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Abstract. We introduce a decorated configuration space Conf×n (a) with a potential func-
tionW. We prove the cluster duality conjecture of Fock–Goncharov for Grassmannians, that
is, the tropicalization of

(
Conf×n (a),W

)
canonically parametrizes a linear basis of the homo-

geneous coordinate ring of the Grassmannian Gra(n) with respect to the Plücker embedding.
We prove that

(
Conf×n (a),W

)
is equivalent to the mirror Landau–Ginzburg model of the

Grassmannian considered by Eguchi–Hori–Xiong, Marsh–Rietsch and Rietsch–Williams. As
an application, we show a cyclic sieving phenomenon involving plane partitions under a se-
quence of piecewise-linear toggles.

Key words: cluster algebra; cluster duality; mirror symmetry; Grassmannian; cyclic sieving
phenomenon
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1 Introduction

Throughout we let a, b be positive integers and let c be a non-negative integer. We set n := a+b.

1.1 Cluster duality of Grassmannians

Cluster algebras are a class of commutative algebras introduced by Fomin and Zelevinsky [6].
Their geometric counterparts form a family of log Calabi–Yau varieties called cluster varieties.

A cluster ensemble1 is a pair (A ,X ) of cluster varieties associated to an equivalence class of
skew-symmetrizable matrices introduced by Fock and Goncharov [5]. The variety A is equipped
with an exceptional class {α} of coordinate charts called K2 clusters. A rational function of A is
called a universal Laurent polynomial if it can be expressed as a Laurent polynomial in every α.
The ring up(A ) of universal Laurent polynomials of A coincides with the upper cluster algebra
of [1]. The variety X is equipped with an exceptional class {χ} of coordinate charts called
Poisson clusters. Let up(X ) be the ring of universal Laurent polynomials in every χ. The
cluster modular group G is a discrete group acting on A and X that respects the cluster
structures.

The Fock–Goncharov cluster duality conjecture [5] asserts that the ring up(A ) admits a nat-
ural basis G-equivariantly paramatrized by the Z-tropical points of X , and vice versa. Cluster
duality can be viewed as a manifestation of mirror symmetry between A and X [16]. For
example, the cluster duality for moduli spaces of local systems has been investigated in [13, 14].

The present paper focuses on the cluster duality for Grassmannians.

This paper is a contribution to the Special Issue on Cluster Algebras. The full collection is available at
https://www.emis.de/journals/SIGMA/cluster-algebras.html

1See Appendix A for a brief review on cluster ensemble.
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In details, we introduce a pair of spaces, i.e., the decorated Grassmannian G ra(n) and the
decorated configuration space Confn(a), both of which are variants of the Grassmanian Gra(n).

The decorated Grassmannian G ra(n) is essentially an affine cone over Gra(n) (see Section 2.1
for its definition). In particular, the coordinate ring of G ra(n) coincides with the homogeneous
coordinate ring of Gra(n) in its Plücker embedding. The decorated Grassmannian G ra(n) ad-
mits a particular divisor, whose complement is an affine variety denoted by G r×a (n). A result
of Scott [32] implied that the coordinate ring O

(
G r×a (n)

)
coincides with an upper cluster alge-

bra up(A ). In this sense, G r×a (n) is naturally equipped with a cluster K2 structure.
The decorated configuration space Confn(a) parametrizes PGL(V )-orbits of n-many lines in

an a-dimensional vector space V together with a linear isomorphism between every pair of cyclic
neighboring lines. After imposing a consecutive general position condition, we obtain a smooth
subvariety Conf×n (a). We prove that

Theorem 1.1 (Theorem 2.15). The variety Conf×n (a) is an affine variety and is equipped with
a cluster Poisson structure. Its coordinate ring O

(
Conf×n (a)

)
coincides with the algebra up(X )

of universal Laurent polynomials and therefore Conf×n (a) ∼= Spec (up (X )).

The cluster Poisson structure on Conf×n (a) is related to the Poisson structure on the space
of a × n matrices studied by Gekhtman and Yakimov [10]. We also notice similarities between
our proof of the affine-ness of Conf×n (a) and techniques used by Morier-Genoud, Ovsienko, and
Tabachnikov [23] in their work on the relation between Grassmannian Gr3(n) and the moduli
space of 2-frieze patterns. Further studies should be done on the connection between frieze
patterns and Grassmannians in general.

Combining Theorem 2.15, results from [14] and [35], and the work of Gross, Hacking, Keel,
and Kontsevich [17], we prove the following theorem in Section 4.1.

Theorem 1.2. The pair
(
G r×a (n),Conf×n (a)

)
admits a natural cluster ensemble structure. The

duality conjecture of Fock–Goncharov holds in this case, that is, the coordinate ring O
(
G r×a (n)

)
admits a cluster modular group equivariant basis parametrized by the Z-tropical set of Conf×n (a),
and vice versa.

In Section 2, we introduce several natural functions and maps on G r×a (n) and Conf×n (a),
which are summarized as follows

decorated Grassmannian G r×a (n),
free rescaling Gm action,

boundary divisor D =
⋃
iDi,

action by a maximal torus T ⊂ GLn,
twisted cyclic rotation Ca

↔


decorated configuration space Conf×n (a),
twisted monodromy P ,

potential function W =
∑

i ϑi,
weight map M : Conf×n (a)→ T∨,

cyclic rotation R

 .

We investigate the natural cluster correspondence between the ingredients in the above dic-
tionary. In particular, the potential W exhibits an explicit cyclic symmetry. It is essentially
equivalent to the potential of the Grassmannian considered in [2, 21, 29]. We identify W with
the sum of theta functions associated to frozen vertices under the framework of [17]. As a con-
sequence, we prove the following.

Theorem 1.3 (Corollaries 4.12 and 4.17). Within the basis of O
(
G r×a (n)

)
stated in Theorem 1.2,

the subset
{
θq |Wt(q) ≥ 0

}
is a basis of O(G ra(n)). Moreover, this basis of O (G ra(n)) is com-

patible with both the decomposition O(G ra(n)) ∼=
⊕

c≥0 Vcωa into irreducible GLn-representations
as well as the weight space decomposition with respect to a maximal torus T ⊂ GLa.

Marsh and Rietsch constructed a B-model for the Grassmannian in [21], which is of the form(
Gr×a (n) × Gm,Wq

)
. Rietsch and Williams proved in [29] that this B-model is an example of
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a cluster dual space of the Grassmannian. In contrast to their approach, our approach is more
geometric and is purely motivated by the associated cluster structures. We include a section in
the appendix describing the connection between our version of cluster duality and the version
considered by Rietsch and Williams.

1.2 Cyclic sieving phenomenon of plane partitions

Let S be a finite set and let g be a permutation of S of order n. We are interested in the size of
the fixed point set Sg

d
of gd for d ≥ 0. Let F (q) be a polynomial of positive integral coefficients

and let ζ = e2π
√
−1/n. Following Reiner–Stanton–White [27], we make the following definition.

Definition 1.4. We say that the triple (S, g, F (q)) exhibits the cyclic sieving phenomenon

(CSP) if the fixed point set cardinality #Sg
d

is equal to the polynomial evaluation F
(
ζd
)

for
all d ≥ 0.

Many combinatorial models have been found to exhibit the cyclic sieving phenomenon.
Interestingly, the proofs often involve deep results in representation theory. For example,
Rhoades [28] proved the CSP for rectangular Young tableaux under the action of promotion, by
using Kazhdan–Lusztig theory and a representation of the Hecke algebra. In [7], Fontaine and
Kamnizter studied the CSP for minuscule Littelmann paths under rotation using the geometric
Satake correspondence and intersection homology of quiver varieties. For more examples, we
refer the interested reader to a survey on this topic by Sagan [31].

As an application of our result on cluster duality for Grassmannian, we prove the CSP for
plane partitions under a sequence of piecewise-linear toggles.

Definition 1.5. A size a×b plane partition is an a×b matrix π = (πi,j) of non-negative integer
entries πi,j that is weakly decreasing in rows and columns, and for which we define

|π| :=
∑
i,j

πi,j .

Denote by P (a, b, c) the set of size a× b plane partitions with largest entry π1,1 ≤ c.

Let [m]q denote the quantum integer 1−qm
1−q . MacMahon’s formula asserts that

Ma,b,c(q) :=
∑

π∈P (a,b,c)

q|π| =

a∏
i=1

b∏
j=1

c∏
k=1

[i+ j + k − 1]q
[i+ j + k − 2]q

.

Following [30, Section 4], we consider piecewise-linear toggles on P (a, b, c). Let π ∈ P (a, b, c).
Let 1 ≤ i ≤ a and let 1 ≤ j ≤ b. We make the convention that π0,j = πi,0 = c and πa+1,j =
πi,b+1 = 0. The piecewise-linear toggle τi,j at the (i, j)-th entry is an involution that sends π to
a new plane partition τi,jπ such that

(τi,jπ)k,l :=

{
πk,l if (k, l) 6= (i, j),

max {πi,j+1, πi+1,j}+ min {πi−1,j , πi,j−1} − πi,j if (k, l) = (i, j).
(1.1)

A birational version of τi,j has been constructed by Einstein and Propp in [3] and by Musiker and
Roby in [24]. See also [14, Section 9.3] for the same construction of the birational Schützenberger
involution of Gelfand–Tsetlin patterns.

Let η be the sequence of piecewise-linear toggles that hits each entry exactly once in the order
from bottom to top and from left to right, that is,

η = νb ◦ νb−1 ◦ · · · ◦ ν1, where νj = τ1,j ◦ τ2,j ◦ · · · ◦ τa,j .
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For example, applying η to ( 3 2 2
3 1 0 ) ∈ P (2, 3, 6) yields

3 2 2

3 1 0

3 2 2

1 1 0

5 2 2

1 1 0

5 2 2

1 0 0

5 5 2

1 0 0

5 5 2

1 0 0

5 5 3

1 0 0

τ2,1 τ1,1 τ2,2

τ1,2

τ2,3 τ1,3

Applying the cluster duality of Grassmannians, we obtain the following result.

Theorem 1.6. The action η on P (a, b, c) is of order n = a+b. The triple (P (a, b, c), η,Ma,b,c(q))
exhibits a cyclic sieving phenomenon.

The proof of Theorem 1.6 involves representations of GLn. Recall that irreducible finite
dimensional representations of GLn are parametrized by weakly decreasing sequences, µ1 ≥
· · · ≥ µn, with all µi ∈ Z. The ath fundamental weight ωa := (µ1, . . . , µn) takes the form
µ1 = · · · = µa = 1 and µa+1 = · · · = µn = 0. Let Vcωa be the irreducible representation of GLn
with cωa as its highest weight. We define the twisted cyclic rotation on Vcωa to be the action of

Ca :=

(
0 (−1)a−1

Idn−1 0

)
∈ GLn . (1.2)

Theorem 1.6 is then an easy consequence of the following result.

Theorem 1.7. The basis of Vcωa obtained in Theorem 1.3 is in natural bijection with P (a, b, c).
The bijection is equivariant with respect to the twisted cyclic rotation Ca on Vcωa and the sequence
of toggles η.

After the first version of this paper was posted on arXiv, Hopkins [18] proved that our Theo-
rem 1.6 is equivalent to a result of Rhoades [28, Theorem 1.4]. In detail, this paper investigates
the model of plane partitions under toggles, while Rhoades studied the model of semistandard
tableaux under promotion. In Appendix A of [18], these two models are shown to be equivari-
antly equivalent to each other. However, we would like to emphasize that our approach uses
Fock–Goncharov’s cluster duality of Grassmannian, which is new and is significantly different
from Rhoades’s approach of using Kazhdan–Lusztig theory. In particular, we present a geo-
metric interpretation of the plane partitions under toggles, i.e., they are the tropicalization of
decorated configurations under rotation. It follows immediately from the latter that the order
of the toggle action is n. In general, the framework of cluster duality can potentially be applied
to proving CSP involving other types of cluster varieties.

2 Main definitions

2.1 Decorated Grassmannian

Let V be an n-dimensional vector space and let V ∗ be its dual.

Definition 2.1. The decorated Grassmannian G ra(V
∗) is a space which parametrizes the pairs

(W ∗, f∗), where W ∗ is an a-dimensional subspace of V ∗ and f∗ ∈
∧aW ∗ is a non-zero a-form.
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These non-zero a-forms f∗ are also known as the decomposable elements of the exterior
power

∧a V ∗ because they can be written as a single exterior product. Therefore decorated
Grassmannian G ra(V

∗) naturally sits inside the exterior power
∧a V ∗ as a quasi-affine variety.

There is a free right Gm-action on G ra(V
∗) defined via rescaling the a-forms

(W ∗, f∗).t := (W ∗, tf∗). (2.1)

This action coincides with the rescaling action on
∧a V ∗. If we projectivize the inclusion of

the decorated Grassmannian G ra(V
∗) ↪→

∧a V ∗ with respect to this action, we recover the
Plücker embedding of the ordinary Grassmannian Gra(V

∗) ↪→ P
(∧a V ∗

)
. Recall that the affine

cone of the ordinary Grassmannian Gra(V
∗) in its Plücker embedding is the affine subvariety of

decomposable a-forms in
∧a V ∗. Therefore G ra(V

∗) is isomorphic to the affine cone deleting the
point 0 ∈

∧a V ∗. This is why, throughout the paper, we sometimes refer to the ring of regular
functions O(G ra(V

∗)) as a homogeneous coordinate ring of the ordinary Grassmannian Gra(V
∗).

The right Gm-action on G ra(V
∗) induces a left Gm-action on O(G ra(V

∗)). Irreducible repre-
sentations of Gm are 1-dimensional and are classified by integers. Denote by O(G ra(V

∗))c the
eigenspace in O(G ra(V

∗)) that is of weight c with respect to the Gm-action.

By the natural pairing between
∧a V ∗ and

∧a V , every g ∈
∧a V gives rise to a regular

function

∆g : G ra(V
∗) −→ A1, ∆g(W

∗, f∗) := 〈f∗, g〉 .

The ring O(G ra(V
∗)) is generated by ∆g modulo certain homogeneous relations called Plücker

relations ((2.3); see also, e.g., [15, p. 211] for more details). Note that under the Gm-action, we
have

(t.∆g)(W
∗, f∗) = ∆g(W

∗, tf∗) = ∆tg(W
∗, f∗) = t∆g(W

∗, f∗).

Since the Plücker relations are homogeneous, the weight space decomposition of O(G ra(V
∗))

with respect to the Gm-action coincides with the decomposition into subspaces of homogeneous
degrees of the generators ∆g. Therefore we conclude the following statement.

Proposition 2.2. The map g 7→ ∆g is an isomorphism between
∧a V and O (G ra(V

∗))1, and

O(G ra(V
∗)) =

⊕
c≥0

O(G ra(V
∗))c. (2.2)

The group GL(V ) acts on V as well as its dual space V ∗, and hence on the decorated Grass-
mannian G ra(V

∗) and on the ring O(G ra(V
∗)). In particular, the irreducible representation Vωa

of GL(V ) can be constructed as
∧a V (see, e.g., [8, Lecture 15]) and hence Vωa is isomorphic

to O(G ra(V
∗))1 by Proposition 2.2. In general, by the Borel–Weil theorem, equation (2.2) is

the decomposition of O(G ra(V
∗)) into irreducible representations of GL(V ) with

O(G ra(V
∗))c ∼= Vcωa .

From now on, we fix a basis {e1, . . . , en} of V and identify V with the vector space kn, where k
is the base field. We abbreviate Gra(V

∗) to Gra(n) and G ra(V
∗) to G ra(n). Every a-element

subset I = {i1, . . . , ia} ∈
(

[n]
a

)
gives rise to a regular function ∆I := ∆eI on G ra(n), where eI

denotes the wedge product of vectors ei1 , . . . , eia taken in ascending order (e.g., ∆{5,7,4} :=
∆e4∧e5∧e7). The functions ∆I are also known as the Plücker coordinates.

The Plücker coordinates of G ra(n) satisfy a set of homogeneous relations called Plücker
relations, and they are generated by 3-term homogeneous quadratic equations of the following
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form: for any (a − 2)-element subset J ⊂ {1, . . . , n} and any four distinct elements i, j, k, l ∈
{1, . . . , n} \ J with i < j < k < l, the corresponding Plücker relation is

∆J∪{i,j}∆J∪{k,l} + ∆J∪{i,l}∆J∪{j,k} = ∆J∪{i,k}∆J∪{j,l}. (2.3)

Let Di be the vanishing locus of the Plücker coordinate ∆{i,i+1,...,i+a−1} (indices taken mod-
ulo n). Let G r×a (n) denote the complement of D := ∪ni=1Di. Since G r×a (n) ⊂ G ra(n), we have
O (G ra(n)) ⊂ O

(
G r×a (n)

)
. The image of D under the projection from G ra(n) to Gra(n) is an

anticanonical divisor of Gra(n) [21, equation (19.3)]. We denote the complement of D by Gr×a (n).
Let Mat×a,n be the space of a× n matrices with column vectors vi such that every collection

{vi, vi+1, . . . , vi+a−1} of a-many cyclically consecutive column vectors is linearly independent.
The group SLa acts freely on Mat×a,n by matrix multiplication on the left.

Lemma 2.3. The space G r×a (n) is canonically isomorphic to the quotient space SLa \Mat×a,n as
algebraic varieties.

Proof. Let (W ∗, f∗) ∈ G r×a (n) and let W be the dual space of W ∗. Every subspace W ∗ ⊂ (kn)∗

naturally induces a surjection π : kn → W . Let vi := π(ei) be the image of the basis ele-
ment ei under π. The coordinate ∆i+1,...,i+a 6= 0 is equivalent to the linear independence of
{vi+1, . . . , vi+a}. Up to the action of SLa on ka, there is a unique choice of linear isomorphisms
from W to ka whose induced pull-back map maps the standard a-form on ka (which is an ele-
ment of

∧a(ka)∗) to the a-form f∗ on W ∗. Hence we get a configuration in SLa\Mat×a,n. It is
easy to see that such a map is bijective. �

Remark 2.4. Under the above isomorphism, the coordinates ∆I are identified with the minors
of I-columns in an a× n matrix.

Let T = (Gm)n be the maximal torus of GLn consisting of invertible diagonal matrices. It acts
on the right of Mat×a,n by rescaling the column vectors v1, . . . , vn. Since G r×a (n) ∼= SLa \Mat×a,n,
the T -action on Mat×a,n descends to a T -action on the decorated Grassmannian G r×a (n).

Define the linear transformation Ca on V such that

Ca(ei) :=

{
ei−1 if i 6= 1,

(−1)a−1en if i = 1.

It induces a twisted cyclic rotation on G ra(n) still denoted by Ca.
To summarize, we obtain the following data

the decorated grassmannian G r×a (n),

the free Gm-action on G r×a (n) by rescaling the a-form,

the boundary divisor D =
⋃
iDi,

the T -action on G r×a (n),

the twisted cyclic rotation Ca on G r×a (n).

(2.4)

2.2 Decorated configuration space

Let W be a vector space of dimension a.

Definition 2.5. The configuration space Confn(W ) parametrizes the PGL(W )-orbits of n many
(not necessarily distinct) lines in W , i.e.,

Confn(W ) := PGL(W )

∖(∏
n

PW

)
.
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As in Fig. 1, a decorated configuration2 is a PGL(W )-orbit of n lines in W together with linear
isomorphisms φi : li → li−1 for each pair of neighboring lines. The decorated configuration space is

Confn(W ) := PGL(W )

∖{
1-dimensional subspaces l1, . . . , ln ⊂W
and linear isomorphisms φi : li → li−1

}
.

We denote a decorated configuration as [φ1, l1, . . . , φn, ln]. We frequently omit the subscript
of φi.

•l1

• l2

•
l3

•
l4

•l5

•l6 φ1

φ2

φ3

φ4

φ5

φ6

Figure 1. A decorated configuration in Conf6(W ).

Two vector spaces of the same dimension are isomorphic up to choices of bases. Since the
action of PGL(W ) has been quotiented out, the configuration spaces of n lines in vector spaces
of the same dimension are canonically isomorphic to each other. Therefore we may abbreviate
Confn(W ) to Confn(a). For the same reason, we may abbreviate Confn(W ) to Confn(a).

Let Conf×n (a) be the subspace of Confn(a) consisting of configurations [l1, . . . , ln] such that
every collection {li+1, . . . , li+a} of a-many cyclically consecutive lines is a linearly independent
set of lines. The subspace Conf×n (a) of Confn(a) is defined in the same way.

Let [φ1, l1, . . . , φn, ln] ∈ Conf×n (a). Let us compose φ in anti-clockwise order as in Fig. 1. Let
(−1)a−1P be the Gm-valued rescaling factor of the automorphism φi+1 ◦ · · · ◦ φn ◦ φ1 ◦ · · · ◦ φi
on li. Note that P is independent of the initial index i chosen. We get a projection map called
twisted monodromy

P : Conf×n (a) −→ Gm. (2.5)

Proposition 2.6. The space Conf×n (a) is an affine variety of dimension a(n− a) + 1.

Proof. Pick a non-zero vector vn ∈ ln. Using the maps φi recursively, we get vi−1 := φi (vi) ∈
li−1 for i = n, n − 1, . . . , 2. From the consecutive general position condition we know that for
any 1 ≤ i ≤ n, (vi, vi−1, . . . , vi−a+1) is a basis of ka. Define Φi to be the a× a matrix such thatvi−1

...
vi−a

 = Φi

 vi
...

vi−a+1

 . (2.6)

Then Φi must take the form

Φi =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
∗ ∗ · · · ∗

 .

2The definition of decorated configuration is motivated by an idea of A.B. Goncharov on pinnings; see also
[12, Section 2.2] for more details.
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Note that Φi does not depend on the choice of vn ∈ ln. Moreover, since the monodromy
φn = (−1)a−1P , the product Φ1Φ2 · · ·Φn should be the identity matrix multiplied by (−1)a−1P .
Therefore the configuration space Conf×n (a) satisfies the equation

Φ1Φ2 · · ·Φn =
(
(−1)a−1P

)
Ida×a (2.7)

with a variables in each matrix Φi and P a non-zero parameter. Conversely, one can construct
a configuration in Conf×n (a) from any solution to equation (2.7) using the matrices Φi. Therefore
we conclude that Conf×n (a) is the intersection of the vanishing loci of Pt− 1 and the functions
that are entries of Φ1Φ2 · · ·Φn−

(
(−1)a−1P

)
Ida×a in the affine space AnaΦ ×A1

P×A1
t . In particular,

this shows that the map P is regular on Conf×n (a).
The dimension of Conf×n (a) is

dim Conf×n (a) = n dim
(
Pa−1

)
+ dim{isomorphisms φi} − dim PGLa

= n(a− 1) + n−
(
a2 − 1

)
= a(n− a) + 1. �

Below we introduce three natural maps from Conf×n (a). Let [φ1, l1, . . . , φn, ln] ∈ Conf×n (a).
Pick a non-zero vector vi ∈ li for i = 1, . . . , n.

Because of the cyclically consecutive general position condition, the vector space quotient
W/Span{li−a+2, . . . , li} is 1-dimensional and is spanned by vi−a+1 (the image of vi−a+1 under
this quotient). Let ϑi be the scalar such that in the quotient space W/Span{li−a+2, . . . , li},

φ(vi−a+1) = ϑivi−a+1. (2.8)

Note that ϑi is independent of the choices of vi.
Note that for i 6= a, ϑi is the (a, a)-entry of the matrix Φi defined in equation (2.6); for i = a,

ϑa is the product of the (a, a)-entry of Φa and (−1)a−1P . Since the function P and the entries
of Φi are all regular functions on Conf×n (a), the functions ϑi are also regular on Conf×n (a) for all i.

The potential function on Conf×n (a) is defined to be the regular function

W =
n∑
i=1

ϑi : Conf×n (a) −→ A1. (2.9)

Since the top exterior power
∧aW is 1-dimensional, under the cyclically consecutive general

position condition we may define

Mk :=
φ (vk−a+1) ∧ · · · ∧ φ (vk)

vk−a+1 ∧ · · · ∧ vk
. (2.10)

Note that the value Mk is nonzero and does not depend on the choices of vi. Therefore we
obtain a weight map

M : Conf×n (a) −→ T∨,

[φ1, l1, . . . , φn, ln] 7−→ (M1, . . . ,Mn), (2.11)

where T∨ ∼= (Gm)n is the dual torus of the maximal torus T ⊂ GLn.
Lastly, there is an order n biregular map

R : Conf×n (a) −→ Conf×n (a),

[φ1, l1, φ2, l2, . . . , φn, ln] 7−→ [φn, ln, φ1, l1, . . . , φn−1, ln−1].

To summarize, we get the following data

the decorated configuration space Conf×n (a),

the twisted monodromy P : Conf×a (n)→ Gm,

the potential function W =
∑

i ϑi,

the weight map M : Conf×n (a)→ T∨,

the cyclic rotation R on Conf×n (n).
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2.3 Maps among the decorated spaces

Recall the n-dimensional vector space V with a basis {e1, . . . , en}. Let l̂i be the line spanned
by ei and let φ̂i : l̂i → l̂i−1 be the linear isomorphism such that

φ̂i (ei) :=

{
ei−1 if i 6= 1,

(−1)a−1en if i = 1.
(2.12)

As mentioned in Section 2.1, the cyclically consecutive Plücker coordinates ∆{i,...,i+a−1},
with indices taken modulo n, cut out an anti-canonical divisor on Gra(V

∗), whose complement
is denoted by Gr×a (V ∗). Every W ∗ ∈ Gr×a (V ∗) induces a projection π from V to the dual
space W of W ∗, and since ∆{i,...,i+a−1}(W

∗) 6= 0 for all i, the image of every ei under π is

a non-zero vector vi, and the lines li := π(l̂i) in W automatically satisfy the consecutive general
position condition. Furthermore, isomorphisms φ̂i descend to isomorphisms φi : li → li−1. Thus
we obtain [φ1, l1, . . . , φn, ln] ∈ Conf×n (W ) ∼= Conf×n (a). This defines a natural map

Gr×a (n) −→ Conf×n (a),

W ∗ 7−→ [φ1, l1, . . . , φn, ln]. (2.13)

Proposition 2.7. The map (2.13) is injective. The image of (2.13) consists of decorated con-
figurations of twisted monodromy P = 1.

Proof. By (2.12), every point in the image of (2.13) is of twisted monodromy P = 1.
Let [φ1, l1, . . . , φn, ln] be a configuration in Conf×n (a) with P = 1. It remains to show that

there is a unique W ∗ ∈ Gr×a (V ∗) whose image under the map (2.13) is [φ1, l1, . . . , φn, ln]. Let
(φ1, l1, . . . , φn, ln) be a representative of the configuration [φ1, l1, . . . , φn, ln]. Pick a non-zero
vector vn ∈ ln and then use the isomorphisms φn, . . . , φ2 to get non-zero vectors vi ∈ li. It gives
rise to a linear projection π : V → ka which sends ei 7→ vi. The dual of this map determines
an embedding π∗ : ka ↪→ V ∗, whose image is denoted as W ∗. Note that changing the choice
of representative and the choice of vn corresponds to postcomposing the projection π : V → ka

with an element of GLa. It corresponds to precomposing the dual map π∗ : ka ↪→ V ∗ with an
element of GLa, which does not effect the image W ∗ of π∗ as a subspace of V ∗. �

Definition 2.8. Denote by ˜Conf×n (a) the space of SLa-orbits of

(φ1, v1, φ2, v2, . . . , φn, vn),

where vi are vectors in ka satisfying consecutive general position condition, and each φi is
a linear isomorphism from the line spanning vi to the line spanning vi−1, and SLa acts on
(φ1, v1, . . . , φn, vn) by

g.(φ1, v1, . . . , φn, vn) :=
(
gφ1g

−1, gv1, . . . , gφng
−1, gvn

)
.

By Lemma 2.3, we can think of the space G r×a (n) as the moduli space of configurations of
vectors [v1, . . . , vn] satisfying the cyclic general position condition. Define the following map

G r×a (n) −→ ˜Conf×n (a),

[v1, . . . , vn] 7−→ [φ1, v1, . . . , φn, vn],

with the isomorphisms φ defined by φ1(v1) := (−1)a−1vn and φi(vi) := vi−1 for the other i’s. It
is not hard to see that this map is injective.

There is a surjective map ˜Conf×n (a)→ Conf×n (a) by replacing each vi by its spanning line li.
There is a surjective map Conf×n (a)→ Conf×n (a) defined by forgetting the isomorphisms φi.
There is a surjective map G r×a (n)→ Gr×a (n) defined by forgetting the a-form.
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Proposition 2.9. Putting all the aforementioned maps together, we obtain commutative diagram

˜Conf×n (a)

(( ((
G r×a (n)

) 	

66

(( ((

** **
Conf×n (a). // // Conf×n (a)

Gr×a (n)
( �

55
(2.14)

Proof. It remains to prove the commutativity of the rhombus and the surjectivity of the map
G r×a (n)� Conf×n (a).

First, by Lemma 2.3, we can again view G r×a (n) as moduli space of configurations of vectors
[v1, . . . , vn] in ka satisfying cyclic general position condition. But these vi are precisely the
vectors that span the lines li in the construction of the map Gr×a (n) ↪→ Conf×n (a). Furthermore,

in both definitions of the maps G r×a (n) ↪→ ˜Conf×n (a) and Gr×a (n) ↪→ Conf×n (a) we have set
φi(vi) = vi−1 for all i 6= 1 and φ1(v1) = (−1)a−1vn. Therefore the image in Conf×n (a) from
G r×a (n) by going down either side of the rhombus is the same.

As for the surjectivity of the map G r×a (n)� Conf×n (a), by Proposition 2.7 it suffices to show
that any element of Conf×n (a) is the image of an element in Conf×n (a) with P = 1. But this
is clear since we have n degrees of freedom to choose the isomorphisms φi to put between the
lines. �

2.4 Cluster structures

The pair
(
G r×a (n),Conf×n (a)

)
admits a natural structure of cluster ensemble associated to Post-

nikov’s reduced plabic graphs3 of rank a on a disk with n marked points on the boundary. In this
section we focus on one particular reduced plabic graph Γa,n for each pair of parameters (a, n),
as depicted in the following picture:

· · ·
...

...
...

...
...

· · ·
· · ·

• 1

• 2

• a− 1

• a
•
a+ 1

•
a+ 2

•
n− 2

•
n− 1

•
n

From a reduced plabic graph Γ we obtain a quiver QΓ by the following standard four-step
procedure. This quiver (or its opposite) is used to study the cluster structure on Grassmanni-
ans by many others, including (but not restricted to) Postnikov [26], Gekhtman, Shapiro, and
Vainshtein [9], and Rietsch and Williams [29].

� Assign a vertex to each face of Γ.

� For each black vertex of Γ, draw a clockwise cycle of arrows as follows:

•

•
•

•

•

3A rapid review on reduced plabic graphs has been included in the appendix. See also Postnikov’s article [26]
for more details.
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� Remove a maximal subset of 2-cycles.

� Freeze the vertices corresponding to boundary faces of Γ.

For example, the reduced plabic graph Γa,n gives rise to a quiver Qa,n as follows (please keep in
mind that we have the convention n = a+ b). The unfrozen part of this quiver is also known as
the triangle product Aa−1 �Ab−1 (see, e.g., [19, p. 8], [35, p. 2]):

(0, 0)

(1, 1) (1, 2) (1, 3) · · · (1, b− 1) (1, b)

(2, 1) (2, 2) (2, 3) · · · (2, b− 1) (2, b)

...
...

...
. . .

...
...

(a− 1, 1) (a− 1, 2) (a− 1, 3) · · · (a− 1, b− 1) (a− 1, b)

(a, 1) (a, 2) (a, 3) · · · (a, b− 1) (a, b)

Here the vertex assigned to the top-left face is indexed by (0, 0). The other faces of Γa,n form
an a × b grid. Their corresponding vertices of Qa,n are indexed in the same way as matrix
entries. The gray vertices are frozen. Denote by I the set of vertices of Qa,n and by Iuf the set
of unfrozen vertices of Qa,n. The exchange matrix ε of Qa,n is defined to be an I × I matrix
with entries

εfg = #{g → f} −#{f → g}.

Remark 2.10. The definition of the exchange matrix εfg differs from the usual convention by an
extra minus sign. The reason we include this extra minus sign is to simplify later computations.

For simplicity, we will also use an integer i ∈ {1, . . . , n} to denote the frozen vertex corre-
sponding to the boundary face lying between i and i+ 1. In other words,

frozen vertex i =


(i, b) if 1 ≤ i ≤ a,
(a, n− i) if a ≤ i < n,

(0, 0) if i = n.

Let (Aa,n,Xa,n) be the cluster ensemble associated to Qa,n. See (A.5) for its rigorous defini-
tion. Let {Ai,j}(i,j)∈I be the K2 cluster of Aa,n associated to the quiver Qa,n and let {Xi,j}(i,j)∈I
be the Poisson cluster of Xa,n associated to Qa,n. Abusing notation, we will frequently write f
instead of (i, j) ∈ I with f being the face of Γa,n corresponding to the vertex (i, j) of Qa,n.

Cluster K2 structure on G r×a (n). We associate to each vertex (i, j) (including the vertex
(i, j) = (0, 0)) of Qa,n an a-element set4

I(i, j) := {b− j + 1, . . . , b− j + i︸ ︷︷ ︸
i indices

, b+ i+ 1, . . . , n︸ ︷︷ ︸
a− i indices

}. (2.15)

Recall the Plücker coordinates ∆I of G r×a (n). By defining

Ai,j := ∆I(i,j), (2.16)

4The set is determined by the zig-zag strands of the reduced plabic graph Γa,n. See Appendix B for more
details.
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we get a rational map

ψ : G r×a (n) 99K Aa,n. (2.17)

Scott [32, Theorem 3] showed that the pull-back map ψ∗ gives an algebra isomorphism between
O(G ra(n)) and the ordinary cluster algebra defined by the quiver Qa,n; by allowing ourselves to
invert the frozen variables we generalize her result to the following theorem.

Theorem 2.11. The pull-back map ψ∗ is an algebra isomorphism between the upper cluster
algebra up(Aa,n) := O(Aa,n) and O

(
G r×a (n)

)
.

Both Gr×a (n) and Aa,n are rational varieties. The map ψ induces an isomorphism between
their function fields. Therefore the map ψ : G r×a (n) 99K Aa,n is birational.

Cluster Poisson structure on Conf×n (a). Let Quf
a,n denote the full subquiver of Qa,n

spanned by vertices in Iuf . Let
(
A uf
a,n,X

uf
a,n

)
be the cluster ensemble associated to Quf

a,n.

There is a canonical regular map p : Aa,n → X uf
a,n defined on the cluster coordinate charts

associated to Qa,n such that

p∗(Xg) =
∏
f∈I

A
εfg
f , ∀ g ∈ Iuf . (2.18)

Recall the surjective map G r×a (n)→ Conf×n (a) in (2.14). We define a rational map

ψ : Conf×n (a) 99KX uf
a,n (2.19)

by first taking a lift from Conf×n (a) to G r×a (n), mapping over to Aa,n via the birational equiv-
alence (2.17), and then mapping it down to X uf

a,n by the canonical p map. The map (2.19) is

well-defined and does not depend on the lift, because ψ∗(Xg) for g ∈ Iuf is a ratio of Plücker
coordintes with the same collection of indices (counted with multiplicity) in the numerator and
in the denominator. It is known that (2.19) is a birational equivalence (see for example [35]).

Lemma 2.12. The restricted exchange matrix ε|I×Iuf of Qa,n is of full-rank.

Proof. From (2.18) we see that the restriction of the map p : Aa,n →X uf
a,n to a cluster coordinate

chart is a map between algebraic tori defined by the matrix ε|I×Iuf with integer entries. Therefore
to show that ε|I×Iuf is full-ranked, it suffices to show that p : Aa,n →X uf

a,n is surjective.

By definition, we have the following commutative diagram

G r×a (n)
ψ //

p

��

Aa,n

p

��
Conf×n (a)

ψ
//X uf

a,n.

with the map p on the left as defined in (2.14). Since both of the horizontal maps ψ are birational
and the map p on the left is surjective, we know that the map p on the right is dominant. Note
that the restriction of the map p on the right to each seed torus is a dominant morphism induced
by a linear map between their character lattices, which forces it to be surjective. Therefore the
map p on the right is surjective. �

Cluster K2 structure on ˜Conf×n (a). The quiver Q̃a,n is obtained from Qa,n by adding, for
each frozen vertex i, a new frozen vertex i′ and a new arrow from i to i′, so that the number of
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frozen vertices increases from n to 2n. Denote the set of vertices of Q̃a,n by Ĩ and the exchange

matrix of Q̃a,n by ε̃. For instance, the quiver Q̃3,6 is as follows:

�6′ ◦

• •

◦

◦ � 1′

• •

◦

◦ � 2′

�

5′
�

4′

◦

�

3′

(2.20)

Let Ãa,n be the cluster K2 variety associated to the quiver Q̃a,n.

Let [φ1, v1, . . . , φn, vn] ∈ ˜Conf×n (a). For each 1 ≤ i ≤ n we define a scaling factor λi by

φ(vi+1) =

{
λivi if i 6= n,

(−1)a−1λnvn if i = n.
(2.21)

We define a rational map

ψ̃ : ˜Conf×n (a) 99K Ãa,n

by setting5

ψ̃∗ (Af ) :=


∆I(i,j) if f is a vertex (i, j) of Qa,n,

λi−a
∆{i−a,i−a+1,...,i−1}

∆{i−a+1,i−a+2,...,i}
if f is a newly added vertex i′.

(2.22)

Corollary 2.13. The map ψ̃ : ˜Conf×n (a) 99K Ãa,n is birational. Its pull-back map ψ̃∗ is an

algebra isomorphism between the upper cluster algebra up
(
Ãa,n

)
:= O

(
Ãa,n

)
and O

( ˜Conf×n (a)
)
.

Proof. Let H = (Gm)n be the split algebraic torus with coordinates (A1′ , . . . , An′). Note that
there is no arrow between the vertices i′ and the unfrozen vertices in Qa,n. Therefore the
variables Ai′ do not affect the cluster mutations. Hence we get

Ãa,n
∼= Aa,n ×H.

On the other hand, Let T = (Gn
m) be the split algebraic torus with coordinates (λ1, . . . , λn).

Note that the SLa-orbit of the n-tuple of vectors (v1, . . . , vn) satisfying the cyclic general position
condition is captured by a point in G r×a (n) (Lemma 2.3), and the SLa-orbit of the n-tuple of
linear isomorphisms (φ1, . . . , φn) is captured by a point in T. Hence we get

˜Conf×n (a) ∼= G r×a (n)× T.

Now we have the following commutative diagram, where the vertical maps are a trivial T-fiber
bundle and a trivial H-fiber bundle respectively

˜Conf×n (a)
ψ̃ //

��

Ãa,n

��
G r×a (n)

ψ
// Aa,n.

(2.23)

5Throughout the paper we adopt the convention that the indices of λi are taken modulo n.
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Recall from Theorem 2.11 that the bottom map ψ is a birational map which induces an iso-
morphism between algebras of regular functions. Moreover, since the Plücker coordinates in the
second line of (2.22) are both invertible, ψ̃ restricts to an isomorphism between the algebraic
torus fibers over any pair of corresponding points on the bases. Therefore we can conclude

that ψ̃ is birational and ψ̃∗ is an algebra isomorphism between up
(
Ãa,n

)
and O

( ˜Conf×n (a)
)
. �

Cluster Poisson structure on Conf×n (a). Analogous to the map (2.18), there is a canon-

ical map p : Ãa,n →Xa,n defined on the cluster coordinate charts associated to Qa,n by

p∗(Xg) :=
∏
f∈Ĩ

A
ε̃fg
f , ∀ g ∈ I. (2.24)

Let [φ1, l1, . . . , φn, ln] ∈ Conf×n (a). Let us lift it against p : ˜Conf×n (a) � Conf×n (a) by picking

a nonzero vector vi ∈ li for each i. Composing with the map p ◦ ψ̃ : ˜Conf×n (a)99KÃa,n−→Xa,n,
we get a rational map

ψ : Conf×n (a) 99KXa,n.

The map ψ does not depend on the choices of vi ∈ li. Indeed, if the vertex (i, j) is unfrozen,
then Xi,j coincides with the cluster Poisson coordinates Xi,j on X uf

a,n. For a frozen vertex i, one
gets

(
p ◦ ψ̃

)∗
(Xi) =



λ1−a
∆{3−a,...,2}∆{1−a,...,n}

∆{2−a,...,1}∆{2,2−a,...,n}
if i = 1,

λi−a
∆{i−a+2,...,i+1}∆{2,...,i,i−a,...,n}

∆{i−a+1,...,i}∆{2,...,i+1,i−a+1,...,n}
if 1 < i < a,

λi−a
∆{i−a,...,i−1}∆{i−a+2,...,i,n}

∆{i−a+1,...,i}∆{i−a+1,...,i−1,n}
if a ≤ i ≤ n− 1,

λb
∆{b,b+2,...,n}

∆{b+1,...,n}
if i = n,

(2.25)

from which one can verify that Xi are independent of the choices of vi ∈ li.

Proposition 2.14. The map ψ : Conf×n (a) 99KXa,n is a birational equivalence.

Proof. Let U be an open subset of Conf×n (a) consisting of [φ1, l1, . . . , φn, ln] such that

every collection {li1 , . . . , lia} of a-many lines is linearly independent. (2.26)

Note that any Plücker coordinate on the lift of U to ˜Conf×n (a) ∼= G r×a (n)×H is nonzero.

Let TQa,n ⊂Xa,n be the algebraic torus corresponding to the cluster chart associated to Qa,n.
By definition, the map ψ restricted to U is a regular map to TQa,n . Let (Xf )f∈I be a generic
point in TQa,n . It suffices to show that it has a unique pre-image in U .

Recall that the map ψ : Conf×n (a) 99K X uf
a,n is birational. After imposing the genericity

condition, by using the unfrozen part (Xf )f∈Iuf , one can uniquely reconstruct a configuration
of lines [l1, . . . , ln] satisfying the condition (2.26). Take a representative vi ∈ li for each i.
One can use the frozen part (Xi)

n
i=1 to uniquely reconstruct the isomorphisms φi : li → li−1 by

deducing the scaling factors λi from the frozen variables Xi and the non-zero Plücker coordinates
using (2.25). It is easy to see that the resulting isomorphisms φi are independent of vi chosen.
Therefore we obtain a unique configuration in U . �
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Theorem 2.15. The birational equivalence ψ : Conf×n (a) 99K Xa,n induces an algebra isomor-
phism between up(Xa,n) := O(Xa,n) and O

(
Conf×n (a)

)
. Combining this result with Proposi-

tion 2.6 we deduce that Conf×n (a) ∼= Spec(up(Xa,n)).

Proof. Note that we have the following commutative diagram

˜Conf×n (a)
ψ̃ //

p

��

Ãa,n

p

��
Conf×n (a)

ψ
//Xa,n.

(2.27)

Since the map ψ is birational, its pull-back map ψ∗ is an isomorphism between fields of rational
functions on Conf×n (a) and Xa,n. Let F be a rational function on Xa,n. It suffices to show that

F is regular on Xa,n ⇐⇒ ψ∗(F ) is regular on Conf×n (a). (2.28)

Let us use the other three maps in the commutative diagram (2.27) to prove the above
statement. First by applying Lemma A.1 to the vertical map p on the right, we know that

F is regular on Xa,n ⇐⇒ p∗(F ) is regular on Ãa,n.

On the other hand, note that the vertical map p on the left is a surjective morphism onto
a smooth affine variety. By applying Lemma 2.16 below we can deduce that

ϕ∗(F ) is regular on Conf×n (a) ⇐⇒ p∗ ◦ ψ∗(F ) is regular on ˜Conf×n (a).

By the commutativity of diagram (2.27), we know that p∗ ◦ ψ∗(F ) = ψ̃∗ ◦ p∗(F ). Therefore the
claim (2.28) reduces to

p∗(F ) is regular on Ãa,n ⇐⇒ ψ̃∗ ◦ p∗(F ) is regular on ˜Conf×n (a),

which is true by Corollary 2.13. �

Lemma 2.16. Let f : SpecB → SpecA be a surjective morphism where A is a normal Noethe-
rian domain. Let Fr(A) be the field of fractions of A. Then for any F ∈ Fr(A), we have F ∈ A
if and only if f∗(F ) ∈ B.

Proof. The implication F ∈ A =⇒ f∗(F ) ∈ B is trivial.
Conversely, suppose f∗(F ) ∈ B but F /∈ A. Since A is a normal Noetherian domain, a stan-

dard result of commutative algebra (e.g., [4, Corollary 11.4]) states that

A =
⋂

codim p=1

Ap.

If F /∈ A, then there exists a prime ideal p of codimension 1 such that F /∈ Ap. Since Ap is
a discrete valuation ring, F /∈ Ap implies that 1

F ∈ pAp. Let q ∈ Spec B be a preimage of p
under the morphism f . Here q is a prime ideal in B, and f∗ is local homomorphism from Ap

to Bq. Hence, f∗
(

1
F

)
∈ qBq. Combining this with the assumption that f∗(F ) ∈ B we deduce

that

1 = f∗(F )f∗
(

1

F

)
∈ qBq,

which is absurd. Therefore F must be an element of A. �
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Let us end the section with a disclaimer of notation convention for the rest of the paper.

Convention 2.17. Let us summarize the following algebra isomorphisms:

Theorem 2.11: O
(
G r×a (n)

) ∼= up (Aa,n) ,

Corollary 2.13: O
( ˜Conf×n (a)

) ∼= up
(
Ãa,n

)
,

Theorem 2.15: O
(
Conf×n (a)

) ∼= up(Xa,n).

From now on, we will treat each pair as identical algebras, and treat their corresponding fields of
rational functions as identical fields as well. In other words, we will drop the pull-back maps ψ∗

and ψ̃∗ to simplify our notations. We view {Af} as regular functions on G r×a (n) and view {Xf}
as rational functions on Conf×n (a). In particular, using the cluster Poisson coordinates {Xf} we
also get a log-canonical Poisson structure (see [5] for more details) on Conf×n (a) where

{Xf , Xg} = 2εfgXfXg. (2.29)

Recall from the proof of Corollary 2.13 that ˜Conf×n (a) ∼= G r×a (n)×H. We can pull back any

Plücker coordinate ∆I on G r×a (n) to a regular function on ˜Conf×n (a), which we will also denote
by ∆I as well.

3 Cluster nature of decorated configuration space

This section is devoted to studying the cluster nature of the following three maps on Conf×n (a):
the twisted monodromy P , the cyclic rotation R, and the potential function W, with the goal
to express them in terms of the cluster coordinates {Xf}f∈I associated to the quiver Qa,n.

3.1 Twisted monodromy and Casimir

Proposition 3.1. The twisted monodromy

P =
∏
f∈I

Xf .

The function P is a Casimir element with respect to the Poisson bracket (2.29), that is, {P, F}
= 0 for any rational function F on Conf×n (a).

Proof. Let [φ1, l1, . . . , φn, ln] ∈ Conf×n (a). Let us lift it against the projection p : ˜Conf×n (a) �
Conf×n (a) to a point [φ1, v1, . . . , φn, vn]. By (2.24), we get

p∗

∏
f∈I

Xf

 =
∏

(f,g)∈I×Ĩ

A
ε̃gf
g =

∏
g∈Ĩ

A

∑
f∈I

ε̃gf

g . (3.1)

Note that the quiver Qa,n is made of cycles. Therefore for every f ∈ I, one has∑
g∈I

εgf = 0. (3.2)

Hence the only factors contributing to the product (3.1) are from the extra frozen vertices that

extend Qa,n to Q̃a,n. Therefore

p∗

∏
f∈I

Xf

 =
n∏
i=1

Ai′ =
n∏
i=1

λi−a∆{i−a,i−a+1,...,i−1}

∆{i−a+1,i−a+2,...,i}
=

n∏
i=1

λi.
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By comparing (2.21) with the definition of P in (2.5), we see that
n∏
i=1

λi = p∗(P ). But

p∗
( ∏
f∈I

Xf

)
= p∗(P ) implies

∏
f∈I

Xf = P automatically since p is a projection.

The statement that P is Casimir is a direct consequence of (3.2) and (2.29). �

3.2 Cyclic rotation and cluster transformation

Recall the twisted cyclic rotation Ca on G r×a (n). Gekhtman, Shapiro, and Vainshtein proved
that Ca is a cluster K2 automorphism that can be realized by a mutation sequence ρ (see [9,
p. 90]). In this section, we briefly recall the definition of ρ. We show that the cyclic rotation R
on Conf×n (a) is a cluster Poisson automorphism realized by the same mutation sequence ρ.

The vertices of the quiver Qa,n are indexed by (i, j) ∈ I. Let ρ be a mutation sequence hitting
in the unfrozen part of Qa,n along every column from bottom to top, starting at the leftmost
unfrozen column and going all the way to the rightmost unfrozen column, that is,

ρ := σb−1 ◦ · · · ◦ σ2 ◦ σ1, where σi := µ(1,i) ◦ µ(2,i) ◦ · · · ◦ µ(a−1,i). (3.3)

Equivalently, the sequence ρ may be realized by a sequence of 2-by-2 moves6 on the reduced
plabic graph Γa,n. Its resulting reduced plabic graph Γ′a,n is identical to Γa,n with the non-
boundary faces remaining in the same places and with all the boundary faces rotated to the
neighboring one in the clockwise direction.

· · ·
...

...
...

...
...

· · ·
· · ·

• 1

• 2

• a− 1

• a
•
a+ 1

•
a+ 2

•
n− 2

•
n− 1

•
n

Γa,n

· · ·
...

...
...

...
...

· · ·
· · ·

•n

• 1

• a− 2

• a− 1

•
a

•
a+ 1

•
n− 3

•
n− 2

•
n− 1

Γ′a,n

One advantage of using reduced plabic graphs is that one may make use of zig-zag strands
to assign an a-element subset of {1, . . . , n} to each face of the graph (see Definition B.2). For
example, the a-element subsets assigned to faces of Γa,n in (2.15) arise precisely in this way,
which in turn associates Plücker coordinates to these faces. Moreover, it is not hard to see
that a 2-by-2 move combined with the cluster K2 mutation formula yields precisely a Plücker
relation (see (B.1) for more details); hence we can conclude that the Plücker coordinates on any
bipartite graph obtained from Γa,n via a sequence of 2-by-2 moves can be computed by using
zig-zag strands as well.

Let {A′f} be the K2 cluster associated to Γ′a,n after applying the mutation sequence ρ. Ac-
cording to the above discussion, the cluster {A′f} is defined by the a-element sets (2.15) assigned
to faces of the minimal bipartitie graphs Γ′a,n. Using the zig-zag strands on Γ′a,n, we find that

I ′(i, j) = {b− j, . . . , b− j + i− 1︸ ︷︷ ︸
consecutive i indices

, b+ i, . . . , n− 1︸ ︷︷ ︸
consecutive a− i indices

}, (3.4)

which yields

A′i,j = ∆I′(i,j) = C∗a(Ai,j).

6An explicit realization of ρ as a sequence of 2-by-2 moves has been included in the appendix.
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In other words, the twisted cyclic rotation Ca is equal to the cluster transformation defined by
the mutation sequence ρ.

If we apply the mutation sequence ρ to the extended quiver Q̃a,n, it is easy to see that the

resulting quiver ρQ̃a,n is again the same as Q̃a,n up to rotations of frozen vertices. For example,

if we start with Q̃3,6 as in (2.20), then ρQ̃3,6 is as follows:

�6′ ◦ 5

• •

• •
� 1′

� 2′

◦ 6

◦ 1

◦
4

◦
3

�

5′
�

4′

◦
2

�

3′

In particular, since the extra frozen vertex i′ is only connected to the frozen vertex i, any
cluster mutation does not change such connectivity. Therefore after the mutation sequence ρ,
the frozen vertex i′ remains connected to i. Recall from the commutative diagram (2.23) that
˜Conf×n (a) fibers over Conf×n (a) the same way Ãa,n fibers over Aa,n, with the data of the linear

isomorphisms φi captured by the extra frozen cluster K2 coordinates Ai′ . By an additional
checking on the pull-backs of the frozen cluster K2 coordiantes Ai′ we see that the twisted

cyclic rotation C̃a : [φ1, v1, . . . , φn, vn] 7→
[
φn, (−1)a−1vn, φ1, v1, . . . , φn−1, vn−1

]
on ˜Conf×n (a) is

equal to the cluster transformation defined by the mutation sequence ρ. Pushing the twisted

cyclic rotation C̃a down via the projection ˜Conf×n (a) � Conf×n (a) and using the commutative
diagram (2.27), we see that the cyclic rotation R on Conf×n (a) is also equal to the cluster
transformation defined by the mutation sequence ρ with

X ′g = R∗(Xg).

In particular, since the cyclic rotation R is a cluster transformation, it preserves the Poisson
structure on Conf×n (a).

3.3 Potential function

Proposition 3.2. In terms of the Poisson cluster {Xi,j} associated to Qa,n, the theta func-
tions ϑi in (2.8) are

ϑn = X0,0, ϑa = Xa,b, (3.5)

ϑi =
b∑

j=1

Xi,bXi,b−1 · · ·Xi,j for 0 < i < a, (3.6)

ϑi =
a∑
j=1

Xa,n−iXa−1,n−i · · ·Xj,n−i for a < i < n, (3.7)

Remark 3.3. For (3.6), the terms in ϑi are in bijection with rectangles of all possible lengths
across the ith row of the quiver Qa,n that ends at the vertex (i, b). For (3.7), the terms in ϑi
are in bijection with rectangles of all possible heights across the (n − i)th column of Qan that



Cyclic Sieving and Cluster Duality of Grassmannian 19

rises from the vertex (a, n − i). For instance, the formulas of ϑ2 and ϑ5 with a = 3 and n = 7
are as follows:

(1, 1)

(2, 1)

(1, 2)

(2, 2)

(1, 3)

(2, 3)

(1, 4)

(2, 4)

(3, 1) (3, 2) (3, 3) (3, 4)

(0, 0)

ϑ2 = X2,4 +X2,3X2,4 +X2,2X2,3X2,4 +X2,1X2,2X2,3X2,4,

ϑ5 = ϑ7−2 = X3,2 +X2,2X3,2 +X1,2X2,2X3,2.

Therefore the potential function W in (2.9) can be expressed as

W = X0,0 +Xa,b +

a−1∑
i=1

b∑
j=1

Xi,bXi,b−1 · · ·Xi,j +

b−1∑
j=1

a∑
i=1

Xa,jXa−1,j · · ·Xi,j . (3.8)

Proof. We again lift the computation up to ˜Conf×n (a). By the definition of ϑn we have φ(vb+1)−
p∗(ϑn)vb+1 ∈ Span(vb+2, . . . , vn). Hence

0 = ∆(φ(vb+1)−p∗(ϑn)vb+1)∧vb+2∧···∧vn = λb∆{b,b+2,...,n} − p∗(ϑn)∆{b+1,...,n}.

Therefore

p∗(ϑn) = λb
∆{b,b+2,...,n}

∆{b+1,...,n}
= p∗(X0,0), (3.9)

where the second equality follows from (2.25). The above equality then implies ϑn = X0,0 due
to the surjectivity of p. Similarly we prove that ϑa = Xa,b.

Now let us prove (3.7). The proof of (3.6) goes along the same line.

For a < i < n, let k = n− i. Then 0 < k < b = n−a. For 1 ≤ j ≤ a, define the a-element set

J(j, k) := {b− k, b− k + 2, . . . , b− k + j︸ ︷︷ ︸
consecutive j − 1 indices

, b+ j + 1, . . . , n︸ ︷︷ ︸
consecutive a− j indices

}.

Recall the definition of a-element sets I(j, k) from (2.15). One has the Plücker relation (2.3):

∆I(j,k−1)∆I(j+1,k+1) + ∆I(j+1,k)∆J(j,k) = ∆I(j,k)∆J(j+1,k).

Dividing by ∆I(j,k−1)∆I(j+1,k+1) on both sides, we get

1 +
∆I(j+1,k)∆J(j,k)

∆I(j,k−1)∆I(j+1,k+1)
=

∆I(j,k)∆J(j+1,k)

∆I(j,k−1)∆I(j+1,k+1)
.

Let us set

Yj,k := 1 +Xj,k(1 +Xj−1,k(. . . (1 +X1,k) . . . )).
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Let us fix k. We will prove by induction on j that

p∗(Yj,k) =
∆I(j,k)∆J(j+1,k)

∆I(j,k−1)∆I(j+1,k+1)
. (3.10)

Note that I(1, k + 1) = J(1, k). Therefore for j = 1, by using (2.24) for p∗ and identifying
Af = ∆I(f) we have

p∗(Y1,k) = 1 + p∗(X1,k) = 1 +
∆I(1,k+1)∆I(2,k)

∆I(1,k−1)∆I(2,k+1)
=

∆I(1,k)∆J(2,k)

∆I(1,k−1)∆I(2,k+1)
.

If 1 < j < a and (3.10) is true for j − 1, then it is true for j because

p∗(Yj,k) = 1 + p∗(Xj,kYj−1,k) = 1 +
∆I(j+1,k)∆J(j,k)

∆I(j,k−1)∆I(j+1,k+1)
=

∆I(j,k)∆J(j+1,k)

∆I(j,k−1)∆I(j+1,k+1)
,

and the induction is finished.

Recall from (2.25) that

p∗(Xa,k) = p∗(Xn−k) = λb−k
∆{b−k,...,n−k−1}∆{b−k+2,...,n−k,n}

∆{b−k+1,...,n−k}∆{b−k+1,...,n−k−1,n}
.

Now by setting j = a− 1 in (3.10) and recalling (2.15) for the definition of I(j, k), we get

p∗(Xa,kYa−1,k) = p∗(Xa,k)p
∗(Ya−1,k)

= λb−k
∆{b−k,...,n−k−1}∆{b−k+2,...,n−k,n}

∆{b−k+1,...,n−k}∆{b−k+1,...,n−k−1,n}

∆{b−k+1,...,n−k−1,n}∆{b−k,b−k+2,...,n−k}

∆{b−k+2,...,n−k,n}∆{b−k,...,n−k−1}

= λb−k
∆{b−k,b−k+2,...,n−k}

∆{b−k+1,b−k+2,...,n−k}
= p∗(ϑn−k),

where the last equality is obtained analogously to (3.9). This shows that

ϑn−k = Xa,kYa−1,k =
a∑
j=1

Xa,kXa−1,k · · ·Xj,k. �

3.4 Tropicalization

Cluster varieties are examples of positive spaces, which admit canonical tropicalizations. The
sets of integral tropical points of cluster varieties play important roles in the Fock–Goncharov
cluster duality. We briefly review the related constructions in this subsection; please see [5] for
more details.

Let X be a cluster variety (either K2 type or Poisson type). A positive rational function
on X is a nonzero function that can be expressed as a ratio of two polynomials with non-negative
integer coefficients in one (and hence all) cluster(s) of X . The set P (X ) of positive rational
functions is a semifield, i.e., a set closed under addition, multiplication, and division. The pair
(X , P (X )) is called a positive space.

Let Zt := (Z,min,+) be the semifield of tropical integers.7 We define the tropicalization of
(X , P (X )) to be the set

X
(
Zt
)

:= Homsemifield

(
P (X ),Zt

)
.

7There is another closely-related semifield ZT := (Z,max,+). See [17, p. 35] for its connection to Zt.
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Let (X , P (X )) and (Y , P (Y )) be a pair of cluster varieties. A rational map f : X 99K Y
is positive if the pull back f∗P (Y ) is contained in P (X ). Every positive rational map f admits
a tropicalization f t : X (Zt) → Y

(
Zt
)

defined by precomposing with the pull-back map f∗.
In particular cluster mutations are subtraction-free. Therefore every cluster automorphism is
positive and can be tropicalized. It induces a natural action of the cluster modular group G
on X

(
Zt
)
.

Let χ := {Xi | 1 ≤ i ≤ m} be a cluster coordinate chart of X . Its tropicalization is a bijection

χt : X
(
Zt
) ∼−→ Zm, l 7−→ (l(X1), l(X2), . . . , l(Xm)) := (x1, . . . , xm).

The m-tuple (x1, . . . , xm) is called the tropical coordinates on X
(
Zt
)

in terms of the cluster χ.
Tautologically, every positive function f ∈ P (X ) gives rise to a Z-valued function

f t : X
(
Zt
)
−→ Z, l 7−→ l(f),

which can be expressed as a piecewise linear function in terms of the tropical coordinates
(x1, . . . , xm) by the following procedure:

1. Change every addition to taking minimum.

2. Change every multiplication into addition and every division to subtraction.

3. Drop the coefficient of each monomial in the function.

4. Change the variables Xi to xi.

For example, the tropicalization of the positive rational function f =
2X1X2+X2

2+1
(X1+X2)3

is

f t = min{x1 + x2, 2x2, 0} − 3 min{x1, x2}.

Let us tropicalize the cluster variety Conf×n (a). Recall that the potential W and the twisted
monodromy P are positive functions on Conf×n (a). We can hence define subsets

Q(a, b, c) :=

{
q ∈ Conf×n (a)

(
Zt
) ∣∣∣Wt(q) ≥ 0,

P t(q) = c

}
. (3.11)

Remark 3.4. The part of Conf×n (a)
(
Zt
)

that is cut out by the inequality Wt ≥ 0 is also known
as the superpotential cone, and as we will see soon, it coincides with the Gelfand–Zetlin cone as
well.

The rotation R : Conf×n (a) → Conf×n (a) is a cluster transformation and therefore can be
tropicalized into Rt : Conf×n (a)

(
Zt
)
→ Conf×n (a)

(
Zt
)
. By definition W and P are invariant

under R, and hence Rt preserves the sets Q(a, b, c). We will introduce another coordinate
system on Conf×n (a)

(
Zt
)

in the next section and construct a natural bijection between Q(a, b, c)
and the set of plane partitions P (a, b, c) defined in Definition 1.5.

3.5 Gelfand–Zetlin coordinates

Although we can express the potential functionW in terms of the cluster Poisson coordinates Xf

in a subtraction-free manner, the resulting tropicalization does not convey its nice combinatorial
connection to plane partitions very well. In this section, we will do a monomial transformation on
the cluster Poisson coordinates to define a new set of coordinates, which we call “Gelfand–Zetlin
coordinates” due to its combinatorial connection to Gelfand–Zetlin patterns, a well-studied
object in combinatorial representation theory.
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Definition 3.5. We define the Gelfand–Zetlin coordinate Li,j associated to the vertex (i, j) of
the quiver Qa,n to be

Li,j :=
∏
k≥i
l≥j

Xk,l.

By definition these new functions {Li,j} relate to the cluster Poisson coordinates {Xi,j} by
a monomial transformation. With the convention that Li,j = 1 for i > a or j > b, we can express
the inverse of this transformation as

X0,0 =
L0,0

L1,1
and Xi,j =

Li,jLi+1,j+1

Li+1,jLi,j+1
for (i, j) 6= (0, 0).

It follows that these new functions Li,j form a coordinate system on Conf×n (a), which justifies
the term “coordinate” in the definition.

The following Lemma is a direct consequence of Proposition 3.1 and (3.8).

Lemma 3.6. In terms of the Gelfand–Zetlin coordinates, the twisted monodromy P = L0,0, and
the potential

W =
L0,0

L1,1
+ La,b +

a−1∑
i=1

b∑
j=1

Li,j
Li+1,j

+

b−1∑
j=1

a∑
i=1

Li,j
Li,j+1

. (3.12)

Remark 3.7. By setting L0,0 = et, (3.12) coincides with the Lax operator on Grassmannian in
[2, equation (B.25)].

The Gelfand–Zetlin coordinates Li,j are clearly positive functions on Conf×n (a). Let us follow
our convention and use lower case letter li,j to denote the tropicalization of Li,j . The next
proposition shows that plane partitions can be obtained naturally via tropicalization of the
Gelfand–Zetlin coordinates.

Proposition 3.8. The tropicalized change of coordinates (xi,j) 7→ (li,j) gives a natural bijection
between the subset Q(a, b, c) ⊂ Conf×a (n)

(
Zt
)

and the set of plane partitions P (a, b, c) defined in
Definition 1.5.

Proof. By Lemma 3.6, we get

P t = l0,0,

Wt = min

{l0,0 − l1,1, la,b} ∪
 ⋃

1≤i≤a−1
1≤j≤b

{li,j − li+1,j}

 ∪
 ⋃

1≤i≤a
1≤j≤b−1

{li,j − li,j+1}


 .

The condition that Wt ≥ 0 is now equivalent to the conditions

l0,0 ≥ l1,1, la,b ≥ 0, li,j−1 ≥ li,j ≥ li+1,j , ∀ (i, j). (3.13)

After imposing the additional condition that P t = l0,0 = c, the coordinates (li,j)1≤i≤a
1≤j≤b

of the

elements of Q(a, b, c) (3.11) naturally become plane partitions in P (a, b, c). �

Remark 3.9. Note the similarity between the inequalities (3.13) and the inequalities in Gelfand–
Zetlin patterns. For this reason, we name the coordinates Lij as “Gelfand–Zetlin” coordinates.
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The next lemma is useful for future computation with Gelfand–Zetlin coordinates.

Lemma 3.10. Recall λk in (2.21) and Ai,j in (2.16). Set Ai,0 = A0,j = A0,0. Then

p∗ (Li,j) =
Ai−1,j−1

Ai,j

b−j∏
k=i−a

λk, ∀ 1 ≤ i ≤ a, ∀ 1 ≤ j ≤ b, (3.14)

where the indices of λk are defined modulo n and run as i− a, i− a+ 1, . . . , b− j.

Proof. We prove (3.14) by a double induction on the indices (i, j) in the descending order. It
is certainly true for (a, b) since

p∗(La,b) = p∗(Xa,b) = λn
∆{2,...,a,n}

∆{1,2,...,a}
= λn

Aa−1,b−1

Aa,b
.

Take (a, j) with 1 ≤ j < b. The cluster coordinate Xa,j is associated to a boundary face.
By (2.25) and (2.15),

p∗(Xa,j) = p∗(Xn−j) = λb−j
∆{b−j,b−j+1,...,n−j−1}∆{b−j+2,...,n−j,n}

∆{b−j+1,b−j+2,...,n−j}∆{b−j+1,...,n−j−1,n}
= λb−j

Aa,j+1

Aa,j

Aa−1,j−1

Aa−1,j
.

If (3.14) is true for (a, j + 1), then

p∗(La,j) = p∗(Xa,jLa,j+1) =

(
λb−j

Aa,j+1Aa−1,j−1

Aa,jAa−1,j

)(
Aa−1,j

Aa,j+1

b−j−1∏
k=i−a

λk

)

=
Aa−1,j−1

Aa,j

b−j∏
k=i−a

λk.

Similarly, for (i, b) with 1 ≤ i < a, by induction we get

p∗(Li,b) = p∗(Xi,bLi+1,b) =

(
λi−a

Ai+1,bAi−1,b−1

Ai,bAi,b−1

)Ai,b−1

Ai+1,b

n∏
k=

i−a+1

λk


=
Ai−1,b−1

Ai,b

n∏
k=i−a

λk.

Take (i, j) with i < a and j < b. Recall from (2.24) that

p∗(Xi,j) =
Ai−1,j−1Ai,j+1Ai+1,j

Ai−1,jAi,j−1Ai+1,j+1
.

If (3.14) is true for (i+ 1, j), (i, j + 1) and (i+ 1, j + 1), then

p∗(Li,j) = p∗
(
Xi,jLi+1,jLi,j+1

Li+1,j+1

)
=

(
Ai−1,j−1Ai,j+1Ai+1,j

Ai−1,jAi,j−1Ai+1,j+1

)(
Ai,j−1

Ai+1,j

b−j∏
k=i−a+1

λk

)

×

(
Ai−1,j

Ai,j+1

b−j−1∏
k=i−a

λk

)(
Ai,j

Ai+1,j+1

b−j−1∏
k=i−a+1

λk

)−1

=
Ai−1,j−1

Ai,j

b−j∏
k=i−a

λk. �
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4 Cluster duality

4.1 Duality conjecture and canonical basis

Let
(
A|Q|,X|Q|

)
be the cluster ensemble associated to a quiver Q. Recall the algebras up

(
A|Q|

)
and up

(
X|Q|

)
and the cluster modular group G|Q|. The Fock–Goncharov cluster duality con-

jecture asserts that

Conjecture 4.1 ([5, Conjecture 4.1]). The algebra up(A|Q|) admits a canonical basis G|Q|-
equivariantly parametrized by X|Q|

(
Zt
)
. The algebra up

(
X|Q|

)
admits a canonical basis G|Q|-

equivariantly parametrized by A|Q|
(
Zt
)
.

Conjecture 4.1 has been proved in [17] under two combinatorial assumptions, which can be
summarized as follows.

Theorem 4.2 ([17, Proposition 0.14]). Conjecture 4.1 holds if the following conditions are
satisfied.

� The non-frozen part of the quiver Q possesses a maximal green sequence or a reddening
sequence.8

� The exchange matrix ε = (εij) of Q, with i running through the non-frozen vertices and j
running through all the vertices, is of full rank.

Remark 4.3. For any quiver Q that satisfies the above combinatorial conditions, cluster duality
gives rise to canonical bases of up

(
A|Q|

)
and up

(
X|Q|

)
, which we denote as follows:

ΘA :=
{
θq
∣∣ q ∈X|Q|

(
Zt
)}
⊂ up

(
A|Q|

)
,

ΘX :=
{
ϑp
∣∣ p ∈ A|Q|

(
Zt
)}
⊂ up

(
X|Q|

)
.

The basis elements θq and ϑp satisfy many remarkable properties (see [17] for the comprehensive
list). One of them is that every θq ∈ up

(
A|Q|

)
in terms of the K2 cluster {Aj} associated to Q

is expressed as

θq =
∏
j

A
xj
j F

∏
j

A
εkj
j


k∈Iuf

 , (4.1)

where (xj) is the tropical coordinates of q ∈ X
(
Zt
)

in terms of the Poisson cluster associated
to the same quiver Q, and F is a polynomial with constant term 1 and variables of the form∏
j A

εkj
j as k ranges through all unfrozen vertices. The elements ϑp admit similar formulas.

One may notice that, on the one hand, we define p∗(Xi) =
∏
j A

εji
j in the definition of the p

map, and on the other hand, the above polynomial F depends on
∏
j A

εij
j = p∗

(
X−1
i

)
. The

reason this happens is that the cluster Poisson variables used in this paper are inverses of those
used by Gross, Hacking, Keel, and Kontsevich in [17]. Such a switch frees us from considering
tropicalization in which the tropical addition is maximum rather than minimum.

Proof of Theorem 1.2. For the quiver Qa,n, the existence of a maximal green sequence was
proved by Marsh and Scott in [22] and the existence of a cluster Donaldson–Thomas trans-
formation (which is equivalent to a reddening sequence) was proved by Weng in [35]. By

8Maximal green sequences and reddening sequences are special sequences of quiver mutations introduced by
Keller [20] in order to study Donaldson–Thomas transformations. In the original statement of Gross–Hacking–
Keel–Kontsevich, the theorem was stated with maximal green sequence; but they only need the existence of
a maximal green sequence to ensure that the cluster complex does not lie within a half space, which is also
a consequence of the existence of a reddening sequence.
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Lemma 2.12, the second combinatorial condition holds. Hence Conjecture 4.1 holds for the clus-
ter ensemble (Aa,n,Xa,n). By Theorems 2.11 and 2.15 we know that up(Aa,n) ∼= O

(
G r×a (n)

)
and up(Xa,n) ∼= O

(
Conf×n (a)

)
. This concludes the proof of Theorem 1.2. �

Remark 4.4. This Θ-basis was constructed by Gross, Hacking, Keel, and Kontsevich in [17]
as formal power series by counting broken lines in scattering diagrams. To find an explicit
procedure to determine all basis elements as regular functions and to compare them with other
notable bases of representations (e.g., Lusztig’s canonical basis, Mirkovic–Vilonen basis, etc.)
are interesting directions for future research.

4.2 Partial compactification, optimized quiver, and potential function

Let Q =
(
Iuf ⊂ I, ε

)
be a quiver satifying the combinatorial conditions in Theorem 4.2. Let

I0 := I − Iuf be the set of frozen vertices. For i ∈ I0, let Di denote the (irreducible) boundary
divisor of A|Q| defined by setting Ai = 0. Let us glue A|Q| with these boundary divisors,
obtaining the partially compactified space

A |Q| := A|Q| ∪

⋃
i∈I0

Di

 .

This section is devoted to studying the ring O
(
A |Q|

)
of regular functions on A |Q|.

Let f ∈ up
(
A|Q|

)
. Denote by ordDi(f) the order of f along the boundary divisor Di. Note

that f can be extended to a regular function on Di if and only if ordDi(f) ≥ 0. Therefore

O
(
A |Q|

)
=
{
f ∈ up(A|Q|)

∣∣ ordDi(f) ≥ 0, ∀ i ∈ I0
}
.

Recall the canonical basis ΘA of O(A|Q|). Consider the intersection

ΘA := ΘA ∩ O
(
A |Q|

)
=
{
θq ∈ ΘA

∣∣ ordDi(θq) ≥ 0, ∀i ∈ I0
}
.

Conjecture 9.8 of [17] implies that the intersection ΘA descends to a linear basis of O
(
A |Q|

)
.

The paper loc. cit. provides a sufficient condition under which the aforementioned conjecture
holds.

Definition 4.5. Let i ∈ I0. If εki ≥ 0 for all unfrozen vertices k, then we say the quiver Q
is optimized for i. If there exists a mutation sequence τ such that the mutated quiver τQ is
optimized for i, then we say that i admits an optimized quiver in the equivalence class |Q|.

Remark 4.6. Because of the different conventions used in this paper vs. those in [17], we
define Q to be optimized for i if all arrows between i and unfrozen vertices point towards the
unfrozen ones, as opposed to the other direction stated in [17, Definition 9.1].

Proposition 4.7. If every frozen vertex i of Q admits an optimized quiver in |Q|, then the
set ΘA forms a linear basis of O

(
A |Q|

)
.

Proof. The linear independence of ΘA is clear. Suppose that

f =
∑

q∈X (Zt)

αqθq ∈ O
(
A |Q|

)
.

By definition, ordDi(f) ≥ 0 for every frozen i. By [17, Proposition 9.7], if i admits an optimized
quiver in |Q|, then ordDi(θq) ≥ 0 for all q with αq 6= 0. Therefore whenever the coefficient αq is
nonzero, the function θq ∈ ΘA . In other words, the set ΘA spans O

(
A |Q|

)
. �
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Now it is natural to address the following question: for which q ∈ X|Q|
(
Zt
)

do we have
θq ∈ ΘA ? A criterion for recognizing such q’s was suggested in [13, Definition 12.7], and was
proved in [17].

Let i ∈ I0. Let pi ∈ A|Q|
(
Zt
)

be the tropical point such that its tropical coordinates
Atj(pi) = δij , where δij is the Kronecker delta symbol. The existence and uniqueness of pi is
a direct consequence of the definition of cluster K2 mutations. Let ϑpi ∈ ΘX be the theta
function parametrized by pi. Define the GHKK potential

W :=
∑
i∈I0

ϑpi . (4.2)

The following Proposition is a paraphrase of [17, Lemma 9.3]; we include it below for the
sake of completeness.

Proposition 4.8. Assume that every frozen vertex of Q admits an optimized quiver in |Q|. Let
q ∈X|Q|

(
Zt
)
. Then θq ∈ ΘA if and only if W t(q) ≥ 0.

Proof. By the definition of tropicalization, we have

W t(q) = min
i∈I0

{
ϑtpi(q)

}
.

Therefore W t(q) ≥ 0 if and only if every ϑtpi(q) ≥ 0. It suffices to show that if i ∈ I0 admits an
optimized quiver, then

ordDi(θq) = ϑtpi(q). (4.3)

Without loss of generality, let us assume that Q is optimized for i, i.e., εki ≥ 0 for all unfrozen
vertices k. Let {Aj} be the cluster of A|Q| associated to Q. Let Xi be the cluster variable
of X|Q| associated to the vertex i in Q and let xi := Xt

i be its tropicalization. Since θq is of the
form (4.1) and εki ≥ 0 for all unfrozen vertices k, it follows that

ordDi(θq) = xi(q).

On the other hand, by [17, Lemma 9.3], if Q is optimized for i, then ϑpi = Xi. Therefore
xi(q) = Xt

i (q) = ϑtpi(q), which concludes the proof of (4.3). �

Let us apply the above results to the cases of Grassmannians. It boils down to finding
optimized quivers for frozen vertices in the quiver Qa,n. As observed by L. Williams and stated
in [17, Proposition 9.4], the quiver Qa,n is optimized for the vertices (0, 0) and (a, b); since the
mutation sequence ρ in (3.3) rotates the frozen vertices of Qa,n clockwise to their neighbors,
by applying ρ repeatedly, each frozen vertex i has a chance to be at the position of (0, 0) and
therefore admits an optimized quiver. Indeed, the quiver ρn−iQa,n is optimized for the frozen
vertex i.

The next Proposition shows that in the Grassmannian case, the potential functionW =
∑

i ϑi
in (2.9) coincides with the function W in (4.2).

Proposition 4.9. Under the algebra isomorphism up(Xa,n) ∼= O
(
Conf×n (a)

)
, the theta func-

tion ϑpi is identified with the function ϑi defined in (2.8).

Proof. Note that Qa,n is optimized for (0, 0). By (3.5) and [17, Lemma 9.3], we have

ϑn = X0,0 = ϑpn .

For the other frozen vertices, let us apply the rotation mutation sequence ρ. Then

ϑpi = Xρn−i
n =

(
Rn−i

)∗
Xn =

(
Rn−i

)∗
ϑn = ϑi. �
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By Theorem 2.11, or more precisely by the original version [32, Theorem 3], the coordinate
ring O(G ra(n)) is isomorphic to O

(
A a,n

)
. Combining Propositions 4.7, 4.8, and 4.9, we get the

following theorem.

Theorem 4.10. Under the isomorphisms O(G ra(n))
∼
=O

(
A a,n

)
and O

(
Conf×n (a)

)∼=up(Xa,n),
the coordinate ring O(G ra(n)) admits a natural basis{

θq
∣∣ q ∈ Conf×n (a)

(
Zt
)
, Wt(q) ≥ 0

}
.

4.3 Gm-action

Recall the Gm-action on G ra(n) in (2.1). Let us restrict the Gm-action to the open subset G r×a (n).
It induces a Gm-action on O

(
G r×a (n)

)
extending the one on O(G ra(n)).

Recall the twisted monodromy function P on Conf×n (a).

Proposition 4.11. Let q ∈ Conf×n (a)
(
Zt
)
. Its corresponding theta function θq ∈ O

(
G r×a (n)

)
is

an eigenvector of the Gm-action with weight P t(q):

t.θq = tP
t(q)θq

Proof. Let {Ai,j} be the K2 cluster of G r×a (n) associated to Qa,n. By (4.1), the function θq
can be expressed as a Laurent polynomial

θq =
∏
(i,j)

A
xi,j
i,j F

(∏
g

A
εfg
g

)
f∈Iuf

 , (4.4)

where (xi,j) is the tropical coordinates of q with respect to the quiver Qa,n, and F is a polynomial
with constant term 1 and variables of the form

∏
g A

εfg
g for f ∈ Iuf .

By definition, every Af is a Plücker coordinate and therefore is of weight 1 with respect to
the Gm-action. Since

∑
f εfg = 0 for all g ∈ Iuf by construction, the whole factor F is invariant

under the Gm-action. It implies that θq is an eigenvector of weight
∑

(i,j) xi,j . By tropicalizing
P =

∏
f∈I Xf (Proposition 3.1), we have

P t(q) =
∑
(i,j)

xi,j ,

which concludes the proof. �

As a direct consequence, we get the following corollary.

Corollary 4.12. The representation O(G ra(n))c = Vcωa has a canonical basis

Θ(a, b, c) := {θq | q ∈ Q(a, b, c)}, (4.5)

where Q(a, b, c) is defined in (3.11). By combining this result with Proposition 3.8 we deduce
that there is a natural bijection between Θ(a, b, c) and the set of plane partitions P (a, b, c).

Remark 4.13. Rietsch and Williams proved a similar result on parametrization of a basis
of Vcωa by plane partitions [29, Lemma 16.16], which also relies on cluster duality. However,
they approached the problem from the other direction by realizing the open positroid vari-
ety Gr×a (n) as a cluster Poisson variety and choosing basis elements from the canonical basis of
up(X ), which is parametrized by A

(
Zt
)
. In order to do this, they break the cyclic symmetry

of Grassmannian by fixing a particular Plücker coordinate, denoted by Pmax in [29, Section 1.6].
As a consequence, the basis in [29, Lemma 16.16] does not respect the twisted cyclic rotation
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on Grassmannian. In contrast, the basis Θ(a, b, c) in Corollary 4.12 is invariant under twisted
cyclic rotation, which is crucial to our proof of a cyclic sieving phenomenon of plane partitions
(Theorem 1.6).

In this paper, the basis elements in (4.5) are realized as functions on the decorated Grass-
mannian G ra(n), as opposed to the ordinary Grassmannian in loc. cit. And the space G ra(n)
is realized as a cluster K2 variety, as opposed to the space Gr×a (n) as a cluster Poisson variety
in loc. cit. Our basis Θ(a, b, c) has an invariance property with respect to the twisted cyclic
rotation Ca, which plays a crucial role in our proof of cyclic sieving phenomenon. Moreover,
we will prove in the next section that our basis also fits into the weight space decomposition
of Vcωa , which is a stronger result.

4.4 Torus action and weight space decomposition

By (2.3), G r×a (n) ∼= SLa \Mat×a,n. The group GLn acts on the right of Mat×a,n by matrix mul-
tiplication. The maximal torus T = (Gm)n ⊂ GLn of diagonal matrices acts by rescaling the
column vectors vi of the matrices in Mat×a,n

(v1, . . . , vn).(t1, . . . , tn) := (t1v1, t2v2, . . . , tnvn).

Its induced left (Gm)n-action on O
(
G r×a (n)

)
gives rise to a weight space decomposition

O
(
G r×a (n)

)
=
⊕
µ

O(µ),

where µ = (µ1, . . . , µn) ∈ Zn and O(µ) consists of the functions F such that

(t1, . . . , tn).F = tµ11 · · · t
µn
n F.

In particular, if we restrict to the representation Vcωa = O(G ra(n))c, then we get the weight
space decomposition

Vcωa =
⊕
µ

Vcωa(µ), where Vcωa(µ) := Vcωa ∩ O(µ).

In this section, we show that the theta basis Θ(a, b, c) is compatible with the weight space
decomposition of the representation Vcωa .

Recall the following dual torus projection defined in (2.11)

M = (M1, . . . ,Mn) : Conf×n (a) −→ T∨.

Let us tropicalize the map M , obtaining

M t =
(
M t

1, . . . ,M
t
n

)
: Conf×n (a)

(
Zt
)
−→ T∨

(
Zt
) ∼

= Zn.

Proposition 4.14. Let q ∈ Conf×n (a). The theta function θq is an eigenvector of the T -action
on O

(
G r×a (n)

)
with weight M t(q), i.e.,

(t1, . . . , tn).θq = t
Mt

1(q)
1 · · · tMt

n(q)
n θq.

The proof of Proposition 4.14 will require a little preparation. Recall the a-element set I(i, j)
assigned to each vertex (i, j) of the quiver Qa,n (2.15):

I(i, j) = {b− j + 1, . . . , b− j + i︸ ︷︷ ︸
i indices

, b+ i+ 1, . . . , n︸ ︷︷ ︸
a− i indices

}.
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For k ∈ {1, . . . , n}, let Fk denote the collection of vertices (i, j) in Qa,n such that k ∈ I(i, j). By
the definition of I(i, j), it is easy to check that the sets Fk are of two patterns. When 1 ≤ k ≤ b,
the vertices in Fk are enclosed in a stair-shape diagram, such that the difference between the
consecutive steps is 1, until its height becomes 0 or until it touches the rightmost column. When
b < k ≤ n, we get a smaller stair with another part that consists of the (0, 0) vertex and possibly
a rectangle:

. . .
Fk

(1, b− k + 1)

(2, b− k + 2)

1 ≤ k ≤ b

. . .

Fk

Fk

(k − b, 1)

(0, 0)

(1, b)

b ≤ k ≤ n

Example 4.15. When (a, n) = (2, 5), the sets Fk are depicted as follows:

F1 =
(2, 3)

(1, 3)

F2 =
(2, 2) (2, 3)

(1, 2)

F3 =
(2, 1) (2, 2)

(1, 1)

F4 =

(0, 0)

(2, 1)

F5 =
(1, 3)(1, 2)(1, 1)

(0, 0)

Lemma 4.16. Recall the clusters {Xi,j} of Conf×n (a) associated to Qa,n in (2.24). The function

Mk =
∏

(i,j)∈Fk

Xi,j .

Proof. We will prove the lemma under the assumption that a ≤ b (the cases with a ≥ b are
completely analogous). When 1 ≤ k ≤ a, we have

∏
(i,j)∈Fk

Xi,j =
L1,b−k+1

L1,b−k+2

L2,b−k+2

L2,b−k+3
· · ·

Lk−1,b−1

Lk−1,b
Lk,b =

k∏
i=1

Li,b−k+i

k−1∏
i=1

Li,b−k+i+1

Then by Lemma 3.10,

p∗


k∏
i=1

Li,b−k+i

k−1∏
i=1

Li,b−k+i+1

 =
∆{k−a,...,k−1}

∆{k−a+1,...,k}

k−1∏
i=k−a

λi = p∗(Mk),
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where the last equality follows from the definition of Mk in (2.10) (please keep in mind that all
indices of λ and ∆ are taken modulo n). When a < k ≤ b, we get

∏
(i,j)∈Fk

Xi,j =
L1,b−k+1

L1,b−k+2

L2,b−k+2

L2,b−k+3
· · ·

La,n−k
La,n−k+1

=

a∏
i=1

Li,b−k+i

a∏
i=1

Li,b−k+i+1

.

Again by Lemma 3.10,

p∗


a∏
i=1

Li,b−k+i

a∏
i=1

Li,b−k+i+1

 =
∆{k−a,...,k−1}

∆{k−a+1,...,k}

k−1∏
i=k−a

λi = p∗(Mk).

Lastly, when b < k ≤ n, we have

p∗

 ∏
(i,j)∈Fk

Xi,j

 = p∗

L0,0

n−k∏
i=1

Lk−b+i,i

n−k∏
i=0

Lk−b+i,i+1

 =
∆{k−a,...,k−1}

∆{k−a+1,...,k}

k−1∏
i=k−a

λi = p∗ (Mk) . �

Proof of Proposition 4.14. The proof makes use of the expression (4.4) of θq again. For
a nonfrozen vertex f , the product

∏
g A

εfg
g = p∗

(
X−1
f

)
is independent of the rescaling of the

column vectors vi due to the well-defined-ness of the unfrozen variable Xf . Therefore the
polynomial F in (4.4) is invariant under the rescaling T -action. For the Plücker coordinates Ai,j ,
note that it is affected by the tk component of T if and only if (i, j) ∈ Fk. Therefore

(t1, . . . , tn).θq = tµ11 tµ22 · · · t
µn
n θq, where µk =

∑
(i,j)∈Fk

xi,j .

By Lemma 4.16, we get
∑

(i,j)∈Fk
xi,j = M t

k(q). �

Combining Corollary 4.12 with Proposition 4.14, we get the following result.

Corollary 4.17. The weight space Vcωa(µ) has a canonical basis

Θ(a, b, c)(µ) :=
{
θq ∈ Θ(a, b, c)

∣∣M t(q) = µ
}
.

Recall that Θ(a, b, c) is parametrized by the set P (a, b, c) of plane partitions. In the rest
of this section, we present a concrete decomposition of P (a, b, c) compatible with the above
decomposition of Θ(a, b, c).

Recall that the Gelfand–Zetlin patterns [11] for GLn are triangular arrays of integers with
non-increasing rows and columns as follows

Λ =


λ1,1 λ1,2 λ1,3 · · · λ1,n

λ2,2 λ2,3 · · · λ2,n

λ3,3 · · · λ3,n

. . .
...

λn,n

 .

Let δi :=
i∑

k=1

λk,n−i+k be the sums of entries along diagonals. Define

wt(Λ) := (δ1, δ2 − δ1, . . . , δn − δn−1). (4.6)
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Now let π = (πij) ∈ P (a, b, c). Note that 0 ≤ πi,j ≤ c. It uniquely determines a Gelfand–
Zetlin pattern as follows

Λπ :=



c c · · · c π1,1 π1,2 · · · π1,b

c · · · c π2,1 π2,2 · · · π2,b

. . .
...

...
...

. . .
...

c πa,1 πa,2 · · · πa,b
0 0 · · · 0

0 · · · 0
. . .

...
0


.

Consider the decomposition

P (a, b, c) =
⊔
µ

P (a, b, c)(µ), where P (a, b, c)(µ) := {π ∈ P (a, b, c) | wt(Λπ) = µ}.

Proposition 4.18. The basis Θ(a, b, c)(µ) is in natural bijection with P (a, b, c)(µ).

Proof. Recall the tropical Gelfand–Zetlin coordinates {li,j} of Conf×n (a)
(
Zt
)
. Let us arrange

them in the following triangular pattern

l0,0 l0,0 · · · l0,0 l1,1 l1,2 · · · l1,b
l0,0 · · · l0,0 l2,1 l2,2 · · · l2,b

. . .
...

...
...

. . .
...

l0,0 la,1 la,2 · · · la,b
0 0 · · · 0

0 · · · 0
. . .

...
0

Consider the sums of li,j along each diagonal:

δ1 = l1,b, δ2 = l1,b−1 + l2,b, . . . , δn = al0,0.

Following the same argument as in the proof of Lemma 4.16, we get

M t =
(
M t

1,M
t
2, . . . ,M

t
n

)
= (δ1, δ2 − δ1, . . . , δn − δn−1). (4.7)

The proposition then follows from a comparison between (4.7) and (4.6). �

5 Cyclic sieving phenomenon of plane partitions

As an application of cluster duality for Grassmannians, we use the basis for Vcωa obtained in
Corollary 4.12 to prove a cyclic sieving phenomenon of plane partitions under the sequence of
toggles η defined in Section 1.2.

First we recall that the parametrization of basis we obtained from cluster duality is equivariant
with respect to the cluster modular group action (Theorem 1.2). Since both the twisted cyclic
rotation Ca on G r×a (n) and the rotation R on Conf×n (a) come from the same cluster modular
group element (Section 3.2), it follows that

C∗aθq = θRt(q).
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On the other hand, we discovered a natural bijection between the parametrization setQ(a, b, c)
of the basis {θq | q ∈ Q(a, b, c)} of Vcωa and the set of plane partitions P (a, b, c) using tropical
Gelfand–Zetlin coordinates (Proposition 3.8). We claimed in Theorem 1.7 that the action of Ca
on the basis element θq is equivalent to the sequence of toggles η on plane partitions, so let us
first use Gelfand–Zetlin coordinates once more to prove Theorem 1.7.

We begin by setting Li,0 = L0,j = P and La+1,j = Li,n−a+1 = 1. Let

L′i,j := R∗Li,j ,

where R∗ denotes the pull-back via the biregular morphism R. Note that R∗P = P . Therefore
L′i,0 = L′0,j = P and L′a+1,j = L′i,n−a+1 = 1.

Lemma 5.1. We have

L′i,j =

(
L′i,j−1 + Li−1,j

)
L′i+1,jLi,j+1

Li,j
(
L′i+1,j + Li,j+1

) , ∀ 1 ≤ i ≤ a, ∀ 1 ≤ j ≤ b.

Proof. Throughout the proof we will adopt the convention of using a prime superscript to
denote the coordinates after the cyclic rotation action. Let A′i,j := C∗aAi,j = ∆I′(i,j), with I ′(i, j)
defined as (3.4):

I ′(i, j) = {b− j, . . . , b− j + i− 1︸ ︷︷ ︸
consecutive i indices

, b+ i, . . . , n− 1︸ ︷︷ ︸
consecutive a− i indices

}

By Lemma 3.10 we get

p∗
(
L′i,j
)

=
A′i−1,j−1

A′i,j

b−j∏
k=i−a

λ′k =
A′i−1,j−1

A′i,j

b−j−1∏
k=i−a−1

λk.

The last equality is obtained from the fact that λ′k = λk−1 for all k, which is due to the cyclic
rotation. Using I(i, j) (2.15) and I ′(i, j) (3.4) one can deduce the following identity from the
Plücker relations (2.3):

A′i−1,j−2Ai−1,j +Ai−2,j−1A
′
i,j−1 = A′i−1,j−1Ai−1,j−1,

A′i,j−1Ai,j+1 +Ai−1,jA
′
i+1,j = A′i,jAi,j .

Let us take the ratio of them and multiply by
b−j∏

k=i−a
λkλk−1 on both sides. The right hand side is

r.h.s. =

(
A′i−1,j−1

A′i,j

b−j−1∏
k=i−a−1

λk

)(
Ai−1,j−1

Ai,j

b−j∏
k=i−a

λk

)
= p∗

(
L′i,jLi,j

)
.

The left hand side becomes

l.h.s. =

(
A′i−1,j−2Ai−1,j +Ai−2,j−1A

′
i,j−1

)
/
(
Ai−1,jA

′
i,j−1

)(
A′i,j−1Ai,j+1 +Ai−1,jA′i+1,j

)
/
(
Ai−1,jA′i,j−1

) ·
b−j∏

k=i−a
λkλk−1

=

(
A′i−1,j−2

A′i,j−1

+
Ai−2,j−1

Ai−1,j

)
·

(
Ai,j+1

Ai−1,j
+
A′i+1,j

A′i,j−1

)−1

·
b−j∏

k=i−a
λkλk−1

=

(
A′i−1,j−2

A′i,j−1

b−j∏
k=i−a−1

λk +
Ai−2,j−1

Ai−1,j

b−j∏
k=i−a−1

λk

)
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×

 Ai,j+1

Ai−1,j

b−j−1∏
k=i−a

λk

+
A′i+1,j

A′i,j−1

b−j−1∏
k=i−a

λk


−1

= p∗
((
L′i,j−1 + Li−1,j

)
·
(
L−1
i,j+1 + L′−1

i+1,j

)−1
)

= p∗

((
L′i,j−1 + Li−1,j

)
L′i+1,jLi,j+1(

L′i+1,j + Li,j+1

) )
,

which is precisely the right hand side. �

Lemma 5.1 allows us to compute L′i,j recursively. Let Π = (Πij) be a matrix such that its
rows are numbered 0, . . . , a + 1 and its columns are numbered 0, . . . , b + 1. For 1 ≤ i ≤ a and
1 ≤ j ≤ b, we define a birational toggling action τi,j sending Π to the matrix τi,jΠ such that

(τi,jΠ)k,l :=

Πk,l if (k, l) 6= (i, j),
(Πi,j−1 + Πi−1,j)Πi+1,jΠi,j+1

Πi,j(Πi+1,j + Πi,j+1)
if (k, l) = (i, j).

Recall the toggling sequence η in (1.1).

Lemma 5.2. Let us apply the toggling sequence η to the initial (a+ 2)× (b+ 2) matrix

Π =


P P P · · · P 1
P L1,1 L1,2 · · · L1,b 1
...

...
...

. . .
...

...
P La,1 La,2 · · · La,b 1
1 1 1 · · · 1 1

 .

Then the matrix resulting from the application of η is

ηΠ =


P P P · · · P 1
P L′1,1 L′1,2 · · · L′1,n−a 1
...

...
...

. . .
...

...
P L′a,1 L′a,2 · · · L′a,n−a 1

1 1 1 · · · 1 1

 .

In other words, the pull-back of the Gelfand–Zetlin coordinates via the rotation R is given by η.

Proof. Note that the sequence η toggles at each (internal) entry exactly once. It suffices to
prove that the step τi,j within the sequence η changes Li,j to L′i,j . This follows from the fact
that the toggling sequence η goes from bottom to top within each column and from left to right
through all columns. So when we toggle at the entry (i, j), the matrix entry to the left and the
matrix entry below have already been changed to L′i,j−1 and L′i+1,j respectively. The rest of the
proof is just a straightforward comparison between the toggling formula and Lemma 5.1. �

Proof of Theorem 1.7. Set l′i,j := (L′i,j)
t =

(
Rt
)∗

(li,j). By Lemma 5.2, with the convention
that l0,j = li,0 = l0,0 = c and la+1,j = li,b+1 = 0, we see that l′i,j can be computed recursively as
l′0,0 = l0,0 = c and for (i, j) 6= (0, 0),

l′i,j = min{l′i,j−1, li−1,j}+ l′i+1 + li,j+1 −min{l′i+1,j , li,j+1} − li,j
= min{l′i,j−1, li−1,j}+ max{l′i+1,j , li,j+1} − li,j . (5.1)

In the process of computing l′i,j , the coordinates below and to the left of li,j has been toggled in
the way the mutation sequence is constructed. Therefore the formula (5.1) recovers the toggling
formula (1.1). It concludes the proof of Theorem 1.7. �
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Now let us deduce the cyclic sieving phenomenon of plane partitions claimed in Theorem 1.6
from Theorem 1.7.

Proof of Theorem 1.6. Finite dimensional irreducible representations of GLn are classified by
their highest weights, which are n-tuples of integers λ = (λ1, . . . , λn) with λ1 ≥ λ2 ≥ · · · ≥ λn.
Denote by Vλ the finite dimension irreducible representation with highest weight λ (see, e.g., [8,
Lecture 15]). Let D(p, q) be the diagonal matrix diag

(
pqn−1, . . . , pq, p

)
. We compute the trace

of the action of D(p, q) on Vλ as

TrVλ D(p, q) = p〈ωn,λ〉
∑
µ

dimVλ(µ)q〈ρ,µ〉,

where Vλ(µ) is the µ-weight subspace of Vλ, ρ is the dominant weight (n − 1, . . . , 2, 1, 0), and
ωn = (1, . . . , 1).

Let ζ = e2π
√
−1/n. The characteristic polynomial of the matrix Ca in (1.2) is

det (t Idn − Ca) = tn − (−1)a−1.

It has n-distinct roots ζ−
a−1
2 , ζ−

a−1
2 ζ, . . . , ζ−

a−1
2 ζn−1 over C. Therefore Ca is conjugate to

D
(
ζ−

a−1
2 , ζ

)
and Cka is conjugate to D

(
ζ−

(a−1)k
2 , ζk

)
. By Theorem 1.7, the number of plane

partitions fixed by ηk is equal to the number of basis vectors in {θπ}π∈P (a,b,c) fixed by Cka .
Therefore

#

{
π
∣∣∣π ∈ P (a, b, c)
ηk(π) = π

}
= TrVcωa C

k
a = TrVcωa D

(
ζ−

(a−1)k
2 , ζk

)
=
(
ζk
)− (a−1)ac

2
∑
µ

dimVcωa(µ)
(
ζk
)〈ρ,µ〉

.

By Proposition 4.18, we have

dimVcωa(µ) = #P (a, b, c)(µ).

Let π ∈ P (a, b, c). By using (4.6) and setting δ0 = 0 we get

〈ρ,wt(Λπ)〉 =
n∑
k=1

(n− k)(δk − δk−1) =
n−1∑
k=1

δk =
(a− 1)ac

2
+
∑
i,j

πi,j =
(a− 1)ac

2
+ |π|.

Therefore(
ζk
)− (a−1)ac

2
∑
µ

dimVcωa(µ)
(
ζk
)〈ρ,µ〉

=
∑
µ

∑
π∈P (a,b,c)(µ)

(
ζk
)|π|

=
∑

π∈P (a,b,c)

(
ζk
)|π|

= Ma,b,c

(
ζk
)
. �

A Generalities on cluster ensembles

We briefly recall the definition of cluster ensembles following [5].
Quiver mutations. Let Q =

(
Iuf ⊂ I, ε

)
be a quiver without loops or 2-cycles: I is the set

of vertices, Iuf is the set of unfrozen vertices, and ε is an I × I skew-symmetric matrix called
the exchange matrix encoding the data of number of arrows between vertices

εij = #{j → i} −#{i→ j}.

For the rest of this appendix we let m = #I and l = #Iuf .
Given a quiver Q, the quiver mutation µk at a non-frozen vertex k ∈ Iuf creates a new

quiver µk(Q) by the following procedure
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1. For each pair of arrows i −→ k −→ j, create a “composite” arrow i −→ j.

2. Reverse all arrows incident to k.

3. Remove any maximal disjoint collection of oriented 2-cycles.

This quiver mutation is involutive: µ2
k(Q) = Q. Repeating the process at every non-frozen

vertex for each new quiver obtained via quiver mutations, we get an infinite l-valent tree Tl such
that every vertex t of Tl is assigned a quiver Qt =

(
Iuf ⊂ I, εt

)
.

Cluster ensembles. Now assign to each vertex t two coordinate charts: the K2 cluster
αt = {Ai,t | i ∈ I} and the Poisson cluster χt = {Xi,t | i ∈ I}. Geometrically, they correspond to
a pair of algebraic tori:

Tt,α = Spec
(
k[A±1,t, . . . , A

±
m,t]
)
, Tt,χ = Spec

(
k[X±1,t, . . . , X

±
m,t]
)
. (A.1)

There is a homomorphism p relating them:

p∗Xi,t =
∏
j∈I

A
εji,t
j,t . (A.2)

The transition maps between the pairs of tori assigned to Qt and Qt′ = µk(Qt) are as follows:

µ∗kAi,t′ =


A−1
k,t

∏
j∈I

A
[εjk,t]+
j,t +

∏
j∈I

A
[−εjk,t]+
j,t

 if i = k,

Ai,t if i 6= k,

(A.3)

µ∗kXi,t′ =

{
X−1
k,t if i = k,

Xi,t

(
1 +X

sgn(εik,t)
k,t

)εik,t if i 6= k.
(A.4)

Here [ε]+ = max{ε, 0}.
Let us glue all the algebraic tori via the transitions (A.3), (A.4), obtaining a pair of varieties

called a cluster ensemble

A|Q| =
⋃
t

Tt,α, X|Q| =
⋃
t

Tt,χ. (A.5)

where t runs through all the vertices of the tree Tl. The map p in (A.2) is compatible with the
transition maps (A.3)(A.4). Therefore we get a natural map

p : A|Q| −→X|Q|. (A.6)

In general the map p is neither injective nor surjective.
The coordinate rings of these varieties are the algebras of universal Laurent polynomials

O(A|Q|) = up(A|Q|) :=
⋂
t

k
[
A±1,t, . . . , A

±
m,t

]
,

O(X|Q|) = up(X|Q|) :=
⋂
t

k
[
X±1,t, . . . , X

±
m,t

]
.

Cluster modular group. To each torus Tt,α in (A.1) is associated a differential form

Ωt :=
∑
i,j

εij,t
dAi,t
Ai,t

∧ dAj,t
Aj,t

.

This Ωt is compatible with the transition (A.3) and therefore can be lifted to a global differential
form Ω on A|Q|. A cluster automorphism τ of A|Q| is a biregular isomorphism of A|Q| such that
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� It preserves the differential form: τ∗Ω = Ω.

� For every K2-cluster αt = {Ai,t}, the pullback τ∗(αt) := {τ∗Ai,t} remains a K2-cluster,
with its indices i possibly permuted.

Locally, τ can be realized by a sequence of mutations that sends a quiver Q to itself up to
permutations of vertices. The cluster modular group GA ,|Q| consists of cluster automorphisms
of A|Q|.

To each torus Tt,χ is associated a bi-vector

Bt :=
∑
i,j

εij,tXi,t
∂

∂Xi,t
∧Xj,t

∂

∂Xj,t
,

which can be lifted to a global bi-vector B on X|Q|. A cluster automorphism of X|Q| is a biregular
isomorphism of X|Q| that preserves the bi-vector B and permutes its Poisson clusters. Denote
by GX ,|Q| the group of cluster automorphisms of X|Q|.

From the tropical cluster duality proved by Nakanishi and Zelevinsky [25] one can deduce
that the cluster modular group GX ,|Q| = GA ,|Q|. Hence, we will drop the subscripts A and X
in the notation and denote it by G|Q|.

Quiver extensions. Let Q =
(
Iuf ⊂ I, ε

)
be a quiver. Let Q̃ =

(
Iuf ⊂ Ĩ , ε̃

)
be a quiver

obtained from Q by adding frozen vertices labelled by I ′ = {1′, . . . , f ′} and arrows such that Q̃
contains Q as a full subquiver. In other words, Ĩ = I t I ′ and ε̃ contains ε as a submatrix. Let(
A|Q̃|,X|Q̃|

)
be the cluster ensemble associated to Q̃.

Following [33, equation (3.5)], we define the following map

k : A|Q̃|
p̃−→X|Q̃|

j−→X|Q|

The map p̃ is a natural map as (A.6). The map j is a surjective map such that j∗Xi,t = Xi,t

for all i ∈ I. The map k is the composition of p̃ and j. It is surjective if and only if the
submatrix ε̃|Ĩ×I of the exchange matrix ε̃ is of full rank. In this case we get a natural injection

k∗ : up
(
X|Q|

)
−→ up

(
A|Q̃|

)
.

The following easy Lemma generalizes one key part of the proof of Theorem 2.15.

Lemma A.1. Assume k is surjective. Let F ∈ k
(
X|Q|

)
be a rational function on X|Q|. Then

F ∈ up
(
X|Q|

)
if and only if k∗(F ) ∈ up

(
A|Q̃|

)
.

Proof. Let t be a vertex of Tl. Let χt = {Xi,t | i ∈ I} and α̃t :=
{
Aj,t | j ∈ Ĩ

}
be its corre-

sponding clusters. Since k∗ is injective and it maps Laurent monomials to Laurent monomials,
we have

F ∈ k
[
X±1,t, . . . , X

±
m,t

]
⇐⇒ k∗(F ) ∈ k

[
A±1,t, . . . , A

±
m,t, A

±
1′,t, . . . , A

±
f ′,t

]
.

By definition up(X|Q|) and up
(
A|Q̃|

)
are the intersections of Laurent polynomial rings. The

lemma follows directly. �

B Generalities on reduced plabic graphs

Reduced plabic graphs were first introduced by Postnikov in [26]. We briefly recall the definition
and basic constructions of reduced plabic graphs here, and we mainly follow the convention used
in [35].
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Let Dn be a disk with n marked points on its boundary labeled 1, . . . , n in the clockwise
direction. Let Γ be a bipartite graph embedded into Dn with a single edge connected to every
boundary marked point. We draw zig-zag strands on Γ by drawing the following pattern around
each vertex according to the color of the vertex:

Definition B.1. A rank a reduced plabic graph on Dn is a bipartite graph with trivalent black
vertices whose zig-zag strands do not self-intersect or form parallel bigons and go from i to i+a
for every boundary marked point i.9

Definition B.2. Let Γ be a rank a reduced plabic graph on Dn. Connected components of the
complement of Γ are called faces. A boundary face is a face that contains part of the boundary
of Dn. Let ζi be the zig-zag strand going from the boundary marked point i to i+ a. A face f
is said to be dominated by ζi if it lies to the left of ζi with respect to the orientation of ζi. The
dominating set I(f) of f is a collection of the indices of zig-zag strands that dominate f .

It is know that every dominating set is of size a. The set {∆I(f)} of Plücker coordinates
with f runs through faces of Γ forms a K2 cluster chart on G r×a (n) associated to QΓ, where QΓ

is the quiver determined by Γ as in Section 2.4. For example, the cluster {∆I(i,j)} associated
to Qa,n in (2.16) is defined in this way.

There are two types of transformations on reduced plabic graphs Γ called 2-by-2 moves.

� Type I

fc

fs

fw fe

fn

←→ f ′c

fs

fw fe

fn

The dominating sets associated to the 5 related faces on picture are of the forms

I(fc) = J ∪ {i, k}, I(fs) = J ∪ {k, l}, I(fw) = J ∪ {i, l},
I(fe) = J ∪ {i, j}, I(fn) = J ∪ {j, k},

where 1 ≤ i < j < k < l ≤ n and J is an (a− 2)-element subset of {1, . . . , n} \ {i, j, k, l}.
The type I 2-by-2 move changes the dominating set associated to the central face to

I(f ′c) = J ∪ {j, l},

and keeps the rest intact. Note that one has the Plücker relation

∆I(fc)∆I(f ′c)
= ∆I(fs)∆I(fn) + ∆I(fe)∆I(fw). (B.1)

On the quiver level, it corresponds to the quiver mutation on QΓ at the vertex assigned
to the central face, which locally is as follows

•

•

•

•

• ←→ •

•

•

•

•

9This definition is equivalent to Postnikov’s original definition, but the bipartite and trivalent conditions help
reduce the types of equivalence transformations to two.
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Therefore the Plücker relation (B.1) is compatible with the cluster mutation (A.1).

� Type II.

←→

A type II 2-by-2 move changes neither the quiver nor the dominating sets of faces.

A result of Thurston [34, Theorem 6] can be restated in the reduced plabic graph language as
saying that any two rank a reduced plabic graphs on Dn can be transformed into one another via
a sequence of 2-by-2 moves of the above two types. In conclusion, all the K2 cluster structures
on G r×a (n) defined by rank a reduced plabic graphs on Dn are equivalent.

C Example of a reduced plabic graph transforming under ρ

Below is an example showing how a reduced plabic graph transforms under the rotation mutation
sequence ρ. This example can be easily generalized to other standard reduced plabic graphs Γa,n
with arbitrary parameters (a, n). The example we choose to do is with parameters (a = 3, n = 7).

1

2

3

4567

Type II−→

1

2

3

4567

Type I, µ2,1−→

1

2

3

4567

Type II−→

1

2

3

4567

Type I, µ1,1−→

1

2

3

4567

Type I, µ2,2−→

1

2

3

4567

Type II−→

1

2

3

4567

Type I, µ1,2−→

1

2

3

4567

Type I, µ2,3−→

1

2

3

4567

Type II−→

1

2

3

4567

Type I, µ1,3−→
1

2

3

4567

=−→

7

1

2

3456

D Connection to Rietsch–Williams’s cluster duality

In [29, Theorem 1.1], Rietsch and Williams identified the cluster dual of the pair
(
G r×a (n), D

)
as
(

Gr×a (n)×Gm,Wq

)
, where D =

⋃
iDi is the same boundary divisor as the one considered in

this paper. On the other side, besides ratios of Plücker coordinates, their potential function Wq

also carries an auxiliary variable q that is the coordinate of Gm. Below we construct a map to
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identify the Rietsch–Williams cluster dual with the one considered in this paper, which explains
the origin of the auxiliary variable q from our perspective.

Let [φ1, l1, . . . , φn, ln] ∈ Conf×n (a). Pick a non-zero vector v in ln. Define

Φ: Conf×n (a) −→ Gr×a (n)×Gm,

[φ1, l1, . . . , φn, ln] 7−→
([
v, φ(v), . . . , φn−1(v)

]
, P [φ1, l1, . . . , φn, ln]

)
.

Here P is the twisted monodromy, and
[
φn−1(v), . . . , φ(v), v

]
denotes the matrix representative

of the Grassmannian point (we drop the subscripts of φ to simplify the notation).
This map Φ is a biregular isomorphism. To define the inverse map, first pick an a×n matrix

whose row span is an element in Gr×a (n); the spans of its column vectors vi define the lines l2−i
(indices taken modulo n), and vi 7→ vi+1 define isomrophisms φi : l2−i → l1−i for 1 < i ≤ n; the
remaining isomorphism φ1 is then uniquely defined so that the twisted monodromy P would
take the value that is equal to the auxiliary variable q ∈ Gm. It is not hard to see that the
resulting image of the inverse map does not depend on the choice of the matrix representative.

Recall that the potential function constructed by Rietsch and Williams takes the form

Wq = q
∆{b+1,...,n−1,1}

∆{b+1,...,n}
+
n−1∑
i=1

∆{i−a+1,...,i−1,i+1}

∆{i−a+1,...,i}
.

Fix a volume form ω on ka. For 1 ≤ i ≤ n− 1, we see that

ω

((
φi(v)− Φ∗

(
∆{i−a+1,...,i−1,i+1}

∆{i−a+1,...,i}

)
φi−1(v)

)
∧ φi−2(v) ∧ · · · ∧ φi−a(v)

)
= ω

((
φi(v)−

ω
(
φi−a(v) ∧ · · · ∧ φi−2(v) ∧ φi(v)

)
ω (φi−a(v) ∧ · · · ∧ φi−1(v))

φi−1(v)

)
∧ φi−2(v) ∧ · · · ∧ φi−a(v)

)
= 0;

Comparing it with (2.8) we conclude that

Φ∗
(

∆{i−a+1,...,i−1,i+1}

∆{i−a+1,...,i}

)
= ϑi−a.

For the remaining term we also see that

ω

((
φn(v)− Φ∗

(
q

∆{b+1,...,n−1,1}

∆{b+1,...,n}

)
φn−1(v)

)
∧ φn−2(v) ∧ · · · ∧ φb(v)

)
= ω

((
φn(v)− P

ω
(
v ∧ φb(v) ∧ · · · ∧ φn−2(v)

)
ω (φb(v) ∧ · · · ∧ φn−1(v))

φn−1(v)

)
∧ φn−2(v) ∧ · · · ∧ φb(v)

)
= 0,

which implies that

Φ∗
(
q

∆{b+1,...,n−1,1}

∆{b+1,...,n}

)
= ϑb.

Therefore we can conclude that our potential function W is precisely

W = Φ∗ (Wq) .

Hence, the map Φ:
(
Conf×n (a),W

)
→
(
Gr×a (n)×Gm,Wq

)
is an isomorphism between our ver-

sion of cluster dual space and Rietsch–Williams’ cluster dual space. In particular, the auxiliary
parameter q in Rietsch–Williams potential function Wq now has a geometric interpretation as
the twisted monodromy P in our construction of the cluster dual.
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[22] Marsh R.J., Scott J.S., Twists of Plücker coordinates as dimer partition functions, Comm. Math. Phys. 341
(2016), 821–884, arXiv:1309.6630.

[23] Morier-Genoud S., Ovsienko V., Tabachnikov S., 2-frieze patterns and the cluster structure of the space of
polygons, Ann. Inst. Fourier (Grenoble) 62 (2012), 937–987, arXiv:1008.3359.

[24] Musiker G., Roby T., Paths to understanding birational rowmotion on products of two chains, Algebr. Comb.
2 (2019), 275–304, arXiv:1801.03877.

[25] Nakanishi T., Zelevinsky A., On tropical dualities in cluster algebras, in Algebraic Groups and Quantum
Groups, Contemp. Math., Vol. 565, Amer. Math. Soc., Providence, RI, 2012, 217–226, arXiv:1101.3736.

[26] Postnikov A., Total positivity, Grassmannians, and networks, arXiv:math.CO/0609764.

[27] Reiner V., Stanton D., White D., The cyclic sieving phenomenon, J. Combin. Theory Ser. A 108 (2004),
17–50.

[28] Rhoades B., Cyclic sieving, promotion, and representation theory, J. Combin. Theory Ser. A 117 (2010),
38–76, arXiv:1005.2568.

[29] Rietsch K., Williams L., Newton–Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians,
Duke Math. J. 168 (2019), 3437–3527, arXiv:1712.00447.

[30] Roby T., Dynamical algebraic combinatorics and the homomesy phenomenon, in Recent Trends in Combi-
natorics, IMA Vol. Math. Appl., Vol. 159, Springer, Cham, 2016, 619–652.

[31] Sagan B.E., The cyclic sieving phenomenon: a survey, in Surveys in Combinatorics 2011, London Math.
Soc. Lecture Note Ser., Vol. 392, Cambridge University Press, Cambridge, 2011, 183–233, arXiv:1008.0790.

[32] Scott J.S., Grassmannians and cluster algebras, Proc. London Math. Soc. 92 (2006), 345–380,
arXiv:math.CO/0311148.

[33] Shen L., Stasheff polytopes and the coordinate ring of the cluster X -variety of type An, Selecta Math. (N.S.)
20 (2014), 929–959, arXiv:1104.3528.

[34] Thurston D.P., From dominoes to hexagons, in Proceedings of the 2014 Maui and 2015 Qinhuangdao Con-
ferences in Honour of Vaughan F.R. Jones’ 60th Birthday, Proc. Centre Math. Appl. Austral. Nat. Univ.,
Vol. 46, Austral. Nat. Univ., Canberra, 2017, 399–414, arXiv:math.CO/0405482.

[35] Weng D., Donaldson–Thomas transformation of Grassmannian, arXiv:1603.00972.

https://doi.org/10.1007/s00220-015-2493-7
https://arxiv.org/abs/1309.6630
https://doi.org/10.5802/aif.2713
https://arxiv.org/abs/1008.3359
https://doi.org/10.5802/alco.43
https://arxiv.org/abs/1801.03877
https://doi.org/10.1090/conm/565/11159
https://arxiv.org/abs/1101.3736
https://arxiv.org/abs/math.CO/0609764
https://doi.org/10.1016/j.jcta.2004.04.009
https://doi.org/10.1016/j.jcta.2009.03.017
https://arxiv.org/abs/1005.2568
https://doi.org/10.1215/00127094-2019-0028
https://arxiv.org/abs/1712.00447
https://doi.org/10.1007/978-3-319-24298-9_25
https://arxiv.org/abs/1008.0790
https://doi.org/10.1112/S0024611505015571
https://arxiv.org/abs/math.CO/0311148
https://doi.org/10.1007/s00029-013-0124-8
https://arxiv.org/abs/1104.3528
https://arxiv.org/abs/math.CO/0405482
https://arxiv.org/abs/1603.00972

	1 Introduction
	1.1 Cluster duality of Grassmannians
	1.2 Cyclic sieving phenomenon of plane partitions

	2 Main definitions
	2.1 Decorated Grassmannian
	2.2 Decorated configuration space
	2.3 Maps among the decorated spaces
	2.4 Cluster structures

	3 Cluster nature of decorated configuration space
	3.1 Twisted monodromy and Casimir
	3.2 Cyclic rotation and cluster transformation
	3.3 Potential function
	3.4 Tropicalization
	3.5 Gelfand–Zetlin coordinates

	4 Cluster duality
	4.1 Duality conjecture and canonical basis
	4.2 Partial compactification, optimized quiver, and potential function
	4.3 Gm-action
	4.4 Torus action and weight space decomposition

	5 Cyclic sieving phenomenon of plane partitions
	A Generalities on cluster ensembles
	B Generalities on reduced plabic graphs
	C Example of a reduced plabic graph transforming under 
	D Connection to Rietsch–Williams's cluster duality
	References

