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Abstract. The ergodic unitarily invariant measures on the space of infinite Hermitian
matrices have been classified by Pickrell and Olshanski–Vershik. The much-studied complex
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1 Introduction

1.1 Informal introduction and historical overview

Since their introduction in the 1920’s [34] the Wishart measures have been ubiquitous in mathe-
matics, physics and statistics. They appear in diverse fields, from statistical analysis [17, 19] to
stochastic processes [3, 28] and free probability [8, 22]. More recently, there has been renewed
interest in connection to their applications in quantum transport [10, 11] and their enumerative
properties, in particular relations to Hurwitz numbers [9].

This paper stems from the following remarkable property, and its consequences, of these
measures: the inverse Wishart measures

{
M(ν),N

}
N≥1

(ν is a real parameter greater than −1)

defined in (1.3) on (positive-definite) Hermitian matrices form a projective family under the
so-called corners maps given in (1.1) below. The goal of this paper is to study the corresponding
unitarily invariant, namely invariant under conjugation by unitary matrices, measure M(ν) on
infinite (positive-definite) Hermitian matrices and describe explicitly how it decomposes into
ergodic components.

These ergodic measures for the action by conjugation of the inductive limit of unitary groups
on infinite Hermitian matrices have been classified in classical works of Pickrell [26] and Olshanski
and Vershik [24]. They are parametrized by the infinite dimensional space Ω defined in (1.2)
below and depend on a set of parameters

(
{α+}, {α−}, γ1, γ2

)
⊂ R∞+ × R∞+ × R × R+. As we

will see in Section 3, the α parameters are asymptotic eigenvalues and γ1 and γ2 are related to
the asymptotic trace and asymptotic sum of squares respectively; the parameter γ2 is also called
the ‘Gaussian component’. The study of γ1 especially and also γ2 is a much more difficult task
compared to describing the α’s.

The problem of ergodic decomposition of certain distinguished unitarily invariant measures
on infinite Hermitian matrices was initiated by Borodin and Olshanski in [2]. They considered
the Hua–Pickrell measures depending on a complex parameter s. These measures were first
studied by Hua in his classical book [18] and implicit in his calculations is consistency under
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the corners maps, see also Neretin’s generalization [23]. Borodin and Olshanski described the α
parameters and proved that for s = 0, γ2 = 0. The determination of γ1 and γ2 was left open
for many years until recently in a breakthrough work [27] Qiu proved that γ2 = 0 for general
parameter s and completely described γ1 for real s (see Remark 5.5 for more on this restriction).
In the case of the inverse Wishart measures M(ν) we are able to completely describe all the
parameters for all ν > −1. This is achieved in Theorem 1.6, the main result of this paper.

A closely related problem is the ergodic decomposition of the so-called Pickrell measures [25]
(depending on a real parameter s) on infinite square complex matrices. The ergodic unitarily
invariant (by multiplication to the left and to the right) measures on infinite square complex
matrices have also been classified. These are parametrized by a different infinite dimensional
space that is a subset of R∞+ × R+ (there is no analogue of γ1). The explicit description of the
ergodic decomposition has been settled in a series of papers by Bufetov [4, 5, 6] (see also [7]),
which have been very influential for us. We should mention that the papers of Bufetov [4, 5, 6]
and Qiu [27] also study the infinite case of the problem of ergodic decomposition, namely when
the corresponding matrix measures no longer have finite mass. Since this requires quite different
techniques we will not consider it in this work.

Finally, before closing this informal introduction we remark that a key role in all these papers
[2, 4, 5, 6, 7, 27] is played by orthogonal polynomials. In the case of the Hua–Pickrell measures
these are the pseudo-Jacobi polynomials and in the case of the Pickrell measures these are
the Jacobi. The analogous role in this paper is played by the Bessel [21] and also Laguerre
polynomials.

In the next subsections we give the necessary background to make the informal discussion
above precise and state our results rigorously.

1.2 Ergodic unitarily invariant measures on infinite Hermitian matrices

Let U(N) and H(N) be the group of N ×N unitary matrices and the space of N ×N Hermitian
matrices respectively. Let U(∞) be the inductive limit of unitary groups

U(∞) = lim
→

U(N),

under the natural embeddings. In more explicit terms an element of U(∞) is an infinite block
matrix whose top corner is an N × N unitary matrix for some finite N and the other block is
the (infinite) identity matrix.

Consider the so called corners maps πNN−1 : H(N)→ H(N − 1) defined by

πNN−1

[
(hij)

N
i,j=1

]
= (hij)

N−1
i,j=1. (1.1)

Let H be the space of infinite Hermitian matrices defined as the projective limit

H = lim
←
H(N),

under the corners maps. Moreover, let H+(N) ⊂ H(N) denote the space of N × N positive-
definite matrices; namely matrices with positive eigenvalues. By Cauchy’s interlacing theorem
we get that πNN−1 : H+(N)→ H+(N −1). Thus, we can also correctly define the projective limit
H+ = lim

←
H+(N) ⊂ H.

Now, U(∞) acts on H by conjugation: for each u ∈ U(∞) we have a map Tu : H → H given
by Tu(h) = u∗hu. It is a classical theorem of Pickrell [26] and also Olshanski and Vershik [24]
that ergodic measures on H for this action (namely ones such that all U(∞)-invariant subsets
have mass 0 or 1) are parametrized by the infinite dimensional space Ω ⊂ R2∞+2:

Ω =
{
ω = (α+, α−, γ1, δ) ∈ R2∞+2 = R∞ × R∞ × R× R |
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α+ = (α+
1 ≥ α

+
2 ≥ · · · ≥ 0); α− = (α−1 ≥ α

−
2 ≥ · · · ≥ 0);

γ1 ∈ R; δ ≥ 0;
∑

(α+
i )2 +

∑
(α−i )2 ≤ δ

}
,

γ2 = δ −
∑(

α+
i

)2 −∑(
α−i
)2
. (1.2)

Observe that Ω is a locally compact space. We then have the following classification theorem,
see [24, 26], also [12].

Theorem 1.1 (Pickrell, Olshanski–Vershik). There exists a parametrization of ergodic U(∞)-
invariant probability measures on the space H by the points of the space Ω described as follows.
Given ω ∈ Ω the characteristic function of the ergodic measure Mω is given by∫

X∈H
ei Tr(diag(r1,...,rn,0,0,... )X)Mω(dX) =

n∏
j=1

Fω(rj),

where

Fω(x) = eiγ1x− γ22 x
2
∞∏
k=1

e−iα+
k x

1− iα+
k x

∞∏
k=1

eiα−k x

1 + iα−k x
.

Note that the characteristic function Fω is well defined for all ω ∈ Ω by the fact that the sum
of squares of the α’s is finite. Also, observe that parameter γ2 corresponds to an infinite random
Hermitian matrix with independent (subject to the Hermitian constraint) complex Gaussian
entries with mean 0 and variance γ2 on the diagonal.

1.3 The inverse Wishart measures M(ν) on infinite positive-definite matrices

For ν > −1, consider the complex Wishart (or Laguerre ensemble) probability measure on N×N
Hermitian matrices, supported on H+(N):

M(ν),N (dY ) = ˜constν,N det(Y )νe−TrY 1{Y ∈H+(N)}dY

where throughout the paper for a Hermitian matrix Y , dY denotes Lebesgue measure on H(N)
(we suppress dependence on N):

dY =
N∏
j=1

dYjj
∏

1≤j<k≤N
d ReYjkd ImYjk.

The restriction ν > −1 is so that the normalization constant ˜constν,N is finite.
Under the change of variables Y = 2X−1 we obtain the central object of study in this paper,

the inverse Wishart probability measures on H+(N)

M(ν),N (dX) = constν,N det(X)−ν−2Ne−2 TrX−1
1{X∈H+(N)}dX. (1.3)

Observe that, for all N ∈ N the measure M(ν),N is unitarily invariant, namely invariant under
the action of U(N) by conjugation. Then, we have the following consistency result:

Proposition 1.2. For ν > −1 the measures
{
M(ν),N

}
N≥1

form a projective family(
πNN−1

)
∗M

(ν),N = M(ν),N−1.
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Thus, by Kolmogorov’s theorem we obtain a unitarily invariant measure M(ν) on H that is
supported on H+.

Proposition 1.2 is proven in Section 2 as Proposition 2.3. A key role in the proof is played
by the Bessel orthogonal polynomials [21].

Remark 1.3. Although we have not been able to locate Proposition 1.2 anywhere in the lite-
rature, in an equivalent form a close variant of it, for the analogous measure on real symmetric
positive-definite matrices, appears to be folklore in the statistical literature, see for example
[17, Chapter 3]. The argument there makes use of the technique of Schur complementation, the
formula for the determinant of a block matrix and the special form of the density of M(ν),N .
The proof presented in Section 2 is completely different and makes a novel use of the connection
to orthogonal polynomials.

1.4 Description of ergodic decomposition of M(ν)

Consider the measure M(ν) defined above for ν > −1. It is a result of Borodin and Olshanski,
see Proposition 4.4 in [2], that there exists a unique probability measure m(ν) on Ω such that

M(ν) =

∫
Ω
Mωm

(ν)(dω).

Here, the equality is interpreted as integrated against a test function, see Section 3. The main
result of this paper is the explicit description of m(ν). To proceed and state it precisely we need
some more definitions and background on determinantal measures.

Definition 1.4. Define the subset Ω+
0 ⊂ Ω such that ω = (α+, α−, γ1, δ) ∈ Ω+

0 iff

α−i (ω) ≡ 0, α+
j (ω) 6= 0, for all i, j ∈ N;

γ2(ω) = δ(ω)−
∑
i

(
α+
i (ω)

)2 −∑
i

(
α−i (ω)

)2
= 0;

γ1(ω) =
∑
i

α+
i (ω) <∞.

In particular, on Ω+
0 there is no ‘Gaussian component’ namely γ2(ω) ≡ 0 and the parame-

ter γ1(ω) is completely determined by the α+
i (ω).

Determinantal measures Let X be a locally compact Polish space equipped with a σ-finite
reference measure µ. Let Conf(X ) be the space of point configurations over X . Points in a point
configuration X ∈ Conf(X ) will be called particles. We can embed Conf(X ) in the space of finite

measures on X by X 7→
∑
x∈X

δx and with the induced topology Conf(X ) is a Polish space.

A Borel probability measure P on Conf(X ) is called a determinantal point process or measure,
see [29], with (Hermitian) kernel K : X × X → C if for any n ∈ N and function Φ ∈ Cc

(
X n
)
,

continuous and of compact support, we have∫
Conf(X )

∑
x1,...,xn∈X

Φ(x1, . . . , xn)P(dX)

=

∫
Xn

Φ(x1, . . . , xn) det(K(xi, xj))
n
i,j=1dµ(x1) · · · dµ(xn), (1.4)

where the sum is taken over ordered n-tuples of particles with pairwise distinct labels. The
measure P satisfying (1.4) completely determines the pair (K, µ) and dropping dependence on µ
(usually fixed), we denote it by PK.
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Throughout this paper the reference measure will be Lebesgue measure. We now define
a distinguished determinantal measure on (0,∞).

Definition 1.5. Define the Bessel kernel Jν by

Jν(x, y) =

√
xJν+1(

√
x)Jν(

√
y)−√yJν+1(

√
y)Jν(

√
x)

2(x− y)
,

where Jν is the Bessel function of order ν. This kernel gives rise to the Bessel determinantal
point process PJν on (0,∞) of Tracy and Widom [32].

We are ready to give the explicit description of the ergodic decomposition of the inverse
Wishart measures M(ν).

Theorem 1.6. Let ν > −1. The spectral measure m(ν) associated to M(ν) is concentrated on Ω+
0

m(ν)
(
Ω+

0

)
= 1.

Moreover, the law of the parameters α+ =
(
α+

1 ≥ α+
2 ≥ α+

3 ≥ · · · ≥ 0
)

under m(ν) viewed as
a point configuration on (0,∞) is given by the determinantal point process PKν

∞ with correlation
kernel Kν

∞(x, y) defined by

Kν
∞(x, y) =

8

xy
Jν
(

8

x
,

8

y

)
.

Theorem 1.6 above will be proven by an approximation procedure, the so-called ‘ergodic
method’ of Olshanski and Vershik [24], that is explained in Section 3. For this asymptotic
analysis we will exploit the relation with the Laguerre ensemble.

1.5 Organisation of the paper

In Section 2, we prove consistency for the inverse Wishart measures. This is proved at the level
of eigenvalue measures first and then lifted to matrices. The key ingredient is the backward shift
equation for Bessel polynomials. In Section 3, we recall in detail the approximation procedure
of Vershik, Borodin and Olshanski. In Section 4, we study the α parameters. We obtain the
parameters α+ as limits of the Bessel orthogonal polynomial ensemble, which is a determinantal
point process. In Section 5, we obtain certain estimates for the kernel of the Bessel orthogonal
polynomial ensemble. These are essential for the study of γ1 and γ2. In Section 6, we prove
that γ2 ≡ 0. In Section 7, we treat the γ1 parameter. A key role is played by positivity along
with the estimates from Section 5. Finally, in Section 8 we simply put everything together to
conclude the proof of Theorem 1.6.

2 Consistency of M(ν),N

Let ν > −1. Recall that, we are interested in the normalized (probability) measure

M(ν),N (dX) = constν,N det(X)−ν−2Ne−2 TrX−1
1{X∈H+(N)}dX,

where the normalizing constant constν,N will be given explicitly below.
By Weyl’s integration formula we get that the induced probability measure on eigenvalues in

the Weyl chamber WN (we write WN
+ if all coordinates are positive)

WN =
{
x = (x1, . . . , xN ) ∈ RN : x1 ≥ x2 ≥ · · · ≥ xN

}
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is given by

µνN (dx) = constν,N

N∏
i=1

wνN (xi)∆N (x)21{x∈WN
+ }

dx1 · · · dxN

with the Bessel weight wνN (·) on (0,∞)

wνN (x) = x−ν−2Ne−
2
x

and we will write

∆N (x) =
∏

1≤i<j≤N
(xi − xj)

for the Vandermonde determinant.
Moreover, the constants constν,N and constν,N are related by

constν,N = constν,N
1

(2π)
N(N−1)

2

N∏
k=1

k!.

It will be convenient to introduce the following notation: we define the map evalN : H(N)→
WN by evalN (H) = x = (x1 ≥ x2 ≥ · · · ≥ xN ) the vector of eigenvalues of H in weakly
decreasing order. In this notation we have

(evalN )∗M
(ν),N = µνN .

Bessel polynomials. The orthogonal polynomials with respect to wνN (x), that are called
the Bessel polynomials [21], will be important for us. The reference for all the facts stated below
is [20, Chapter 9.13, pp. 244–247].

For ν > −1, there exist p0(·; ν,N), . . . , pN−1(·; ν,N) monic orthogonal polynomials of degree
0, . . . , N − 1 with respect to wνN . These can be expressed in terms of hypergeometric functions
but we shall not need any explicit expression here. Their norms are given by, for n = 0, . . . , N−1,

‖pn(·; ν,N)‖22 =

∫ ∞
0

wνN (x)p2
n(x; ν,N)dx

= − 22n−ν−2N+1

(n− ν − 2N + 1)2
n(2n− ν − 2N + 1)

Γ(−n+ ν + 2N)n!.

Here, (a)k =
k∏
i=1

(a+ i− 1), (a)0 = 1 is the Pochhammer symbol.

Also, we have the following key relation, called the backward shift equation, that relates
orthogonal polynomials with respect to wνN to orthogonal polynomials with respect to wνN+1

d

dx

[
wνN (x)pn(x; ν,N)

]
=

(n+ 1− ν − 2N + 1)n+1

(n− ν − 2N + 1)n
wνN+1(x)pn+1(x; ν,N + 1)

= c(n, ν,N)wνN+1(x)pn+1(x; ν,N + 1).

Furthermore, by writing the Vandermonde determinant in terms of the monic orthogonal
polynomials pn(·; ν,N) a standard calculation gives that

constν,N =

N∏
n=1

1

‖pn−1(·; ν,N)‖22
=

N∏
n=1

−(n− ν − 2N + 1)2
n(2n− ν − 2N + 1)

22n−ν−2N+1Γ(−n+ ν + 2N)n!

and thus we also obtain an explicit expression for constν,N .
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Now, we introduce the following Markov kernel ΛN+1
N from WN+1 to WN , defined for

x ∈ W̊N+1 (the interior of WN+1) as

ΛN+1
N (x, dy) =

N !∆N (y)

∆N+1(x)
1(y ≺ x)dy,

where y ≺ x denotes interlacing

x1 ≥ y1 ≥ x2 ≥ · · · ≥ yN ≥ xN+1.

This Markov kernel has a random matrix interpretation, due to Baryshnikov [1] (the required
computation is already implicit in the classical book of Gelfand and Naimark [15]), which easily
extends to any x ∈WN+1 (even when the coordinates coincide)

ΛN+1
N (x, ·) = Law

[
evalN

(
πN+1
N

(
U∗diag(x1, . . . , xN+1)U

))]
,

where U is a random (Haar distributed) unitary matrix from U(N + 1).
We will first prove consistency at the level of eigenvalues:

Proposition 2.1. For ν > −1

µνN+1ΛN+1
N = µνN , ∀N ≥ 1.

Proof. Since both sides are probability measures, it suffices to prove that they are equal up to
multiplicative constant (we will use the notation ∝ for this). Since µνN+1 is supported on W̊N+1

we can write (note that since y ≺ x we have
{
x ∈WN+1

+

}
⇒
{
y ∈WN

+

}
)

[
µνN+1ΛN+1

N

]
(dy) = N !∆N (y)1{y∈WN

+ }
dy

∫
y≺x∈WN+1

+

N+1∏
i=1

wνN+1(xi)∆N+1(x)dx.

Note that we can write

∆N+1(x) = det[pi−1(xN+2−j ; ν,N + 1)]N+1
i,j=1.

We thus need to show∫
y≺x∈WN+1

+

N+1∏
i=1

wνN+1(xi) det[pi−1(xN+2−j ; ν,N + 1)]N+1
i,j=1dx

∝
N∏
i=1

wνN (yi) det[pi−1(yN+1−j ; ν,N)]Ni,j=1 =
N∏
i=1

wνN (yi)∆N (y). (2.1)

By multilinearity of the determinant we obtain that the l.h.s. of (2.1) is

det

[∫ yN+1−j

yN+2−j

wνN+1(z)pi−1(z; ν,N + 1)dz

]N+1

i,j=1

,

where y0 =∞, yN+1 = 0.
Now, by the backward shift equation we can perform the integral inside the determinant and

obtain for i ≥ 2:∫ yN+1−j

yN+2−j

wνN+1(z)pi−1(z; ν,N + 1)dz =
1

c(i− 2, ν,N)

[
wνN (z)pi−2(z; ν,N)

]yN+1−j
yN+2−j

.
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We note that when evaluated at y0 = ∞ and yN+1 = 0 the terms above vanish. Hence, we get
that the l.h.s. of (2.1) is proportional to (note that the entry with index (2, 2) is the difference
wνN (yN−1)p0(yN−1; ν,N)−wνN (yN )p0(yN ; ν,N) and not just wνN (yN−1)p0(yN−1; ν,N), similarly
for the entry with index (N + 1, 2))

det



∫ yN

0
wνN+1(z)dz

∫ yN−1

yN

wνN+1(z)dz · · ·
∫ ∞
y1

wνN+1(z)dz

wνN (yN )p0(yN ; ν,N)
wνN (yN−1)p0(yN−1; ν,N)
−wνN (yN )p0(yN ; ν,N)

· · · −wνN (y1)p0(y1; ν,N)

...
...

...
...

wνN (yN )pN−1(yN ; ν,N)
wνN (yN−1)pN−1(yN−1; ν,N)
−wνN (yN )pN−1(yN ; ν,N)

· · · −wνN (y1)pN−1(y1; ν,N)


.

Successively adding column j to column j + 1 we obtain that this is equal to

det



∫ yN

0
wνN+1(z)dz · · · · · ·

∫ ∞
0

wνN+1(z)dz

wνN (yN )p0(yN ; ν,N) · · · wνN (y1)p0(y1; ν,N) 0
...

...
...

...
wνN (yN )pN−1(yN ; ν,N) · · · wνN (y1)pN−1(y1; ν,N) 0


from which (2.1) immediately follows. �

Remark 2.2. As pointed out to me by Grigori Olshanski a similar idea of using the backwards
shift equation to prove consistency appears in the study of the q-zw measures on the quantized
Gelfand–Tsetlin graph [16]. The corresponding orthogonal polynomials are the pseudo big q-
Jacobi, see [16] and the references therein.

We will now, making use of Baryshnikov’s result [1], prove consistency for the matrix mea-
sures.

Proposition 2.3. For ν > −1, the inverse Wishart measures form a projective family(
πN+1
N

)
∗M

(ν),N+1 = M(ν),N , ∀N ≥ 1.

Thus, by Kolmogorov’s theorem there exists a unique unitarily invariant measure M(ν) on H that
is supported on H+.

Proof. First, observe that if a measure N is unitarily invariant on H(N + 1) then
(
πN+1
N

)
∗N

is unitarily invariant on H(N). Thus, it suffices to show that

(evalN )∗
(
πN+1
N

)
∗M

(ν),N+1 = (evalN )∗M
(ν),N .

On the other hand from Proposition 2.1 we have

(evalN+1)∗M
(ν),N+1 ◦ ΛN+1

N = (evalN )∗M
(ν),N .

Hence, we need to show

(evalN )∗
(
πN+1
N

)
∗M

(ν),N+1 = (evalN+1)∗M
(ν),N+1 ◦ ΛN+1

N .

Now, let λ = (λ1 ≥ λ2 ≥ · · · ≥ λN+1) be fixed and consider the orbital measure on H(N + 1)

nλ = Law[U∗diag(λ1, . . . , λN+1)U ],

where U is Haar distributed in U(N + 1).
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Then, since (evalN+1)∗nλ = δλ, Baryshnikov’s result [1] can be written as(
evalN ◦ πN+1

N

)
∗nλ = (evalN+1)∗nλ ◦ ΛN+1

N .

By Weyl’s integration formula we have

M(ν),N+1(dX) =

∫
µνN+1(dλ)nλ(dX).

So we obtain∫ (
evalN ◦ πN+1

N

)
∗nλ(·)µνN+1(dλ) =

∫
(evalN+1)∗nλ ◦ ΛN+1

N (·)µνN+1(dλ).

By linearity of the operations involved(
evalN ◦ πN+1

N

)
∗

∫
nλ(·)µνN+1(dλ) = (evalN+1)∗

∫
µνN+1(dλ)nλ ◦ ΛN+1

N (·).

and so we finally arrive at(
eval ◦ πN+1

N

)
∗M

(ν),N+1 = (evalN+1)∗M
(ν),N+1 ◦ ΛN+1

N . �

Remark 2.4. The exact same scheme of proof, can be applied to the case of the Hua–Pickrell
measures. One uses, instead the backward shift equation for the pseudo-Jacobi polynomials, see
[20, Section 9.9].

We finally reinterpret the proposition above to obtain the following matrix integral. This is
an analogue of Hua’s integrals [18, 23] for the inverse Wishart measures. Let

fνN (X) = det(X)−ν−2Ne−2 TrX−1
1{X∈H+(N)}.

For X ∈ H(N + 1) we write

X =

[
X̃ ζ
ζ∗ s

]
,

where X̃ = πN+1
N (X) ∈ H(N), ζ ∈ CN , s ∈ R. Note that, {X ∈ H+(N + 1)} implies {X̃ ∈

H+(N)}.

Corollary 2.5. For ν > −1 and ∀N ≥ 1∫
(ζ,s)∈CN×R

fνN+1

([
X̃ ζ
ζ∗ s

]) N∏
i=1

d Re ζid Im ζids =
constν,N+1

constν,N
fνN
(
X̃
)
.

3 Approximation of spectral measures

In order to proceed we will need to get a handle on the abstract spectral measure m(ν). The
following approximation procedure of Olshanski–Vershik [24] and Borodin–Olshanski [2], based
on the ergodic method of Vershik [33] allows us to do so.

For λ(N) ∈WN we define the numbers

α+
i,N

(
λ(N)

)
=

max
{
λ

(N)
i , 0

}
N

, i = 1, . . . , N,

0 i = N + 1, N + 2, . . . ,
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α−i,N
(
λ(N)

)
=


max

{
−λ(N)

N+1−i, 0
}

N
, i = 1, . . . , N,

0 i = N + 1, N + 2, . . . .

Equivalently, if k and l denote the number of strictly positive terms in
{
α+
i,N

(
λ(N)

)}
and{

α−i,N
(
λ(N)

)}
respectively, we have

λ(N)

N
=
(
α+

1,N

(
λ(N)

)
, . . . , α+

k,N

(
λ(N)

)
, 0, . . . , 0,−α−l,N

(
λ(N)

)
, . . . ,−α−1,N

(
λ(N)

))
.

Define the corner map π∞N : H → H(N) by π∞N (X) = (Xij)
N
j,j=1. Let X ∈ H be given. Then,

we define the numbers
{
α+
i,N (X)

}
,
{
α−i,N (X)

}
by

α+
i,N (X) = α+

i,N

(
evalN

(
π∞N (X)

))
, ∀ i ≥ 1,

α−i,N (X) = α−i,N
(
evalN

(
π∞N (X)

))
, ∀ i ≥ 1.

We also set,

c(N)(X) =
Tr[π∞N (X)]

N
=
∑
i

α+
i,N (X)−

∑
i

α−i,N (X),

d(N)(X) =
Tr[π∞N (X)2]

N2
=
∑
i

(
α+
i,N (X)

)2
+
∑
i

(
α−i,N (X)

)2
.

Having all these notations in place we now arrive at the following important definition (see
Theorem 3.2 below for the motivation behind it):

Definition 3.1. A matrix X ∈ H is called regular and we will write X ∈ Hreg if the following
limits exist

α±i (X) = lim
N→∞

α±i,N (X), ∀ i ≥ 1,

γ1(X) = lim
N→∞

c(N)(X),

δ(X) = lim
N→∞

d(N)(X).

We can easily see that
∑

i(α
+
i (X))2 + (α−i (X))2 ≤ δ(X) and we define

γ2(X) = δ(X)−
∑
i

(
α+
i (X)

)2 −∑
i

(
α−i (X)

)2 ≥ 0.

We also define rN : H → Ω by

rN (X) =
({
α+
i,N (X)

}
,
{
α−i,N (X)

}
, c(N)(X), d(N)(X)

)
and similarly r∞ : H → Ω, that is defined correctly on Hreg and thus almost everywhere on H
as we shall see in Theorem 3.2 below

r∞(X) =
({
α+
i (X)

}
,
{
α−i (X)

}
, γ1(X), δ(X)

)
.

With all these definitions in place we can now state the following result from [2, Section 5].
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Theorem 3.2. Let M be any U(∞)-invariant probability measure on H. Then, M is supported
on Hreg. Moreover, there exists a unique spectral measure PM associated to M (in the particular

case M = M(ν) we write as we did in the introduction m(ν) = PM(ν)
) defined by

M =

∫
Ω
MωPM(dω),

where the equality is understood as follows: for all Borel functions F on H∫
H
F(X)M(dX) =

∫
Ω

∫
H
F(X)Mω(dX)PM(dω).

Furthermore, the spectral measure PM is given explicitly by

PM = (r∞)∗(M|Hreg).

Finally, we have the following weak convergence of probability measures

(rN )∗M =⇒ (r∞)∗(M|Hreg) = PM.

We will need some more definitions and notations used in later sections. For X (deterministic
or random) in H and Hreg respectively define the point configurations

CN (X) =
{
α+
i,N (X)

}
t
{
−α−i,N (X)

}
,

C(X) =
{
α+
i (X)

}
t
{
−α−i (X)

}
,

omitting possible zeroes. We will write C
(ν)
N (X),C(ν)(X) if Law(X) = M(ν).

For M on H that is U(∞)-invariant we will let PN and P (we drop dependence on M) denote
the corresponding random point configurations, namely CN (X) and C(X) if Law(X) = M.

We need a final definition for a general measure P on Conf(X ). We define its correlation
functions ρn for each n ≥ 1 (if they exist) with respect to µ, by replacing the r.h.s. of (1.4) by∫

Xn
Φ(x1, . . . , xn)ρn(x1, . . . , xn)dµ(x1) · · · dµ(xn).

In particular, for a determinantal measure PK we have ∀n ≥ 1

ρn(x1, . . . , xn) = det(K(xi, xj))
n
i,j=1.

4 Limit of the correlation kernel and the α parameters

4.1 The α− parameters

The following proposition is obvious from the definitions in Section 3 and Theorem 3.2, since
the measure M(ν) is supported on H+:

Proposition 4.1. Let ν > −1. Then,

α−i (X) = 0, ∀ i ≥ 1 for M(ν) − a. e. X ∈ Hreg.

Thus, we can restrict our attention on the parameters α+ which form a random point configu-
ration on X = (0,∞) (throughout, the reference measure µ on (0,∞) will be Lebesgue measure),
which we go on to study next.
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4.2 Explicit expression for the correlation kernel and the α+ parameters

It is a standard result from random matrix theory that the measure µνN gives rise to a deter-
minantal point process on (0,∞) with N particles. It is the orthogonal polynomial ensemble
associated to the Bessel weight wνN . We will denote its correlation kernel by KνN . This is given
explicitly in terms of Bessel polynomials but for the purposes of the asymptotic analysis we will
instead exploit the connection to the Laguerre ensemble.

First, we need to recall a simple fact about transformations of determinantal measures on
X = (I1, I2) ⊂ R. Let f : X → X be a C1 bijection and let g = f−1 be its inverse. Then,
f induces a homeomorphism of Conf(X ): for a configuration X the particles of f(X) are of the
form f(x), x ∈ X. Let PK be a determinantal measure on X . Then, its pushforward under f is
also a determinantal measure

f∗PK = PK̂f

with correlation kernel

K̂f (x, y) =
√
g′(x)g′(y)K(g(x), g(y)).

The Laguerre ensemble LνN , defined for ν > −1, is the probability measure on WN
+

LνN (dx) = c̃ν,N

N∏
i=1

xνi e−xi∆N (x)21{x∈WN
+ }

dx1 · · · dxN .

We will denote for n ≥ 1, by Lνn the monic Laguerre polynomials, orthogonal with respect to
the measure (note that this, unlike wνN , does not depend on N)

λν(x)dx = xνe−x1{x>0}dx.

Their squared norm is given by:

‖Lνn‖22 = n!Γ(n+ ν + 1).

It is a standard result that the Laguerre ensemble LνN (dx) gives rise to a determinantal point
process on (0,∞) with N particles and its correlation kernel LνN , with respect to Lebesgue
measure, is given by

LνN (x, y) =
N−1∑
i=0

Lνi (x)Lνi (y)

‖Lνn‖22

√
λν(x)λν(y).

Using the Christoffel–Darboux formula we can further write

LνN (x, y) =
1

‖LνN−1‖22

LνN (x)LνN−1(y)− LνN−1(x)LνN (y)

x− y
√
λν(x)λν(y).

Now, note that under the transformation f(x) = 2
x we have

(f∗L
ν
N )(dx) = µνN (dx), ∀N ≥ 1.

Thus, the correlation kernel KνN of the determinantal point process associated to µνN is given by

KνN (x, y) =
2

xy
LνN

(
2

x
,

2

y

)
.



Ergodic Decomposition for Inverse Wishart Measures on Infinite Positive-Definite Matrices 13

Furthermore, the scaled point process C
(ν)
N (X) = {α+

i,N (X)}Ni=1 where Law(X) = M(ν) is deter-
minantal on (0,∞) with correlation kernel Kν

N , with respect to Lebesgue measure, given by

Kν
N (x, y) = NKνN (Nx,Ny).

And also in terms of the Laguerre kernel

Kν
N (x, y) =

2

Nxy
LνN

(
2

Nx
,

2

Ny

)
. (4.1)

Proposition 4.2. Let ν > −1. Then, we have uniformly on compacts in (0,∞)

Kν
N (x, y) −→

N→∞
Kν
∞(x, y) =

8

xy
Jν
(

8

x
,

8

y

)
.

Furthermore, the determinantal point process C
(ν)
N (X) = {α+

i,N (X)} with Law(X) = M(ν) on

(0,∞) convergences weakly as N → ∞ to the determinantal point process C(ν)(X) = {α+
i (X)}

such that

Law
(
C(ν)(X)

)
= PKν

∞

and so do all the correlation functions. Finally, under the transformation x 7→ 8
x we get the

Bessel point process

Law

(
8

C(ν)(X)

)
= PJν .

Proof. We first write using relation (4.1)

Kν
N (x, y) =

8

xy

1

4N
LνN

(
1

4N

8

x
,

1

4N

8

y

)
.

Then, the first statements of the proposition are immediate consequences of the following well-
known facts: the uniform convergence on compacts in (0,∞), with z1 = 8

x , z2 = 8
y

lim
N→∞

1

4N
LνN

(
1

4N
z1,

1

4N
z2

)
= Jν(z1, z2)

and convergence of the Laguerre ensemble determinantal point process at the hard edge scaling
limit to the Bessel process, see [13, 14, 32]. These results follow from uniform on compacts
asymptotics for Laguerre polynomials, see [31]. The final statement is immediate from the
transformation rule for determinantal point processes. �

Remark 4.3. Using, the representation of KνN and thus Kν
N in terms of the Bessel polynomials it

is possible to give an alternative proof of Proposition 4.2. The analysis boils down to asymptotics
for hypergeometric functions.

Finally, the following completes the description of the α parameters.

Proposition 4.4. Let ν > −1. Then,

α+
i (X) 6= 0, ∀ i ≥ 1, for M(ν) − a. e. X ∈ Hreg.
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Proof. Observe that, since the α+
i (X) are strictly decreasing (by Proposition 4.2 they form

a determinantal point process) it suffices to prove that

C(ν)(X) has infinitely many points for M(ν) − a. e. X ∈ Hreg.

Under the map x 7→ 8
x , by Proposition 4.2, it then suffices to prove that the Bessel point

process PJν has infinitely many particles almost surely which is a well-known result (in fact
stronger quantitative results are known on the number of particles in growing intervals, see
[30, Theorem 2]). This is a simple consequence of Theorem 4 of [29] and the fact that Jν is
a projection kernel of infinite rank (more precisely Jν induces on L2((0,∞),dx) the operator
of orthogonal projection onto the subspace of functions whose Hankel transform is supported
on [0, 1], see [32]). �

5 An estimate on the correlation kernel

In this section we obtain certain, uniform in N , estimates on Kν
N , that will be useful for the

description of the parameters γ1 and γ2.

Proposition 5.1. Let ν > −1. For any ε > 0, there exists δ > 0 such that for all N ∈ N∫ δ

0
xKν

N (x, x)dx < ε.

Using relation (4.1), then in terms of the Laguerre kernel LνN it will suffice to prove:

Proposition 5.2. Let ν > −1. For any ε > 0 there exists R = R(ε) large enough such that for
all N ∈ N∫ ∞

R
N

1

N

LνN (y, y)

y
dy < ε.

Bounds for Laguerre polynomials. In order to prove Proposition 5.2 we first need to
recall some bounds for Laguerre polynomials from the classical book of Szegö [31].

Lemma 5.3. We have the following, uniform in n, estimate for the Laguerre wavefunction Wν
n

(defined by the first equality below), with w ≥ 1 being an arbitrary fixed constant

Wν
n(x) =

Lνn(x)2xνe−x

‖Lνn‖22
≤

{
c(w)× x−

1
2n−

1
2 , n−1 ≤ x ≤ w,

C × xνnν , 0 ≤ x ≤ n−1.

Here, c(w) only depends on w and in particular is independent of n, while C is a generic constant
independent of all quantities involved in the statement above.

Proof. We make use of results from Szegö [31]. We note that in [31] statements involving

Laguerre polynomials are for the ones normalized to have leading coefficient (−1)n

n! . Since we
are interested in the monic Laguerre polynomials Lνn we simply need to multiply the formulae
therein by the inverse of this coefficient. Then, Theorem 7.6.4 in [31] reads as follows in our
setting, for some fixed constant w ≥ 1 and uniformly in n

Lνn(x) ≤

{
c̃(w)× n!x−

ν
2
− 1

4n
ν
2
− 1

4 , n−1 ≤ x ≤ w,

C̃ × n!nν , 0 ≤ x ≤ n−1.

Here, c̃(w) only depends on w and is independent of n, while C̃ is a generic constant independent
of all quantities involved in the statement above.
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Now, recall that ‖Lνn‖22 = n!Γ(n+ ν + 1). Then, using the classical fact for ratios of Gamma
functions

n!

Γ(n+ ν + 1)
=

Γ(n+ 1)

Γ(n+ 1 + ν)
= n−ν +O

(
1

nν+1

)
and the trivial bound e−x ≤ 1 we obtain the statement of the lemma. �

With these preliminaries in place we are ready to prove Proposition 5.2.

Proof of Proposition 5.2. Let ε > 0 be arbitrary (and for convenience assume ε < 1). Below,
we will pick (in this order) constants w, l, R depending on ε. This choice will be made in
display (5.2) based on the bound (5.1).

We will use the notation . to mean ≤ up to a constant; with the implicit constant being
independent of ε (and obviously of the quantities w, l, R depending on it) and uniform in N (in
particular we keep track of the constant c(w) from Lemma 5.3 but not of the generic constant C).
It is clear that it suffices to prove that we can find R large enough such that uniformly in N ∈ N:∫ ∞

R
N

1

N

LνN (y, y)

y
dy . ε.

First, recall that

LνN (y, y) =

N−1∑
k=0

Wν
k (y).

We split the integral, with w to be picked according to ε (large)∫ ∞
R
N

1

N

LνN (y, y)

y
dy =

∫ w

R
N

1

N

LνN (y, y)

y
dy +

∫ ∞
w

1

N

LνN (y, y)

y
dy.

We then, using the fact that
∫∞

0 W
ν
n(y)dy = 1 for all n, easily estimate

1

N

∫ ∞
w

LνN (y, y)

y
dy ≤ 1

wN

∫ ∞
w

LνN (y, y)dy ≤ 1

wN
N =

1

w
.

We now focus on the integral∫ w

R
N

1

N

LνN (y, y)

y
dy =

1

N

∑
1≤n<N

∫ w

R
N

Wν
n(y)

y
dy

and split the range of summation, for l to be picked depending on ε (small), as follows

1

N

∑
1≤n<lN

∫ w

R
N

Wν
n(y)

y
dy +

1

N

∑
lN≤n<N

∫ w

R
N

Wν
n(y)

y
dy.

We will moreover, in the range 1 ≤ n < lN , split the integral further as∫ w

R
N

Wν
n(y)

y
dy =

∫ 1
n

R
N

Wν
n(y)

y
dy +

∫ w

1
n

Wν
n(y)

y
dy.

Note that, since the integrand is positive, in case R
N > 1

n , we simply estimate∫ w

R
N

Wν
n(y)

y
dy ≤

∫ w

1
n

Wν
n(y)

y
dy.
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Thus, we have the bound∫ ∞
R
N

1

N

LνN (y, y)

y
dy ≤ 1

w
+ J1 + J2 + J3,

where we define

J1 =
1

N

∑
1≤n<lN

1( 1
n
≥R
N )

∫ 1
n

R
N

Wν
n(y)

y
dy,

J2 =
1

N

∑
1≤n<lN

∫ w

1
n

Wν
n(y)

y
dy, J3 =

1

N

∑
lN≤n<N

∫ w

R
N

Wν
n(y)

y
dy.

We now go on to estimate each of these terms individually. Using the bound for Wν
n from

Lemma 5.3 in the range 0 ≤ x ≤ n−1, we estimate J1:

J1 .
1

N

∑
1≤n<lN

1( 1
n
≥R
N )n

ν

∫ 1
n

R
N

yν−1dy.

We split into three cases. For ν > 0 we have

J1 .
1

N

∑
1≤n<lN

1( 1
n
≥R
N )n

ν

[(
1

n

)ν
−
(
R

N

)ν]
. l.

While, for ν = 0

J1 .
1

N

∑
1≤n<lN

1( 1
n
≥R
N ) log

(
N

nR

)
=

1

N

∑
1≤n<lN

[
−1( 1

n
≥R
N ) log

( n
N

)
− 1( 1

n
≥R
N ) log (R)

]
≤ 1

N

∑
1≤n<lN

− log
( n
N

)
.
∫ l

0
− log(x)dx = −l log(l)− l.

Finally, for −1 < ν < 0

J1 .
1

N

∑
1≤n<lN

1( 1
n
≥R
N )

(
Rn

N

)ν
.

1

Nν+1
(lN)ν+1Rν = lν+1Rν .

Observe that, the last bound decreases as R increases since ν is negative.
Now, using the bound for Wν

n from Lemma 5.3 in the range n−1 ≤ x ≤ w, we estimate J2:

J2 .
c(w)

N

∑
1≤n<lN

∫ w

1
n

1

y
3
2

n−
1
2 dy .

c(w)

N

∑
1≤n<lN

n−
1
2

[
n

1
2 − 1

w
1
2

]
. c(w)l.

Finally, we turn to J3. We assume that R is large enough so that R ≥ 1
l . The fact that this

is possible (not trivial apriori since both quantities depend on ε) will be clear by the choices
made in (5.2) below. Thus, the bound for Wν

n from Lemma 5.3 valid in the range n−1 ≤ x ≤ w,
is valid throughout the range of integration R

N ≤ x ≤ w. Hence, we estimate

J3 .
c(w)

N

∑
lN≤n<N

∫ w

R
N

n−
1
2

1

y
3
2

dy .
c(w)

N
3
2 l

1
2

∑
lN≤n<N

∫ w

R
N

1

y
3
2

dy ≤ c(w)

N
3
2 l

1
2

∑
lN≤n<N

∫ ∞
R
N

1

y
3
2

dy

.
c(w)

N
3
2 l

1
2

N × N
1
2

R
1
2

=
c(w)

R
1
2 l

1
2

.
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Putting everything together we obtain

∫ ∞
R
N

1

N

LνN (y, y)

y
dy .



1

w
+ l + c(w)l +

c(w)

R
1
2 l

1
2

, for ν > 0,

1

w
− l log(l)− l + c(w)l +

c(w)

R
1
2 l

1
2

, for ν = 0,

1

w
+ lν+1Rν + c(w)l +

c(w)

R
1
2 l

1
2

, for − 1 < ν < 0.

(5.1)

We now pick the quantities (w, l, R) depending on ε so that each summand in bound (5.1) is of
order at most ε (for ε small). We first choose w = w(ε) = 1

ε . It is also convenient to define the
following constant

cε = max

{
c

(
1

ε

)
, 1

}
.

Observe that, with this choice of w(ε) the bound in (5.1) is clearly still valid if we replace c(w(ε))
by cε.

Hence, it is not hard to see that we can choose (w, l, R) as follows (of course other choices
are possible)

(w(ε), l(ε), R(ε)) =



(
1

ε
,
ε

cε
,
c3
ε

ε3

)
, for ν > 0,(

1

ε
,
εκ

cε
,

c3
ε

ε2+κ

)
, κ > 1, for ν = 0,(

1

ε
,
ε

cε
,
c3
ε

ε3

)
, for − 1 < ν < 0.

(5.2)

Note that, in all cases above the requirement R ≥ 1
l , that was used to bound J3, is satisfied.

Thus, if we take R = R(ε) as above, we get uniformly in N ∈ N∫ ∞
R(ε)
N

1

N

LνN (y, y)

y
dy . ε.

The proof is complete. �

The proof of Proposition 5.2, in particular the inequality in display (5.1), also gives the
following lemma, written in terms of Kν

N :

Lemma 5.4. Let ν > −1. Let T > 0 be fixed. Then∫ T

0
xKν

N (x, x)dx is uniformly bounded in N.

Remark 5.5 (estimates for Hua–Pickrell measures). For the Hua–Pickrell measures an estimate
for the corresponding correlation kernel Ks,N

HP (the analogue of Kν
N ) also holds (the integral is

over the range (−ε, ε) since the α−i,N in this case are not trivial)∫ ε

−ε
x2Ks,N

HP (x, x)dx. (5.3)

This as we see in the next section gives that γ2 ≡ 0.
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On the other hand, in the analysis of the parameter γ1, one is led to consider the following
term ∫ ε

−ε
xKs,N

HP (x, x)dx. (5.4)

For s ∈ R, due to the symmetry of the kernel Ks,N
HP (−x,−x) = Ks,N

HP (x, x), it is immediate that
this term vanishes identically. Then, one is left with terms that can be easily estimated by (5.3).
In general, the problem of estimating (5.4) (when it’s not trivial) appears to be open.

6 The parameter γ2

We first recall the following result, see [2, Proposition 7.2]:

Proposition 6.1. Let M be a U(∞)-invariant probability measure on H. Let PN and P be

the corresponding point processes on R∗ = R\{0} defined in Section 3. Let ρ
(N)
1 and ρ1 be the

first correlation functions with respect to Lebesgue measure (assuming they exist) of these point
processes. Assume that, for any Φ ∈ Cc(R∗) we have∫

Φ(x)ρ
(N)
1 (x)dx→

∫
Φ(x)ρ1(x)dx. (6.1)

Finally, assume that

lim
ε→0

∫ ε

−ε
x2ρ

(N)
1 (x)dx = 0, uniformly in N. (6.2)

Then, we have

γ2(X) = 0, for M− a. e. X ∈ Hreg.

The proposition above, along with the results of the previous sections, allows us to deter-
mine γ2:

Proposition 6.2. Let ν > −1. Then

γ2(X) = 0, for M(ν) − a. e. X ∈ Hreg.

Proof. We apply Proposition 6.1 with M = M(ν). The convergence of correlation functions (6.1)
comes from Proposition 4.4. Moreover, statement (6.2) above becomes (recall that the first

correlation function ρ
(N)
1 (x) = Kν

N (x, x) for x ≥ 0 and vanishes identically for x < 0):

lim
ε→0

∫ ε

0
x2Kν

N (x, x)dx→ 0, uniformly in N,

which is an immediate consequence of Proposition 5.1. �

7 The parameter γ1

Proposition 7.1. Let ν > −1. Then

γ1(X) =

∞∑
i=1

α+
i (X) <∞, for M(ν) − a. e. X ∈ Hreg.
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Proposition 7.1 will be an easy consequence of the next result, Propositions 7.4 and 5.1.

Proposition 7.2. Let M be a U(∞)-invariant measure on H such that(
π∞N
)
∗M is supported on H+(N), ∀N ≥ 1.

In particular,

α−i,N (X) ≡ 0, ∀ i ≥ 1, N ≥ 1, α−i (X) ≡ 0, ∀ i ≥ 1 for M− a. e. X ∈ Hreg.

Moreover, assume that

γ1(X) <∞, for M− a. e. X ∈ Hreg.

Let PN ,P be the corresponding point processes (of α+’s) on (0,∞) and let ρ
(N)
1 and ρ1 be their

first correlation functions with respect to Lebesgue measure (assuming they exist). Assume that
for any Φ ∈ Cc((0,∞))∫

Φ(x)ρ
(N)
1 (x)dx→

∫
Φ(x)ρ1(x)dx.

Finally, assume that

lim
ε→0

∫ ε

0
xρ

(N)
1 (x)dx = 0, uniformly in N.

Then, we have

γ1(X) =

∞∑
i=1

α+
i (X), for M− a. e. X ∈ Hreg.

We first need an elementary lemma.

Lemma 7.3. Assume we are given numbers ∀N ≥ 1

α+
1,N ≥ α

+
2,N ≥ · · · ≥ 0

such that

lim
N→∞

α+
i,N = α+

i , ∀ i ≥ 1.

Moreover, assume the following limit exists and is finite

lim
N→∞

∞∑
i=1

α+
i,N = γ1 <∞.

Note that by Fatou’s lemma (and positivity)

∆ = γ1 −
∞∑
i=1

α+
i ≥ 0.

Let Φ be a continuous function on (0,∞) such that

Φ(x) = x, x < ε

for a certain ε > 0. Then,

lim
N→∞

∞∑
i=0

Φ
(
α+
i,N

)
=
∞∑
i=1

Φ
(
α+
i

)
+ ∆.
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Proof. Observe that, there exists k such that α+
k+1 < ε. Then α+

k+1,N < ε for N sufficiently

large and α+
i,N < ε for i ≥ k + 1 by monotonicity. Also, α+

i < ε for i ≥ k + 1. Therefore

Φ(α+
i,N ) = α+

i,N , N large, Φ(α+
i ) = α+

i , ∀ i ≥ k + 1.

Thus,

∞∑
i=1

Φ
(
α+
i,N

)
=

k∑
i=1

Φ
(
α+
i,N

)
+

∞∑
i=k+1

α+
i,N

and

∞∑
i=1

Φ
(
α+
i

)
=

k∑
i=1

Φ
(
α+
i

)
+

∞∑
i=k+1

α+
i .

As N →∞ by continuity of Φ

k∑
i=1

Φ
(
α+
i,N

)
→

k∑
i=1

Φ
(
α+
i

)
and by the assumptions of the lemma

∞∑
i=k+1

α+
i,N →

∞∑
i=k+1

α+
i + ∆.

The statement now follows. �

Proof of Proposition 7.2. First, observe that M is supported on the subset H∗reg ⊂ Hreg that
we now define. An element X ∈ H∗reg iff

α−i,N (X) ≡ 0, ∀ i ≥ 1, N ≥ 1, α−i (X) ≡ 0, ∀ i ≥ 1, γ1(X) <∞.

Fix a continuous function Φ(x) ≥ 0, vanishing for x large enough, such that Φ(x) = x near 0.
For any X ∈ H∗reg we set

φN (X) =
∞∑
i=1

Φ
(
α+
i,N (X)

)
, φ∞(X) =

∞∑
i=1

Φ
(
α+
i (X)

)
.

Apply the previous lemma to the sequences α+
i,N = α+

i,N (X), α+
i = α+

i (X) for X ∈ H∗reg (note
that all conditions are satisfied) to get

φN (X)→ φ∞(X) + ∆(X).

Observe that all three functions φN , φ∞, ∆ are non-negative and thus Fatou’s lemma gives

lim inf
N→∞

∫
X∈H∗reg

φN (X)M(dX) ≥
∫
X∈H∗reg

φ∞(X)M(dX) +

∫
X∈H∗reg

∆(X)M(dX).

Associate the point configurations CN (X), C(X) to X ∈ H∗reg. Then

φN (X) =

∞∑
i=1

Φ
(
α+
i,N (X)

)
=

∑
x∈CN (X)

Φ(x)
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so that by the definition of the correlation functions∫
X∈H∗reg

φN (X)M(dX) =

∫
Φ(x)ρ

(N)
1 (x)dx

and similarly∫
X∈H∗reg

φ∞(X)M(dX) =

∫
Φ(x)ρ1(x)dx.

Thus

lim inf
N→∞

∫
Φ(x)ρ

(N)
1 (x)dx ≥

∫
Φ(x)ρ1(x)dx+

∫
X∈H∗reg

∆(X)M(dX).

We now proceed to show that

lim sup
N→∞

∫
Φ(x)ρ

(N)
1 (x)dx ≤

∫
Φ(x)ρ1(x)dx.

Since ∆(X) ≥ 0 on H∗reg we get that ∆(X) ≡ 0 for M − a. e. X ∈ H∗reg, from which, recalling
that M is supported on H∗reg the conclusion of the proposition follows.

To this end, decompose Φ(x) as follows, for arbitrary ε > 0

Φ(x) = Φε(x) + Ψε(x),

where 0 ≤ Φε(x) ≤ x, supp Φε ⊂ [0, ε], Φε(x) = x near 0 and Ψε ∈ Cc((0,∞)) and positive.
From the assumption of the proposition we obtain

lim
ε→0

lim sup
N→∞

∫
Φε(x)ρ

(N)
1 (x)dx = 0.

Thus by Fatou’s lemma for any ε > 0

lim sup
N→∞

∫
Φ(x)ρ

(N)
1 (x)dx ≤ lim sup

N→∞

∫
Φε(x)ρ

(N)
1 (x)dx+ lim sup

N→∞

∫
Ψε(x)ρ

(N)
1 (x)dx.

Taking the limit ε→ 0 we finally get, by convergence of the first correlation function ρ
(N)
1 → ρ1,

lim sup
N→∞

∫
Φ(x)ρ

(N)
1 (x)dx ≤ lim

ε→0
lim sup
N→∞

∫
Φε(x)ρ

(N)
1 (x)dx+ lim

ε→0
lim sup
N→∞

∫
Ψε(x)ρ

(N)
1 (x)dx

= lim
ε→0

∫
Ψε(x)ρ1(x)dx =

∫
Φ(x)ρ1(x)dx. �

Proposition 7.4. Let ν > −1. Then

γ1(X) <∞, for M(ν) − a. e. X ∈ Hreg.

Proof. First of all, we note that M(ν) is supported on the subset H+
reg ⊂ Hreg that we now

define. An element X ∈ H+
reg iff

α−i,N (X) ≡ 0, ∀ i ≥ 1, N ≥ 1, α−i (X) ≡ 0, ∀ i ≥ 1.

Moreover, if we define for R > 0 the subset H+,R
reg ⊂ H+

reg such that X ∈ H+,R
reg iff α+

1 (X) < R
we easily see that

H+
reg =

⋃
k∈N

H+,k
reg .
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Hence it will suffice to show that for any fixed R > 0

γ1(X) <∞, for M(ν) − a. e. X ∈ H+,R
reg .

Furthermore, by positivity it actually suffices to show

E
[
γ1(X)1

(
X ∈ H+,R

reg

)]
<∞,

where the expectation E is with respect to M(ν). We calculate, using Fatou’s lemma and the
underlying determinantal structure

E
[
γ1(X)1

(
X ∈ H+,R

reg

)]
= E

[
γ1(X)1

(
α+

1 (X) < R
)]

= E

[
lim
N→∞

(
1
(
α+

1 (X) < R
) ∞∑
i=1

α+
i,N (X)

)]

= E

[
lim
N→∞

(
1
(
α+

1,N (X) < R
) ∞∑
i=1

α+
i,N (X)

)]

≤ lim inf
N→∞

E

[
1
(
α+

1,N (X) < R
) ∞∑
i=1

α+
i,N (X)

]

= lim inf
N→∞

E

 ∑
x∈C(ν)

N (X)

x1(x < R)


= lim inf

N→∞

∫ R

0
xKν

N (x, x)dx <∞.

The last claim is the statement of Lemma 5.4. �

Proof of Proposition 7.1. We apply Proposition 7.2. The first assumptions follow from Pro-
positions 4.1, 4.4 and 7.4 above, while the fact that

lim
ε→0

∫ ε

0
xρ

(N)
1 (x) dx = 0, uniformly in N.

follows from Proposition 5.1. �

8 Proof of main theorem

Proof of Theorem 1.6. The fact that

m(ν)
(
Ω+

0

)
= 1

follows from combining Propositions 4.1, 4.4, 6.2, and 7.1.
The description of the law of the parameters α+ =

(
α+

1 ≥ α
+
2 ≥ α

+
3 ≥ · · · ≥ 0

)
under m(ν)

viewed as a point configuration on (0,∞) is given by Proposition 4.2 (after making use of
Theorem 3.2). The proof is complete. �
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