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Abstract. We consider two complexes. The first complex is the twisted de Rham complex
of scalar meromorphic differential forms on projective line, holomorphic on the complement
to a finite set of points. The second complex is the chain complex of the Lie algebra of
slo-valued algebraic functions on the same complement, with coefficients in a tensor prod-
uct of contragradient Verma modules over the affine Lie algebra ;I; In [Schechtman V.,
Varchenko A., Mosc. Math. J. 17 (2017), 787-802] a construction of a monomorphism of the
first complex to the second was suggested and it was indicated that under this monomor-
phism the existence of singular vectors in the Verma modules (the Malikov—Feigin—Fuchs
singular vectors) is reflected in the relations between the cohomology classes of the de Rham
complex. In this paper we prove these results.
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1 Introduction

We consider two complexes. The first complex is the twisted de Rham complex of scalar mero-
morphic differential forms on projective line, that are holomorphic on the complement to a finite
set of points. The second complex is the chain complex of the Lie algebra of slo-valued algebraic
functions on the same complement, with coefficients in a tensor product of contragradient Verma
modules over the affine Lie algebra :;E In [9] a construction of a monomorphism of the first
complex to the second was suggested. That construction gives a relation between the singular
vectors in the Verma modules and resonance relations in the de Rham complex.

That construction of the homomorphism was invented in the middle of 90s, while the paper [9]
was prepared for publication 20 years later, when the proofs were forgotten, if they existed. The
paper [9] provides supporting evidence to the results formulated in [9], but not the proofs. The
goal of this paper is to give the proofs to the results formulated in [9], namely, the proofs that
the construction in [9] indeed gives a homorphism of complexes and relates the resonances in
the de Rham complex and the 5/[\2 singular vectors.

This paper is a contribution to the Special Issue on Algebra, Topology, and Dynamics in Interaction in honor
of Dmitry Fuchs. The full collection is available at https://www.emis.de/journals/SIGMA /Fuchs.html
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The construction in [9] has two motivations.

The first motivation was to generalize the principal construction of [8]. In [8], the tensor
products of contragradient Verma modules over a semisimple Lie algebra were identified with
the spaces of the top degree logarithmic differential forms over certain configuration spaces. Also
the logarithmic parts of the de Rham complexes over the configuration spaces were identified
with some standard Lie algebra chain complexes having coeflicients in these tensor products, cf.
in [4, 5] a D-module explanation of this correspondence.

The second idea was that the appearance of singular vectors in Verma modules over affine Lie
algebras is reflected in the relations between the cohomology classes of logarithmic differential
forms. This was proved in an important particular case in [1, 2], and in [7] a one-to-one cor-
respondence was established “on the level of parameters”. In [9] and in the present paper this
correspondence is developed for another non-trivial class of singular vectors, namely for (a part
of) Malikov-Feigin-Fuchs singular vectors, cf. [6].

The paper has the following structure. In Section 2 we introduce the de Rham complex of
a master function and resonance relations. In Section 3 we discuss slo Verma modules, the Kac—
Kazhdan reducibility conditions. We formulate Theorem 3.2 which describes certain relations in
a contragradient Verma module. The proof of Theorem 3.2 is the main new result of this paper.
In Theorem 3.3 we describe the connection between the relations, described in Theorem 3.2,
and the Malikov-Feigin—Fuchs singular vectors. In Section 4 we construct a map of the de
Rham complex of the master function to the chain complex of the Lie algebra of sly-valued
algebraic functions. Theorem 4.1 says that the map is a monomorphism of complexes. The
proof of Theorem 4.1 is the second new result of this paper. Section 5 is devoted to the proof
of Theorem 3.2. The proof is straightforward but rather nontrivial and lengthy.

2 The de Rham complex of master function

2.1 Twisted de Rham complex

Consider C with coordinate t. Define the master function by the formula

n

o(t) = [t — =),

i=1
where z1,...,2p,m1,...,mp,k € C are parameters. Fix these parameters and assume that
21,...,2, are distinct. Set
Zp41 = 00, Mpt1 =m1 + -+ my — 2.

Denote U = C — {z1,..., 2, }.
Consider the twisted de Rham complex associated with &,

0— QU) % QL U) — 0. (2.1)

Here QP(U) is the space of rational differential p-forms on C regular on U. The differential 0 is
given by the formula

d=d+aA- (2.2)

where d is the standard de Rham differential and the second summand is the left exterior
multiplication by the form

1 dt do
a=—0D mi— =
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Formula (2.2) is motivated by the computation
d(Pw) = Pdw + dP Aw = &(dw + a A w).

The complex Q°(U) is the complex of global algebraic sections of the de Rham complex of
( [ 8), where @ = d + o A - is considered as the integrable connection on the sheaf Of of
holomorphic functions on U.

If the monodromy of @ is non-trivial, that is, if at least one of the numbers m;/k,...,m,/k
is not an integer, then

HY(Q*(U)) =0, dimHY(Q*U))=n—1,

see for example [7].

2.2 Basis of Q*(U)
The functions

1

m for a € Z>0 and t* for a S ZZO
— <

form a basis of Q°(U). The differential forms

dt
(t — Zi)“

for a € Z~y and t*dt for a € Z>g

form a basis of Q!(U). The differential 9 is given by the formulas

! dt
KO <(t—2’@)a> - _(mi + QH) I a+1 + ZZ _ Zz t— o )a+1_k

k=1 j;ﬁz
dt
BD DY o (2.3)
J#Z ! i
n a=1 n n dt
kO(t") = | ar — Z m; |ttt — Z Z mjzftaflfkdt - Zm]z?q (2.4)
j=1 k=1 j=1 j=1

2.3 Resonances

The equations

(i) m; + (a — 1)k = 0 for some a € Z~o, i € {1,...,n},

ii) mpe1 + 2 —ak = 0 for some a € Z~y,
+

(iii) k=0,
are called the resonance relations for the parameters my, ..., myy1, k of the de Rham complex.
If Kk = 0, then the twisted de Rham complex is not defined. If the resonance relation

m; + ak = 0 is satisfied for some a, then the first term in the right-hand side of (2.3) equals
zero. Similarly, if the resonance relation m,11 4+ 2 — ax = 0 is satisfied for some a, then the first
term in the right-hand side of (2.4) equals zero.
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2.4 Logarithmic subcomplex

0
Let Qlog

the subspace generated over C by the differential forms

(U) € Q%(U) be the subspace generated over C by function 1. Let QL (U) C QY(U) be

log

dt .
wj = , j=1...,n.
t—Zj

These subspaces form the logarithmic subcomplex (2

og(U);0) of the de Rham complex
(Q*(U),0). We have

0: 1 a.
For generic my, ..., my, K, the embedding (QF,(U),9) < (Q°*(U), 0) is a quasi-isomorphism,
the logarithmic forms w, . .., w, generate the space H!(Q®(U)), and the cohomological relation
n

> m;w; ~ 0 is the only one, see for example [7].
i=1
Each resonance relation implies a new cohomological relation between the forms wy, ..., wn,

n
see [9, Corollary 6.4]. For example, if m, 1 +2 —x = 0, then ) zjmjw; ~ 0, and if mp41 +
j=1
2 — 2k =0, then

n 1 n n

E : 200 .. = § : - E : P
Z5mjw; - zjm; 2w 0.

j=1 j=1 i=1

3 5/[\2—modules

3.1 Lie algebra 5/[\2

Let sly be the Lie algebra of complex (2 x 2)-matrices with zero trace. Let e, f, h be standard
generators subject to the relations

le, f] = h, [h,e] = 2e, [h, f] = —2F.

Let 5/[; be the affine Lie algebra 5/[\2 = sly [T, Tfl] @® Cc with the bracket
[aT",bT7] = [a,b]T"*7 + i(a, b)disj0c,

where c is central element, (a,b) = tr(ab). Set

er =e, h=1 hy = h,
€9 = fT, fg = eT_l, hQ =c—h.

These are the standard Chevalley generators defining gE as the Kac-Moody algebra correspon-
ding to the Cartan matrix (_% _g) .

3.2 Automorphism 7

The Lie algebra EE has an automorphism T,

mT: €+ C, eT' — [T, T — eT", hT® — —hT".
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3.3 Verma modules

We fix k € C and assume that the central element ¢ acts on all our representations by multipli-
cation by k. -

For m € C, let V(m, k — m) be the sly Verma module with generating vector v. The Verma
module is generated by v subject to the relations

e1v =0, eov =0, hiv = mu, hov = (k — m)wv.

Let n_ C 5/[\2 be the Lie subalgebra generated by f1, fo and Un_ its enveloping algebra. The
map Un_ — V(m,k —m), F — Fuv, is an isomorphism of Un_-modules.

The space V(m,k — m) has a Z2-grading: a vector f;, --- f; v with i; € {1,2} has deg-
ree (p1,p2), if p; is the number of ¢’s in the sequence iy,...,4,. For v € Z2>0, denote by
V(m,k —m), C V(m,k —m) the corresponding y-homogeneous component.

A homogeneous nonzero vector w in V(m, k —m), non-proportional to v, is called a singular
vector if ejw = eaw = 0. The Verma module V(m, k —m) is reducible, if and only if it contains
a singular vector.

3.4 Reducibility conditions
See Kac-Kazhdan [3]. Set

k=k+ 2.

The Verma module V(m, k —m) is reducible if and only if at least one of the following relations
holds:

(a) m—=Il+14+(a—1)k=0,

(b) m+1+1—ark =0,

(c) k=0,
where [,a € Z~o. If (m, k) satisfies exactly one of the conditions (a), (b), then V(m,k —m)
contains a unique proper submodule, and this submodule is generated by a singular vector of

degree (la,l(a — 1)) for condition (a) and of degree (I(a — 1),la) for condition (b).
These singular vectors are highly nontrivial and are given by the following theorem.
Theorem 3.1 (Malikov—Feigin—Fuchs, [6]). For a,l € Z~¢ and k € C, the monomials
Flg(l, a, /{) . f{—l-(a—l)ﬁ I+(a—2)K {+(a—3)n o fé—(a—2)nfi—(a—1)ﬁ’

2
Fy (l,CL, /i) _ fé-i-(a—l)ff {+(a—2)f€fé+(a—3)n o fi—(a—2)nfé—(a—1)n

are well-defined as elements of Un_. If m =1—1— (a— 1)k, then Fio(l,a,k)v € V(m,k—m) is
a singular vector of degree (la,l(a—1)) and if m = —l— 1+ ak, then Fy1(l,a,k)v € V(m, k—m)
is a singular vector of degree (I(a — 1),la).

An explanation of the meaning of complex powers in these formulas see in [6].
For example for m = —2 + k, we have

F1(1,1,k)v = fov = %v,
and for m = —2 + 2k, we have

ik ek e\? he e
Foi(1,2,5)v = f3 " fify U—f<f> U‘i‘(l‘f‘/‘&)ffv—(l‘i‘ff)’fﬁv-
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3.5 Shapovalov form

The Shapovalov form on an ;[\2 Verma module V' with generating vector v is the unique symmetric
bilinear form S(-,-) on V such that

S(v,v) =1, S(fix,y) = S(z,ey) fori=1,2; z,y € V.

N For v € ZQZO, let V;y*\be the vector space dual to V,. Define V* = @, V. The space V* is an
slo-module with the sly-action defined by the formulas:

<fz¢;33> = <¢7 eix>’ <6¢¢,x> = <¢7 fzx>>

where p € V*, x € V,1=1,2. The g[\g—module V* is called the contragradient Verma module.
The Shapovalov form S considered as a map S: V — V* is a morphism of sls-modules.

3.6 Basesin V and V*

Let V be an ETG Verma module V. For every v = (p1,p2) € Z%O with p; # po, we fix a basis in
the homogeneous component V, C V.
For p; > ps, we fix the basis

f f h h e e
Til."Tiale'.‘ﬁﬁ"'ﬁv N

0<ig <ig1 <o <it, 1<jp<jpr < <ji, 1<ke<hey <<k

a b c a b c

St Y gt S hta—c=p. Y it St k=m (3.1)
s=1 s=1 s=1 s=1 s=1 s=1

For p; < pa, we fix the basis

e e h h f f
ﬂ".ﬁﬁ.'.ﬁTil‘..Tiav s

with the indices satisfying (3.1). Notice that for any = € sly the elements = and ; commute.
These collections of vectors are bases by the Poincaré-Birkhoff-Witt theorem
For any v, we fix a basis in the y-homogeneous component V¥ C V* as the basis dual of the
basis in V,, specified above. If {w;} is a basis in V,, then we denote by {(w;)*} the dual basis in V.

3.7 Main formula

Theorem 3.2 ([9, Theorem 5.12]). For m,k € C and a € Z~q, the following identities hold in
the contragradient Verma module V (m,k —m)*,

Tf_l (V) =(m+(a—1)(k+2)) <T¢f_1v>*
+: i [ <Ta = > - 2TQ+J;_H (HZH (3.2)
220
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a—2
h e * f e e \*
+ X g (o) 42 © ()| 33
=0 i+j=a—~{

)

where v is the generating vector of the Verma module V (m,k —m).

Theorem 3.2 was announced in [9]. The proof of Theorem 3.2 is the main result of this paper.
The theorem is proved in Section 5.

Remark. The right-hand sides of formulas (3.2) and (3.3) have the factors m + (a — 1)(k + 2)
and a(k + 2) — m — 2. The vanishing of these factors corresponds to the resonance conditions
m; + (a — 1)k = 0 and my 41 + 2 — ak = 0 for the de Rham complex in Section 2.3, if we recall
that k = k + 2.

Remark. Theorem 3.2 says that the action of the element % of degree (a,a — 1) on the
covector (v)* can be expressed in terms of the actions of the elements % and =7 of smaller
degree on some other covectors. Similarly the action of the element =% of degree (a —1,a) on
the covector (v)* can be expressed in terms of the actions of the elements %, %
degree on some other covectors.

of smaller

3.8 Relation to Malikov—Feigin—Fuchs vectors
Let

S: V(im,k—m)— V(im,k—m)*

be the Shapovalov form. Denote

Xo(m, ki —m) = §~1 ((m +(a—1)(k+2)) (Tf1v>*> ,
Ya(m,k —m) = S ((m+2 — a(k +2) (Tiv)) .

For generic values of m and k, the Shapovalov form S is non-degenerate and X, and Y, are well
defined elements of V(m, k —m). The chosen basis in V(m, k —m) allows us to compare these
vectors for different values of k, m. The vectors X,(m,k —m), Y,(m,k —m) are holomorphic
functions of k, m for generic k, m.

Recall the resonance lines in the (m, k)-plane, given by the equations

m—Il+1+(a—1)(k+2)=0, m+1+1—a(k+2)=0, k+2=0,
for some a,l € Z~q, see Section 3.4.

Theorem 3.3 (|9, Theorem 6.2]). Fora € Z~q let (mo, ko) be a point of the line m+ (a—1)(k+
2) = 0, which does not belong to other resonance lines. Then the function Xq(m,k —m) can be
analytically continued to the point (mg, ko), and X4(mo, ko —mo) is a (nonzero) singular vector
of V(mg, ko —my), hence it is proportional to the Malikov—Feigin—Fuchs vector Fi2(1,a, ko + 2).

Similarly, for a € Zsq let (mg, ko) be a point of the line m+ 2 — a(k +2) = 0, which does not
belong to other resonance lines. Then the function Yq(m,k—m) can be analytically continued to
the point (mo, ko), and Y, (mo, kg —mg) is a (nonzero) singular vector of V(mg, ko —mg), hence
it s proportional to the Malikov—Feigin—Fuchs vector Fa1(1,a, ko + 2).
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4 Homomorphism of complexes

4.1 Lie algebra sly(U)

Recall that {21, ..., 2, 2,41 = 00} are pairwise distinct points of the complex projective line P!
and U = P' —{21,..., zn, Zns1}. Fix local coordinates t —z1,...,t—z,, 1/t on P! at these points,
respectively. Let slo(U) be the Lie algebra of sly-valued rational functions on P! regular on U,
with the pointwise bracket. Thus, an element of sly(U) has the form e ® u1 + h ® ug + f @ ug
with u; € QY(U), and the bracket is defined by the formula [z ® u1,y ® ug] = [z, y] @ (ujuz).

4.2 sly(U)-modules

We say that an g[\g—module W has the finiteness property, if for any w € W and x € sly, we have

17 -w = 0 for all j > 0. For example, the contragradient Verma module has the finiteness

property. -
Let W1, ..., Wy41 be sly-modules with the finiteness property. Then the Lie algebra sla(U)
acts on Wi ® - - - ® Wy, 41 by the formula

QU (W ® - @ Wppy) = ([x@u(t)](zl)wl) QWy® -+ @ Wpy1 + -
Fw @ Qup—1 @ ([z® u(t)](zn)wn) ® W41
+uw ® - Quw, @ (1([z® u(t)](oo))wn+1),
where for z ® u € sly(U) the symbol [z ® u(t)]*) denotes the Laurent expansion of z ® u at

t =2z and [z ® u(t)](oo) denotes the Laurent expansion at t = oo; the symbol 7 in the last term
denotes the ;[;—automorphism defined in Section 3.2.

The finiteness property of the tensor factors ensures that the actions of the Laurent series
are well-defined.

The g@—action gives us a map

i sly(U) ® (@1 Wy) — @it w;. (4.1)

4.3 Chain complex

For a Lie algebra g and a g-module W we denote by Ce(g, W) the standard chain complex of g
with coefficients in W, where

Cp(g, W) =Nga W,
p
dlgp A Agrew)=> (1) Tgy A AGi A A g @ giw

i=1
+ > (DTG A NG A AG A A gL @ [gg, gilw.
1<i<j<p
4.4 Two complexes
4.4.1

Let mq,...,mpk € C, k+2 # 0. Define mp11 = my+---+my, —2. Forj=1,....n+1,
let V; be the sly Verma module V' (mj, k —m;) and V" the corresponding contragradient Verma
module. Consider the chain complex C,(slo(U), ®;”ill V]*) and its last two terms

— sh(U) ® (274 V) N RV =0,

where d = p, see formula (4.1).
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We assign degree 0 to the term ®;‘ill V" of this complex and assign degree 1 to the differen-
tial d, so that the whole complex sits in the non-positive area.

4.4.2

Consider the twisted de Rham complex in (2.1) corresponding to k = k + 2 with degrees shifted
by 1, namely, the complex Q°*(U)[1],

0— QU) -L l(U) — o,
where the shift [1] means that we assign degree p — 1 to the term QP(U).

4.5 Construction

Define a linear map
n': QYU) — IV

by the formulas

(t—d,im)“ = —k(]) @ ® <T;Lf—lvm> ® - @ (vp+1)"s (4.2)
191t s k(0) @ - ® ()" @ (%vn+1)*, (4.3)

for a > 0. Define a linear map
"’ QOU) — sl(U) ® (®?;1V]*)
by the formulas
1
i
(t— zm)® (t — zm)®

_za:[m(@(vl)*@"'@Z Z (Jbijfjvm)*@”'@(”nﬂ)*

=1 Zm itj=a—l
1>j2>0
h . * .
+m®(’01) ®"'®<T'j_lvm> ®"'®('Un+1):|7 (4.4)
m

for a > 0;

= O () @ ® (vpg1)”

a—2
" " e e *
—Z[etl®(v1) R @) ®2 Y (ﬁﬁanﬂ)

=0

itj=a—1,
i>5>1

* e *
Lt g ()*® @ (vp)* ® <W”"+1) ], (4.5)

for a > 0.

Theorem 4.1 (|9, Theorem 5.12]). Formulas (4.2)—(4.5) define a homomorphism of complezes
n: Q*(U)[1] — C, (5[2(U);®§L211Vj*), namely we have

dn® = nto.

The homomorphism is injective.
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Theorem 4.1 was announced in [9]. Here is a proof of the theorem.

Proof. First we calculate n*(9((t — 2,)™%)),

1 s 1 dt 1

de¢
(t— Zp)a ’_> _E(mp ar) (t— Zp)aH - E Z - Zp (t - Zp)aJrl*k

dt
_72 —zp“t—z]

l =
3
+
X
2
=
&
&

N\

~

L) oy

_ZZM(UI)*(@"'@(]LCUI,) @ ® (vny1)”
+ 3 ) @ (o) 9 8 ()"

Then we calculate d(n°((t — zp) %)),

1 n° f

o e e ) @ )’

- h * f : *
e ®'“®<Ta—z”p> ety
=1 p
fr\ .
e D e e (fifu) o e
p i+j=a—1
1>3>0

A o) - ®{(mp+a(k+2))<z{a )
) o 3 (b e

i+j=a—1
i>5>0

3 () @@ (f1y) © - @ (1)

_za: [(vl)*®"'®;jl(szvp>*®"‘®(“n+1)*

+(v)'®-® Z 2% <7£1£Up> ® - ® (vpt1)”

2J=Z f .
+ L (0)*®@ @ gt ) @ ® (vng1)
> (i) -0 o]
— (vt ) @08 (tp) @@ (o)
a m f *
— Lo (0)* @O | ) ©-- @ ()
ZZZ:( —5) (T l ) =
+ Z ( _J p)a (Ul) (fvj) & (UnJrl)
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In this calculation we use formula (3.2) to express the action of a on (vp)*. These formulas
show that d(n°((t — zp)~)) = n' (8((t — 2p)™)).
Now we calculate 771 (0(t)),

5 1 n a—1 n n dt
—1 1
N R(aﬁ_zmj>ta dt — szj Jsta S=idt — ijz?t—izj
Jj=1 s=1j=1 Jj=1
1 n " " e *
— <af{ — Zm]> (Ul) R Q (Un) & (ﬁanrl)
j=1
a—1 n e "
=S miE ) @@ (o) @ (e vnn)
s=1 j=1

+3 mp () @ ® (fo)* @ - ® (vnrn)".

Then we calculate d(n°(t")),

0 3 . e "
LR (1) @ @ (pgr)* Z [htl“ Qe ® (vn)* @ (Ta_l_1”n+1>
1=0
fl 2 (== )
Fet'® (v1) @ ® ()" ® HZM T 5 Unt1 }
2551
= ijz?(vl)* (fvj) ® (V1)
+ (V)" @@ (vp)* ® [(—mnH —2+a(k+2)) (Tavnﬂ)
a—2
h e * f e e *
+ Z |: T+ <Ta l 11}n+1) + 2ﬁ Z (T@ ﬁvn+1> :|:|
- e
o2 f e e * h e *
=0 pEoen
a—1 n e «
=YY mE ) © @ ()" @ (an-&-l)
s=1 j=1
n e %
— (n=3omy )@ (00 ()
j=1
a—1 n e "
=3 i) @ @ (00)" @ (o)
s=1 j=1
n
+Y mzf(0) @ @ (fu;) @ @ (vnga)”.
=1
In this calculation we use formula (3.3) to express the action of 7% on (v,41)*. Notice also that

calculating the action on V7, ; we use the automorphism 7, see Sectlon 3.2. These formulas show

that d(no(t“)) =n'(0(t%)).

Clearly the maps n', n? are injective. Theorem 4.1 is proved. |
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4.6 Image of logarithmic subcomplex

Under the monomorphism 7 of Theorem 4.1 the image of the logarithmic subcomplex (27

log(U)7 a)
is the chain complex C, (n_, ®;‘ill V;*) of the nilpotent subalgebra n_ C sly generated by f. More
precisely, we have

dt
:L'—tj

n: Lo fe ) @@ (vnga), = k(o) @@ (fu)” © - @ (vng1),

j=1,...,n, and
W f®(01)*®"‘®(vn+1)* — ij(vl)*®...®(fvj)* ®"'®(Un+1)*~
j=1

Far-reaching generalizations of this identification of the logarithmic subcomplex with the
chain complex of the nilpotent Lie algebra n_ see in [8].

5 Proof of Theorem 3.2

5.1 Formula (3.3) follows from formula (3.2)

The Lie algebra 5/[\2 has an automorphism p, corresponding to the involution of the Dynkin
diagram:

ple)) =es—i,  p(fi)= fa—iv  plhi)=hs—,  i=12
We have p? = id. In other words, p acts by the formulas

e+ fT, fe el h < c— h.
Lemma 5.1. For i € Z~g, we have

 f e e f h h
SRR VA LA A A T

Proof. We have
A R R R P B
r=a [l ] = sl bl =

Similarly we prove that p(%) = %, p(%) =1, |
Form € C, let oy : sly — End(V (m, k—m)) be the Verma module structure. Let o,,,0p: sly —
End(V (m,k —m)) be the twisted module structure.
Clearly the sly-modules (om0 p,V(m,k —m)) and (o—k, V(m — k,m)) are isomorphic. If
Uy € V(m,k —m) and vg_,, € V(k — m,m) are generating vectors, then an isomorphism
X: (omop, V(m,k—m)) — (om—r,V(m — k,m)) is defined by the formula,

fil e filvk—m = f3*il T foil'Umy

for any i1,...,4 € {1,2}. The isomorphism yx restricts to isomorphisms of the graded compo-
nents, V(k —m,m) @y, po) = V(m, k —m)p, )
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In Section 3.6 we fixed bases of the homogeneous components V{,, .,y with p; # p2 of any
Verma module V. By Lemma 5.1, under the isomorphism x the chosen basis of V (k—m,m),
is mapped to the chosen basis of V(m,k —m),

P1,p2)
1) up to multiplication of the basis vectors

b2,p
by £1. This £1 appears due to the formula p(Ti) 77- In particular, we have
. e ff e e
X: T’Uk m T'H'lvm’ ﬁﬁvk mHWW’Um

Let o7, sly — End(V(m,k — m)*) be the contragradient Verma module structure. Let
of op: sly — End(V(m, k —m)*) be the twisted module structure. The isomorphism x induces

an isomorphism of modules x*: (o}, 0 p, V(m,k —m)*) — (0, ., V(m —k,m)*).
In Section 3.6 we fixed bases in the homogeneous components V/* with p1 # po of any con-

(p1,p2)

tragradient Verma module V*. Under the isomorphism x*, the chosen basis of V (k—m m)(p1 p2)

is mapped to the chosen basis of V(m,k — up to multiplication of the basis vectors

by £1. In particular, we have

i " e . i " e e *
X\ piVk=m | 7 (Tiﬂ”m) 7 i Vkem ) (TiJrl Tj+1”M) :
Assume that the relation in formula (3.2) holds in every contragradient Verma module V*.
Then in V(k —m,m)* it takes the form

f
Ta-

) (p2,p1)

T (Vk—m)" = (—=m — 2+ a(k + 2)) (Tf_luk_m> )

a—1 *
h f Z fr
+ § : [TK <Ta 17 Vk— m> + 2T ' <Tiijkm )
/=1 i+j=a—1—/4
12520

The isomorphism x* sends this relation to the relation in V(m,k — m)*,

= (=2 a4 2) (o)’

f e e *
+Z[ T (Ta e”m> 20 > (Ti+1Tj+1”m> ;

i+j=a—1—4
12520

which is exactly the relation in formula (3.3). Thus formula (3.2) implies formula (3.3).

5.2 Auxiliary lemma

Let
V=V(m,k—m) and V*=V(m,k—m)*.

Lemma 5.2. Forx €V, ¢ € V*, k € Z>o, we have

h
<1{kgo7l‘> = <907€Tk$>7 <%¢7$> = <80, kaCC>, <Tkg0,33> = <90, thx>.

Proof. The proof is by induction. We prove the first equality, the others are proved similarly.
We have [f2, fi] = 2, hence [f1, [fo, f1]] = 2f Similarly [e1, [e2, e1]] = 2eT. So for k = 1, we

have
<;<P,x> = <;[f1, [f27f1]]90,$> = <¢, ;[[61,62],61]x> = (¢, eT'x).
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We have | fa, %] = %, hence [f1, [ f2, %H = ;—{ Similarly, HeTk_l,fT],e] = 2¢T*. Then
1
<1{‘k‘,0,1'> = <2 |:f17 |:f27 ,—T];f_l:|:| §0,$> = <§07 [[eTk_1762]7€1]-’IJ> = <@,€Tk$> [ |

5.3 The structure of the proof of formula (3.2)

We reformulate formula (3.2) as

(m + (a— 1)k +2)) <Tflv>

. a—1 h * *
- X | () e 2 (L4) ] 5.1
/=1 i+j=a—1—¢
123520

and will prove it in this form.

Each term in (5.1) is an element of the homogeneous component me_l . In Section 3.6 we
specified a basis of the dual component V(, ,_1). We will calculate the value of the right-hand
side in (5.1) on an arbitrary basis vector and will obtain the value of the left-hand side on that
vector.

The basis in V(, ,_1) consists of the vectors

f f h h e e
TZI .--T’irﬂ.--ﬁﬂ-..ﬁv’
where
0<t <ipq <--- <y, 1<7s <js—1 <+ <1, 1<l <lpg <+ <y
r s r—1
POIIED SRS SR
u=1 u=1 u=1

We partition the basis in four groups. Group O consists of the single basis vector %v. Group I
consists of all basis vectors with r = 1, but different from %v. Group II consists of all basis
vectors with r = 2. Group III consists of all basis vectors with r > 3.

Notice that the value of the left-hand side of (5.1) on the basis vector %v equals m +
(a — 1)(k + 2). Hence we need to show that the value of the right-hand side on the basis
vector %v equals m + (a — 1)(k + 2). Similarly the value of the left-hand side on any basis
vector of Groups I-III equals zero. Hence we need to prove that the value of the right-hand
side on any basis vector of Groups I-III equals zero. These four statements are the content of
Propositions 5.3, 5.4, 5.7, and 5.9 below. These propositions prove Theorem 3.2.

5.4 Group O

Proposition 5.3. The value of the right-hand side of (5.1) on the basis vector %v equals
m+ (a—1)(k+2).

Proof. By Lemma 5.2 we have

<TZ—1 (U)*’ T({—l U> = <(U)*’ eTa_l Taf—l U>

- <(U)*, [h+ (a—1)e+

Tiil eTa_l] v> =m+ (a — 1)k,

since eT% v is of degree (—a, —a + 1), hence zero.
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By Lemma 5.2, for £ € {1,...,a — 1} we have
h f Tt f Coe [t
<CTE (Ta—1—€v> ’Ta—1v> = < <Ta—1—£v ’hT Ta—lv
f " f
:<<kaﬂ e ) T T2
By Lemma 5.2 for £ € {1,...,a — 1} we have
e frN f F PN e S
(70 X (Lae) mian)=( S () g
i+j=a—1—£ i+j=a—1—f
12520 12520
fFr N\ f ¢
= Z ﬁﬁv s Ta 1 fT v - 07
itj=a—1—f
12520
since fT%v is of degree (—£ + 1, —£) < (0, —1), hence zero. Therefore,
/ S[h(F Y e FEN S
<Ta—1 (’U)* o |:j“€ (Ta—1—€v> + QW Z <]Wj”jv> :| ’ Ta—lv>
=) itj=a—1-0
127520
=m+(a—1)k—(-2)(a—1)=m+ (a—1)(k+2).

Proposition 5.3 is proved. n

5.5 Group I

Proposition 5.4. The value of the right-hand side of (5.1) on any basis vector of Group 1

equals zero.

Proof. Group I consists of basis vectors of the form

f hh
o g TR AL

Lemma 5.5. In the notation above, if s =1, then

<T‘{—1 (v)*,w> = 2nk,
2nk, if=mn,

h *
<T€ <Tafl—£v> ’w> =< -4, iff>a—1—n,
0, ift<a—1-—n,

‘ PPN N [2, ife<n,

7 2 \FEt) ") Vo igeon
itj=a—1—¢ , ’
220

where ne{l,...,a—1}, j1+---+js=n, j>1

Note that the first line in (5.2) is not mutually exclusive with the second and third lines

in (5.2).

Proof. We have w = %T—hﬂv Then

* h * a— h
<Taf—1 (’U) ’ Ta;fl—n ’TTLU> - <(U> ’eT 1Ta;f1—n ’I‘nv>
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= <(v)*, [hT” + Taiflfn eTa_l] ;,an>

2 is of degree (—a+n, —a+1+n)

Note that eT%! < (~1,0), so that eT% ! v = 0. Hence

<( ) thjanv> <(v)*, [an‘—l— ;nhT”} v> — onk.

We have
h / : S h f R
<CTZ (Ta—1—€v> > Ta—1-n T’nv> = < (Ta—l—(v) ’hT Ta—1-n ﬁv ’
4 f £ . l+n—a+1 f 4 h
hT Ta—1-n Tnv - |: 2fT + Ta—1- nhT Tn
_2](‘T€+7’l—a+1iv+ f ]’LTK h

Tn Ta—1-n

Note that the second summand is nonzero if and only if £ = n. In that case we have

* h
< (Ta;fl—nv) ”I’a—fl—nth’_Tnv> = 2nk.

For the first summand, if £+ n —a+ 1 < 0, then 27"+ Ly is a basis vector and so
pairing with (ﬁv) gives zero. If £+n —a+ 1 > 0, then

< <Tafl_ev> ,—2fo+”—a+1jfﬁ,Lv>
< (Ta—fl—fv> ’_2 |:2Ta—f1—€ + ;;fTE-&-n—a—&—l] U> = _47

where we used fTtn—etly =0,

Finally,
e R ok fFrN e [ R
<T’f ' Z <T2TJU> > Ta—1-n ﬁv = A Z ﬁﬁv ’fT Ta—1-n ﬁv )
i+j=a—1—/4 i+j=a—1—¢
12j>0 12520
T B R~ B Y — ¢ f f
fT Ta—1-n ﬁv T Ta—1— nf Tn T Ta—1-n 2fT " fT 2Ta 1—n Tn—{ 7Y

since fT%v = 0. Note that (a—1—n)+(n—¥¢) =a—1—¢ henceifi=a—1-nandj=n—/
(or vice versa depending on what is greater) we have

> SIEN o f N,
j%jyl) ? jmglfnfrnfev -
i+j=a—1—¢

i>j>0

whenever n — £ > 0 and zero otherwise. The lemma is proved

For s = 1 Proposition 5.4 follows from Lemma 5.5:

. toe IR [ h
(x-S [ () +250 S (i) | o)
= itj=a—1—f
125>0

M

=2nk —2nk+4n—2-2n = 0.
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Lemma 5.6. For s > 2, we have

<T;fl(v)*,w> 0, (5.3)

az_l <q}}e (Tafl—év>* ,w> =Y (5.4)

/=1
a—1 *
e fr
(3 X (Fige) w)=o 55
(=1 i+j=a—1—4
12520
Proof. Recall that w = Ta_fl_n T—}JLI . T}JLS v with j1 4+ -+ + js = n. We have

(o iw) = (e ),

a—1 _ a—1 f h’ h _ n f a—1 h h
er* “w=eT Tadongn Rt = {hT + TailineT e A
We have hT" -1 T T@S v = 0, since AT™ commutes with all % Indeed, we have n > j; since
i+ +js=mn,j5;>1 and s > 2.
We also have == T 1T71 Tf;sv = 0 since eT‘l_lT—}]'f1 .- T}JL v is of degree (—a+n,—a+

1+ n) < (—1,0), hence zero. This proves (5.3).
We prove (5.4) by induction on s. For s = 2 we have

h f " f "
(7o (gm) o) = () e,

Wrtw=hrtt b [—2 frimerttn g f_nhTf] o h

Ta—1=n T3 Tj2 Ta—1 T sz
h h f h h
l—a+14+n "% ¢ e
—2fT T 7’ T pam M g g v
Note that for = hTeﬁﬁv to glve a nonzero pairing with (%0) we need ¢ = n, which
1mphes that hTé commutes with ﬁ and TI;2 (¢ > j; since j1 + jo = n =L and j; > 1), so that
= hT* %T—}JLQU gives zero for all 4.
Also note that whenever ¢ < a — 1 —n, fT{-otl4n b ig 4 basis vector and so pairing

TI1 T2
with (W”) gives zero. If £ > a — 1 —n, then

h h
TJ1 TJ2

h

- h
o l—a+1+n o {—a+14+n—7j1 l—a+1+n
2T P [2 fT + I T ] Ty

_ _4fTZ—a+1+n—j1 iv _ QLfTE—a-‘rH—ni

T2 T T2 (5'6)

If ¢ <a—1-n+ 7, the first summand gives zero when pairing with (ﬁv)*, since for
such £ fTtatl+n—i %v is a basis vector. For £ > a — 1 —n + j1, we have

cattinei B f I pt-atitn /
—4fT£ a+l+n Jlﬁv =4 [QW’U + ﬁng a+l+n 31} V= —8Wv,

since fT¢~ot14+n=i1y is of degree (—¢+a—1—n+j1+1,—L+a—1—n+j;) < (0,—1), hence
must be equal to zero. Soforf € {a—1—n+j1+1,...,a— 1} we get

f " (—atl+n—ji I
<<Ta_1_gv ,—AfreT hﬁv =-8
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and zero for other values of £. The total number of elements in the set {a—1—n+j1+1,...,a—1}
equals jo.
Whereas, for the second summand in (5.6) we have
h h

h l—a+14+n _ l—a+14+n—7ja h l—a+1+n

_ _4LfT€—a+1+n—j2
Tn
since fT¢ 147y is of degree (—¢+a—1—-n+1,—¢+a—1—n) < (0,—1), hence must be
equal to zero.
If ¢ > a—1—n+jo, then fT!0H147=02y is of degree (—(+a—1—n+jo+1, —l+a—1—n+jz) <
(0, —1), hence must be equal to zero. If £ < a — 1 —n + ja, then

v,

hoo—ati4n—js.. f —at1tn—jy P
f (—a+14n—js I
The second summand gives zero when pairing with (ﬁv)* Soforte{a—1—-n+1,...,a—
1 —n+jo} we get
f . E a+1+4n h _
< <Talfv ’_Qﬁf Tiz " =8
and zero for other values of ¢. The total number of elements in the set {¢ =1 —n+1,...,a —
1 —n+ ja} equals ja.
Therefore,
a—l *
h f f h h . .
Z <T’€ (Ta—l—£v> ’ Ta—1—n 7"]1T]21)> = _8]2 + 8]2 =0
/=1

and so for s = 2 we proved (5.4).
Now suppose that (5.4) holds for all natural numbers up to s. Then

f h h

¢ _|_ (—a+1+n f (f b _h
hT Ta—T-n T Tjs+1v = [ 2fT + Tai-n T Tjs+lv
Note that for —hT* T}jl = T]’:H v to give a nonzero pairing with (ﬁv)* we need £ = n.
That assumptlon 1mphes that hT* commutes with 7 for all ¢ € {1,...,s 4 1} since £ > j; as
i+ +jsy1=n=~Land j; > 1. Hence = hTZTJ1 . T]?H v gives zero for all £.
Also note that whenever £ < a — 1 —n, the vector fT¢-atl+n TZL-I . Tth v is a basis vector

and so pairing with (ﬁv)* gives zero.
If ¢ >a—1—n, then

h h ; h h h
. l—a+1+n o _ {—a+1+n—j1 l—a+l4n| °
2fT T TIs+1 v 2 {QfT + T fr ] T2 TIs+1 v
_ / h h h —a+1+n+L h h
= peemm—re T T /T Ti2 " Tien (5.7)

Note that by induction hypothesis we have

a—l *
B h f f h h
0= Z <T€ <Ta_1_£11) P Pa—1—(n—j1) Td2  Tist1 ’U>

(=1
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S f hh
<(Ta ] e”) AT Tal(nj1>sz"'Tjs+1”>'

So we add this zero term multiplied by —2 to the first summand in (5.7) to get

* f h h
—22<<Ta =V > vQWE“'TMU

M

/=1

a ]. *
/ 0 f h h
_2;<<W’U ,hT m%”.]ﬂj&ﬂv (58)
a—1 *
_ f f ¢ f h h
_2;< (T“ e T e | TR T
a—1 *
_ / f . h h
B _2;< (T@-l—ﬁv ’Ta—l—(n—jl)hT Tie i1l )

where in the last step we use commutation relations.

Note that for the TIEQ x TJ?+1 v to give a nonzero pairing with (%v)* we need

¢ =n — j;. That assumption implies that AT commutes Wlth - forallic {2,...,5+1} since

T ... -h v gives zero

g > j@ as ]2 + - +j5+1 =n _]1 - g a:nd jl 2 ]. Hence m Tiz Tis+1

for all /.
For the second summand in (5.7) we have

a—1 *
f —a,+1+n+€ h h
—2 Z < <Tﬂ1fv ﬁf Ti2  Tisn v

a—1 *
= f h f h at1tnte| D h
- _2Z< (Ta—l—zv " T 2Ta—1—(n—j2) 7T T2 - Tis TV

/=1
a—1 *
_ f h f h h
- ‘4;< (Ta—l—e” Y N TR TR TR (5.9)
a—1 *
f P | h
_2;< (Talév 7ﬁTj2fT ﬁ'”Tﬂ'sﬁ-lv . (5.10)

In (5.9) we note that

h f h h
Tt Ta—1—(n—j2)—€ T35 Tdet1®
I, f f hlh b
T | T a1 (n—j1—ja)—¢ + Ta1—(n—j2)—L T | Tis ~ Tier1 '
., f h b f hoh h

Ta—1—(n—ji1—j2)—¢ ﬁ o TIs+1 Ta—1—(n—j2)—£ ﬂﬁ o TJs+1 v
Note that in both terms the number of A’s is less than or equal to s, so we use the exact same
reasoning as in (5.8) to show that

“Zl f * ¥ h h 0
a—1-1Y) a1 -(ng1—ga) L Tds " Ties1il/) —
= T T J1—J2 T TIs+

a—1 *
Sl foohhh N
— Ta—1-£ ’ Ta—1—(n—j2)—£ TJ1 T3 TIs+1 -
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which implies that the expression in (5.9) equals zero. Similarly, one shows that in (5.10),

a—1 *
f h h —a+14+n+L h h
Z<(Tu—1—€v T T]sz ﬁ“'Tjs-q-lv

(=1

the factor fT~*t1+7+¢ can be pulled to the right by using the same argument (first commute
fT—otHn+l with T and then pull fT-2+t1+n=5s+ to the left). Ultimately, we get

J3

a—1 *
f h h h h —a+14n+¢ _
Z<<Ta1‘fv TR TRTH Tl L v)="0

(=1

since £ > a —1—n and so fT-%t1+7+y = 0. Therefore,

a—1 h f * f h h o
Z ﬁ Ta—l—ZU ’ Ta—1-n ﬁ o Ts v)y="u

(=1

and formula (5.4) is proved.
We prove formula (5.5) by induction on s. For s = 2, we have

(i £ (b)) 5 (b))

i+j=a—1—¢ i+j=a—1—¢
i>5>0 i>5>0
VPR | h h — f T h h
ST w=fT Ta—1—n Th ﬁv o Ta—1— nf T TJQU'
Note that fTeTJl 74,V is of degree (n — £+ 1,n — £), hence nonzero only if £ < n. For such ¢ we
have
f —j ¢ B f i—iy 1 f Tt h
Ta—1-n 2fT ' + ft sz B 2Ta—1—nfT lﬁv t Ta—1-n T]l f T]z
/ o N f ‘o
= 2TCL—1—7L fT J1 ﬁv =+ 2Ta 1—n le fT ‘727). (511)

If ¢ < j1, then the first summand in (5.11) gives zero when pairing with any vector with two
f’s. If £ > j1, then

/
Taln

h
Ti2

/ /
Ta—1-n Tn—ﬁ

h
e [%Tﬁ n g

——fT" Jl] =4
If £ > jo, then the second summand in (5.11) is zero simply because fT¢72v = 0. If £ < jo,

then

f h
Tae—1-—n T

f

fTe_jQU = 2Ta717n

L . h f /
Y 0 —
[—ZfT N2 4 1 ”2le] v= 4@@”7

since zo=1= fT' =2 _h_ T“ v is a basis vector, hence pairing with a vector consisting of two f’s gives
Zero. Therefore
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a—1 *
ff foof
-3 (gd) Atmpe) 12
=1 ‘i+j=a—1—¢
12520

+§:< 2. (%ﬁio fATJLnﬁiﬂ> (5.13)
= i+j=a—1-¢
1>5>0

Note that in the expression in (5.12) for each ¢ € {j1 +1,...,n} there exists exactly one pair of
indices (i,j) = (max{a—1—n,n—/¢}, min{a—1—n,n—¢}) that gives 4 when pairing. All other
pairs (i,j) give zero. Similarly, the expression in (5.13) equals —4 for each ¢ € {1,...,j2} and
exactly one corresponding pair (4, j), and zero otherwise. Also note that the number of elements
in each set {j1 +1,...,n} and {1,...,j2} equals jo. Hence we get

470 — 449 = 0.

Therefore, formula (5.5) is proved for s = 2.
Now suppose that formula (5.5) holds for all natural numbers up to s. Then

P h h B f Tt h h
I Ta—1-n ﬁ o Ts+1 v= Ta—1— nf TJ1 o Tis+1 v
__f g1 4 P pme| N h
T Ta—1-n 2/T + ﬁfT T2 o Tjs+1 v
_ f -y h h f Tt h h
- 2Ta717n fr Ti2 o TIs+1 vt Ta—1-n T f T2 o Tis+1 v (5'14)

Note that if £ < j1, then the first summand in (5.14) is a basis vector and hence its pairing
with a vector consisting of two f’s gives zero. If £ > j; we have

a—l ES

DS S I, fopeein b
T T] » Ta—1-n T2 TIs+1

(=1 Vitj=a—1—L

12520

a—1 *
fr f i, h h
-2 < 2 <T1Tﬂv> g T Tjg"'Tfs+1v>

l=j1+1 itj=a—1—2

i>5>0
a—1 *
B e ff fh h
- ZI T z: TiTi") *Tat-nTi " Tisn !
0=j1+1 i+j=a—1—¢
2§20

N I / ho b\,
- Z Tk Z T T Til) > T(a—1—j1)—(n—j1) Ti2 o TIs+1 v)=
k= itj=a—1—ji—k

12520

by induction hypothesis. For the second summand in (5.14) we have

f e b h  f h PP N By h
Ta - le f T]Q ‘e Tjs+1 v = Ta—l—n ﬁ 2fT =+ TfT Ti e Tjs+1 v
o h e h h f_hoh ok h
=i U E Tt e R L s Tt (019)
Note that
f Tt—g2 " h h _ f £—j1—J2 l—jo h h h
Ta—1-n T f Tis  Tist1 v= Ta—1-n —2fT + /T Tit | Tis  Tistr v
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— _2Ta;fl—n fo—Ji—jz

h h h

h h f
Tis Ti1 TJs o TIs+1 Y

Tis  Tist1 vt Ta—1-n

fﬁjz

where in each vector the number of A’s is less than or equal to s. Repeating the argument above,
we see that by induction hypothesis we get

a—1 *

[ f i h h _
S X (Fi) e T ) =0
(=1 ‘itj=a—1—"
127520

Now in the second summand in (5.15),

f h o h
Ta—1—n Tj1 Tj2

h h
K DY
Tl T Tis Tis+1 v

we pull fT* to the right and at each step we use induction hypothesis to argue that we keep
getting zeros. Ultimately, we get a vector

f h h
Ta—1-n ﬂ o TIs+1

fT,

which is zero, since fT¢ has grading (—¢ + 1, —¢) < (0, —1) and so fT% = 0. Therefore,

— /e Fr\N f h ok
Z<T€ Z <TZT] ) ’Tzz—l—nle'”TjSU>:0'

=1 i+j=a—1—¢
12520
Formula (5.5) and Lemma 5.6 are proved. |
Proposition 5.4 is proved. n

5.6 Group II

Proposition 5.7. The value on the right-hand side of (5.1) on any basis vector from Group 11
equals zero.

Proof. Group II consists of vectors

_f f h h e
_TilTiQH..'Tjsﬁv.

Lemma 5.8. We have

<T51 (v)*7W> =2""(m — 1K), (5.16)

) s . 25t2(m —1k), ifiy=ia=a—1—1,
<T€ <WU> ,w> =25t (m —1k), ifiy #ip and iy orig=a—1—4, (5.17)

0, otherwise,
e ff\ —25(m —1k), ifl=a—1—1i1 —is,
e Tim; V) W)= 5.18
< ¢ i+j§1£ (Tl 1y > > {0, otherwise. (5.18)
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Proof. We have

f a— a—1—i; f a— f h h
<Ta1 ) >—< * el 1w>:<() |:hT 1- +T el 1:|T12T‘]1T’js]€lv>

_ * a—1—i f h h e % f a—1 f h h e
= <(’U) ,hT IWWWWU>+ <( ) T11€T TZZ le ﬁﬁv . (519)

Note that T} TL . T};g 77 is of degree (—ip — 1, —i1) < (—1,0), hence
eT*™ 1TJ:2 T}JL1 “+ e 70 = 0. In the first summand in (5.19) we pull AT~ 1=41 to the right to get
B h e o e
* a—1—-iy—ig '* 0 * L * _ os+1 a—1—t1—i2—j1——as
<(v) ,—2fT ! 2Tj1 T3 Tlv> == <(U) , =2 fT 1T Tlv>

= <(v)*, —25“le;1}> = ((v)*, 25" (h = le)v) = 2°F (m — 1K),

where at each step we do not write monomials of negative degree, since they give zero when
applied to v. This proves formula (5.16).
We have

h f " f ’
(8 ) )= ) )

hT w = |:_2fT£—i1+th£:| f L . h e

T Tiz Tt ﬁﬁv

_ o gpprea dh e P e £y B hoe
= 2T TeTi il + T 2T T T2 hT T Tis 71°
_ f l—1i f l—1i f f h h e
‘[ 2 ST = 2 T T | o
Note that the vector Tll g L prt 1l =i "-T}]‘-S Frv after pulling hT* to the right either becomes

a zero vector or a vector with two f’s, which of course gives zero When palrlng with a basis

vector with one f. Also, note that the only possibility for the vector = fTZ i _h le . T}js 770 to
give a nonzero pairing with (ﬁv) is when 49 = a —1 —/¢. Similarly T fTe 2 _h le e T}}S 7TV

gives a nonzero number only if i1 = a — 1 — £. First consider the case i1 =is =a—1—{. We
have

f 2—a+1 h h e
_4Ta_1_e fT T - T ﬁv

f 20—a+1—7j1 h 2—at1| N h e
_4Ta—1—f 2fT + ﬁfT ﬁﬁﬁv
Note that fT%*a“% . T’js 77 is of degree (—j1, —j1) < (=1, —1), hence
h h e
20—a+1_"" oy =

So we get

f 2—atl—j N h e o [ 20—a+t1—j1——js ©

_8Ta—1—€fT a hﬁ“'ﬁﬁv“':_Qs WfT atl—j1 J v
= 2512 Tai_e le%v = 2512 Ta;fl_g(h —leyw = 22 (m — 1k),

where at each step we don’t write monomials of negative degree, since they give zero when
applied to v.
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Forii. =a—1—4{¢#isand is =a—1—{ # i1 we have
f h h e

Ta—1-¢ Tir " Tis Tl

where we performed the exact same computation as above. Therefore, formula (5.17) is proved.
We have

(o, = (o) )= X (wae) o)

-9 fT2£ a+1 — 28+1(m . ”{7),

itj=a—1— i+j=a—1—¢
12>5>0 1>752>0

o F fo.uh  hoe ff e h oo h hoe

IMw=aag7e T grp = gaga 2T Y 7m il |\ 75 7

The only nonzero pairing happens when ¢ is such that i1 + i3 = a — 1 — £. In that case
fTél ... che has degree (—j1, —j1) < (—1,—1), hence fT¢ 1 ... A€y = (. Therefore we

T3i2 " Tis Tl T3i2 ' Tis Tl
have
ff o b hoe of [ pl=ji——js & — s f i
2raredt VM mn Tt T Y pa el T 7= 2 ra el T

where we pulled fT¢71 to the right and did not write monomials of negative degree, since they
give zero when applied to v. Hence we get

s f T
T“ T22( h +lc)v.
Therefore,
e f o\
(7o, = (7mm) =)
i+j=a—1—¢
123520
_ fF PN s f f _ o8
-y <<TZT] 2L L Chrig) = 2 m 1),
i+j=a—1—¢
i>j>0

since for i = i1, j = i we get —2%(m — k) and zero for other pairs (7, 7). Formula (5.18) and
Lemma 5.8 are proved. [ ]

By Lemma 5.8, we have

(L () w2 £ (Fe) )

/=1 i+j=a—1—/¢
12520

=25 (m —1k) —2- 25T (m — 1k) + 2 2°(m — Ik) = 0.

Note that
a—l *
h f s+1
<ZW<WU> ,’LU>:22 (’m—lk)
=1
in both cases i; = i and i1 # i3. Also note that
— ¢ fr\
(S5 5 (L) w)ro
l= i+j=a—1—/4
123520

only if £ is such that i; 4+ i3 = a — 1 — £. Therefore, Proposition 5.7 is proved. |
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5.7 Group III

Proposition 5.9. The value of the right-hand side of (5.1) on any basis vector of Group II1
equals zero.

Proof. A vector in Group III has the form

_f f h h e e
_Til-'.Tirle";ﬁﬁ.-'ij—‘lr—lvj

where r > 3.

Lemma 5.10. For every £ € {1,...,a — 1}, we have

<TZ_1 (U)*7w> =0, (5.20)

<1}f€ (TQi_ﬂ}) ,w> -0, (5.21)

(7 2, (F) o o2

Proof. We have

f 1
(o) = (o era)
pro—t-in . L f eTe 1 L f i...ii...iv
T T2 Tir T Tis Th Tlr—1 ’
Note that eT*~ 1T12 TL T};S 70 v is of degree (—i1 —1,—i1) < (—1,0), hence

zero. So we have

<() [ QfTa 1—i1— 12_|_Tf BT 1—11:|f” f h h e e >

T TR TR T v

As above, note that A7~ 1= TJ; : TJ; T—};l e T};S T Tlfilv is of degree (—ig — 1, —ig) <

(—1,0), hence zero. Therefore we obtain

(T S A S A N

T3 Tir T Tis Th Tlr—1
1— h h . . . . .
since fTe—1-ir—iz_h_ T e gy v is of degree (—ig—- - —ip—r+2, —ig—- - —iy) < (=1,0)

for r > 3, hence zero. Formula (5.20) is proved.
We have

h f " f "
(7 (gm) o) = { () re)

0 _ 0—i I ool [ [ h h e e
hTw—[—2fT 1+Ti1hT:|TiQ.HTirle“'TjsTll'“Tlr1v
_ / / i h h e e
= _2Ti2 . TZT fT 1le ..'Tjs ﬁ R W’U (5'23>
foype f f h h e e
+ Tilh T2 Tr TJ1 ﬁﬁﬁv (5.24)
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Observe that for ¢ < i; in (5.23) we have a basis vector, hence it gives zero when pairing with

(ﬁv)* If ¢ > i1, then we pull f7°" to the right and notice that no matter how fT¢ "

interacts with h’s and e’s, it does not affect the number of f’s, which is greater or equal than

two. Hence, the vector in (5.23) gives zero when pairing with (ﬁv)*

In (5.24) note that

S
T2 T2

so that either AT is pulled to the right not affecting the number of f’s or it gives fT¢ %2, for

which we apply the same argument as above after pulling it to the right to argue that the pairing

of the vector in (5.24) with (ﬁv)* is zero. Formula (5.21) is proved.
We have

(7, 2 (7)) 2 (5] o)

RT! - = —2fT" %2 4 L_pTt

itj=a—1—¢ itj=a—1—f
12520 12520
Y] - Y f f h h e e
fT'w = fT T e R s R
_f f o h h e e
= 70 ”.TirfT R AT

As in formula (5.21), no matter how fT* interacts with h’s and e’s, the number of f’s remains
unchanged, i.e., we have more than or equal to three f’s, so that pairing with (%%v)* is zero.
Formula (5.22) is proved. [

Proposition 5.9 follows from Lemma 5.10. |

Theorem 3.2 is proved.
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