=2

ταibi

〉
g

+

n⊗
i=1

Iαibi ·
n∑
j=2

dj

{
ωg,n−1(zI)

(x1 − xj) dxj

}

+
1

k + 1

k−2∑
m=0

(
k

m+ 1

)−1[〈
τ1mτ

1
k−m−2τ

αI
bI

〉
g−1 +

∑
h+h′=g
JtJ ′=I

〈
τ1mτ

αI
bI

〉
h

〈
τ1k−m−2τ

αJ
bJ

〉
h′

]
.

We will now deal with the remaining unevaluated term which is the first term on the right-
hand side of (40). For the ith summand, we first apply ⊗j 6=1,iIαjbj , then Iα1

b1
= I1k , and finally Iαibi .

In the process we use the fact that ωg,n−1(zI) is a linear combination of ξαm(zi) with coefficients
given by differentials in (zj)j 6=1,i, and the following computation, which we are going to use for
β = αi and j = bi

Iβj I1k
{
−di

(
dx1

x1 − xi
ξαm(zi)

dxi

)}
= −Iβj di

(
xk+1
i

(k + 1)!

ξαm(zi)

dxi

)
= Iβj−1

(
xk+1
i

(k + 1)!
ξαm(zi)

)

=

(
j + k + β

k + 1

)
Iβj+k

(
ξαm
)

+ 2δ0,β

(
j + k

k + 1

)
(Hj+k −Hj−1)I1j+k−1

(
ξαm
)

=

(
j + k + β

k + 1

)
(Sj+k−m)αβ + 2δ0,β

(
j + k

k + 1

)
(Hj+k −Hj−1)(Sj+k−m−1)

α
1

=

(
j + k + β

k + 1

){
(Sj+k−m)αβ + 2δ0,β(Hj+k −Hj−1)(Sj+k−m−1)

α
1

}
. (42)

The first equality transforms a differential with poles at z2 = 1,−1, z1, 1/z1 to a differential
with poles only at z2 = 1,−1. This is achieved by evaluating I1k first, which crucially depends
on Lemma 3 which guarantees that the operators Iαibi and I1k commute when applied to (40).

Note that they do not commute when applied to individual terms like di
( ξαm(zi)
(x1−xi)dxi

)
and terms

involving ω0,2. We can nevertheless use linearity and apply I1k first to those special terms in (40).
The third equality in (42) uses Proposition 2.

We see in (42) that a single term appears on the right-hand side when β = 1 which we will see
corresponds to the decay rule (37), whereas two terms appear on the right-hand side when β = 0,
which we will see corresponds to the decay rules (35) and (36). Indeed, by [5], the coefficient
of ξαm(zi) (in ωg,n−1(zI) in the case of concern here) gives the insertion of τ̄αm. Hence (42) proves
the decay rules (35), (36) and (37) which are given in terms of ancestor invariants via (8)

τ0k+1τ
0
j 7→

(
j + k

k + 1

)(
τ0j+k + 2(Hj+k −Hj−1)τ

1
j+k−1

)
=
∑
m,α

(
j + k

k + 1

)(
(Sj+k−m)α0 + 2(Hj+k −Hj−1)(Sj+k−1−m)α1

)
ταm.
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(1,1) case. For the (1, 1) case, we apply I1k to the identity proven in Lemma 1:

A[ω1,1](x1)dx1 + ω0,2(z1, 1/z1) = 0.

This case essentially uses the argument above, with a minor variation to deal with the term
ω0,2(z1, 1/z1). We use (41) to produce the decay rule (38). To get the decay rule (39), we have

Ω0,2(x1, x2) =
∑

b1,b2≥0

〈
τ1b1τ

1
b2

〉
0

(b1 + 1)!

xb1+2
1

(b2 + 1)!

xb2+2
2

dx1dx2

∼ ω0,2(z1, z2)−
dx1dx2

(x1 − x2)2
= −ω0,2(z1, 1/z2).

Hence ω0,2(z1, 1/z1) ∼ −Ω0,2(x1, x1) and the action of I1k uses only the expansion at x1 = ∞,
so as described above this yields the decay rule (39).

(0,3) case. According to Lemma 1, we have

A[ω0,3(·, z2, z3)](x1)dx1 = d2

(
dx1

x1 − x2
ωodd
0,2 (z2, z3)

dx2

)
+ d3

(
dx1

x1 − x3
ωodd
0,2 (z2, z3)

dx3

)

−
2ωodd

0,2 (z1, z2)ω
odd
0,2 (z1, z3)

dx1
.

Using similar methods to those above, we can identify each decay rule by applying I1k⊗Iα2
b2
⊗Iα3

b3
to this relation. We omit the details, since the computation of the (0, 3) descendant invariants
follow easily from the genus 0 topological recursion relations [9].

A Evaluation on invariant differentials

In the appendix, we evaluate the action of I0k on differentials invariant under the involution
z 7→ 1/z. Although this is not used in the article, we include it to give a fuller understanding of
the operator I0k .

The operators I0k are regularised integrals along a contour between the two points above
x = ∞, given by z = 0 and z = ∞. Consider such an integral applied to a meromorphic
1-form f on S invariant under the involution, i.e. satisfying f(z) = f(1/z), hence obtained as
a pullback of a meromorphic 1-form from the x-plane Š. It would be reasonable to expect that
such an integral would vanish since the contour downstairs seems to be closed. Here we will
see that I0k applied to the pullback of a meromorphic 1-form from the x-plane can in fact be
non-zero.

The pullback of a meromorphic 1-form from the x-plane can always be obtained by integrating

B̌(x, x0) =
dx dx0

(x− x0)2

with respect to x0 on a suitable current in Š. Therefore, the evaluation of the operators on
meromorphic 1-forms is determined by their evaluation on B̌(·, x0). The evaluation of I1 is
straightforward. We describe here the evaluation of I0.
Proposition 5. Let x0 ∈ C \ iR. We have

I00
[
B̌(·, x0)

dx0

]
=

2

x0
,

and for b > 0

I0b
[
B̌(·, x0)

dx0

]
=

xb−10

(b− 1)!
ln
(
x20
)

+
2xb−10

b!
(1− bHb).
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Proof. We let fx0 = B̌(·, x0)/dx0. The case b = 0 does not need regularisation and is easy to
compute. For b > 0, we have

I1b−1[fx0 ] =
xb−10

(b− 1)!
, Řb[fx0 ](x) =

1

(x− x0)2
−

b−1∑
a=0

(a+ 1)xa0
xa+2

.

Therefore

(x− iε)b

b!

Řb[fx0 ](x)

dx
=

(x− iε)b

(x− x0)2
−

b−1∑
a=0

b∑
c=0

(a+ 1)xc−(a+2)(−iε)b−cxa0
c!(b− c)!

=
(x0 − iε)b−1

(b− 1)!

1

x− x0
+

(x0 − iε)b

b!

1

(x− x0)2
−

b−1∑
a=0

b−(a+2)∑
c=−(a+2)

(a+ 1)xc(−iε)b−(c+a+2)xa0
(c+ a+ 2)!(b− c− a− 2)!

+
∑

a1+a2+a3+a4=b−2

(a1 + a2 + 1)!

a1!a2!

(a3 + a4)!

a3!a4!
xa10 (−iε)a2+a3xa4 . (43)

Notice that

b−1∑
a=0

b−(a+2)∑
c=−(a+2)

=
b−1∑
a=0

a+2∑
c̃=1

+
b−2∑
a=0

b−(a+2)∑
c=0

=
b+1∑
c̃=2

b−1∑
a=c̃−2

+
b−1∑
a=0

δc̃,1 +
b−2∑
c=0

b−(c+2)∑
a=0

,

where c̃ = −c. The sum of the c̃ = 1 terms is computed by a binomial formula. Since from the
beginning the left-hand side of (43) quantity should be O

(
1/x2

)
when x → ∞, we must have

cancellations of the polynomial part in x. After index relabelings we find

(x− iε)b

b!

Řb[fx0 ](x)

dx
=

(x0 − iε)b−1

(b− 1)!

(
1

x− x0
− 1

x

)
+

(x0 − iε)b

b!

1

(x− x0)2
−

b∑
c=1

b−c∑
a=0

(a+ c)(−iε)b−axa+c−10

a!(b− a)!

1

xc+1
.

We deduce when ε→ 0

2 Re

(∫ i∞

iε
dx

(x− iε)b

b!
Řb[fx0 ](x)

)
= 2 Re

(
(x0 − iε)b−1

(b− 1)!
ln

(
iε

iε− x0

)
+

(x0 − iε)b

b!

1

iε− x0
−

b∑
c=1

b−c∑
a=0

(a+ c)(−1)b−a(iε)b−a−cxa+c−10

a!(b− a)!c

)

=
2xb−10

(b− 1)!
ln(ε)− xb−10

(b− 1)!
ln
(
x20
)
− 2xb−10

b!
− 2

(
b∑
c=1

(−1)c

(b− c)!c! c

)
bxb−10 + o(1).

Also

b∑
c=1

(−1)c

(b− c)!c! c =
1

b!

∫ 1

0

(1− x)b − 1

x
dx =

1

b!
lim
ε→0+

(∫ 1

0
(1− x)bx−1+ε dx− 1

ε

)
= lim

ε→0+

(
Γ(ε)

Γ(ε+ b+ 1)
− 1

b!ε

)
= −Hb

b!
,

where we have used that Γ(ε) = 1/ε− γE + o(1) when ε→ 0. We arrive at

I0b [fx0 ] =
xb−10

(b− 1)!
ln
(
x20
)

+
2xb−10

b!
− 2xb−10 Hb

(b− 1)!

=
xb−10

(b− 1)!
ln
(
x20
)

+
2xb−10

b!
(1− bHb). �



Loop Equations for Gromov–Witten Invariant of P1 29

Acknowledgements

This work was initiated during a visit of G.B. at the University of Melbourne supported by
P. Zinn-Justin, which he thanks for hospitality. G.B. also thanks Hiroshi Iritani for discussions
on mirror symmetry, and acknowledges the support of the Max-Planck-Gesellschaft. Part of this
work was carried out during a visit of P.N. to Ludwig-Maximilians-Universität which he thanks
for its hospitality. P.N. is supported by the Australian Research Council grants DP170102028
and DP180103891.

References

[1] Behrend K., Fantechi B., The intrinsic normal cone, Invent. Math. 128 (1997), 45–88, arXiv:alg-
geom/9601010.

[2] Borot G., Eynard B., Orantin N., Abstract loop equations, topological recursion and new applications,
Commun. Number Theory Phys. 9 (2015), 51–187, arXiv:1303.5808.

[3] Dubrovin B., Geometry of 2D topological field theories, in Integrable Systems and Quantum Groups (Monte-
catini Terme, 1993), Editors M. Francaviglia, S. Greco, Lecture Notes in Math., Vol. 1620, Springer, Berlin,
1996, 120–348, arXiv:hep-th/9407018.

[4] Dunin-Barkowski P., Norbury P., Orantin N., Popolitov A., Shadrin S., Primary invariants of Hurwitz
Frobenius manifolds, in Topological Recursion and its Influence in Analysis, Geometry, and Topology,
Editors C.C.M. Liu, M. Mulase, Proc. Sympos. Pure Math., Vol. 100, Amer. Math. Soc., Providence, RI,
2018, 297–331, arXiv:1605.07644.

[5] Dunin-Barkowski P., Orantin N., Shadrin S., Spitz L., Identification of the Givental formula with the spectral
curve topological recursion procedure, Comm. Math. Phys. 328 (2014), 669–700, arXiv:1211.4021.

[6] Eguchi T., Hori K., Xiong C.-S., Quantum cohomology and Virasoro algebra, Phys. Lett. B 402 (1997),
71–80, arXiv:hep-th/9703086.

[7] Eynard B., Orantin N., Topological recursion in enumerative geometry and random matrices, J. Phys. A:
Math. Theor. 42 (2009), 293001, 117 pages, arXiv:0811.3531.

[8] Givental A.B., Gromov–Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1
(2001), 551–568, arXiv:math.AG/0108100.

[9] Kontsevich M., Manin Yu., Gromov–Witten classes, quantum cohomology, and enumerative geometry,
Comm. Math. Phys. 164 (1994), 525–562, arXiv:hep-th/9402147.

[10] Kontsevich M., Manin Yu., Relations between the correlators of the topological sigma-model coupled to
gravity, Comm. Math. Phys. 196 (1998), 385–398, arXiv:alg-geom/9708024.

[11] McClure J.P., Wong R., Explicit error terms for asymptotic expansions of Stieltjes transforms, J. Inst. Math.
Appl. 22 (1978), 129–145.

[12] Norbury P., Stationary Gromov–Witten invariants of projective spaces, Acta Math. Sin. (Engl. Ser.) 33
(2017), 1163–1183, arXiv:1112.6400.

[13] Norbury P., Scott N., Gromov–Witten invariants of P1 and Eynard–Orantin invariants, Geom. Topol. 18
(2014), 1865–1910, arXiv:1106.1337.

[14] Okounkov A., Pandharipande R., Gromov–Witten theory, Hurwitz theory, and completed cycles, Ann. of
Math. 163 (2006), 517–560, arXiv:math.AG/0204305.

[15] Okounkov A., Pandharipande R., Virasoro constraints for target curves, Invent. Math. 163 (2006), 47–108,
arXiv:math.AG/0308097.

[16] Orantin N., Symplectic invariants, Virasoro constraints and Givental decomposition, arXiv:0808.0635.

[17] Teleman C., The structure of 2D semi-simple field theories, Invent. Math. 188 (2012), 525–588,
arXiv:0712.0160.

https://doi.org/10.1007/s002220050136
https://arxiv.org/abs/alg-geom/9601010
https://arxiv.org/abs/alg-geom/9601010
https://doi.org/10.4310/CNTP.2015.v9.n1.a2
https://arxiv.org/abs/1303.5808
https://doi.org/10.1007/BFb0094793
https://arxiv.org/abs/hep-th/9407018
https://doi.org/10.1090/pspum/100/01768
https://arxiv.org/abs/1605.07644
https://doi.org/10.1007/s00220-014-1887-2
https://arxiv.org/abs/1211.4021
https://doi.org/10.1016/S0370-2693(97)00401-2
https://arxiv.org/abs/hep-th/9703086
https://doi.org/10.1088/1751-8113/42/29/293001
https://doi.org/10.1088/1751-8113/42/29/293001
https://arxiv.org/abs/0811.3531
https://doi.org/10.17323/1609-4514-2001-1-4-551-568
https://arxiv.org/abs/math.AG/0108100
https://doi.org/10.1007/BF02101490
https://arxiv.org/abs/hep-th/9402147
https://doi.org/10.1007/s002200050426
https://arxiv.org/abs/alg-geom/9708024
https://doi.org/10.1093/imamat/22.2.129
https://doi.org/10.1093/imamat/22.2.129
https://doi.org/10.1007/s10114-017-5314-4
https://arxiv.org/abs/1112.6400
https://doi.org/10.2140/gt.2014.18.1865
https://arxiv.org/abs/1106.1337
https://doi.org/10.4007/annals.2006.163.517
https://doi.org/10.4007/annals.2006.163.517
https://arxiv.org/abs/math.AG/0204305
https://doi.org/10.1007/s00222-005-0455-y
https://arxiv.org/abs/math.AG/0308097
https://arxiv.org/abs/0808.0635
https://doi.org/10.1007/s00222-011-0352-5
https://arxiv.org/abs/0712.0160

	1 Introduction
	2 Gromov–Witten invariants
	2.1 The moduli space of stable maps
	2.1.1 Cohomology on Mg,n(X,d)

	2.2 Specialising to P1

	3 Topological recursion
	3.1 Definition
	3.2 Relation to Gromov–Witten theory of P1
	3.3 From local to global constraints on multidifferentials

	4 Properties of A and L
	4.1 Laurent expansion of A[f]
	4.2 Decomposition of L[f]

	5 Properties of regularised contour integrals
	5.1 Basic properties and extended definition
	5.2 Evaluation on the odd basis
	5.3 Evaluation of one operator on 0,2odd

	6 Proof of Theorem 1
	6.1 The S-matrix
	6.2 The stable cases
	6.3 The (0,1) cases
	6.4 The (0,2) case

	7 New proof of global Virasoro constraints for P1
	7.1 Decay rules
	7.2 Proof of Theorem 2

	A Evaluation on invariant differentials
	References

